1
|
Liu DH, Liu QR, Tojibaev KS, Sukhorukov AP, Wariss HM, Zhao Y, Yang L, Li WJ. Phylogenomics provides new insight into the phylogeny and diversification of Asian Lappula (Boraginaceae). Mol Phylogenet Evol 2025; 208:108361. [PMID: 40287026 DOI: 10.1016/j.ympev.2025.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The application of omics data serves as a powerful tool for investigating the roles of incomplete lineage sorting (ILS) and hybridization in shaping genomic diversity, offering deeper insights into complex evolutionary processes. In this study, we utilized deep genome sequencing data from 76 individuals of Lappula and its closely allied genera, collected from China and Central Asia. By employing the HybPiper and Easy353 pipelines, we recovered 262-279 single-copy nuclear genes (SCNs) and 352-353 Angiosperms353 genes, respectively. We analyzed multiple datasets, including complete chloroplast genomes and a filtered set of 475 SCNs, to conduct phylogenetic analyses using both concatenated and coalescent-based methods. Furthermore, we employed Quartet Sampling (QS), coalescent simulations, MSCquartets, HyDe, and reticulate network analyses to investigate the sources of phylogenetic discordance. Our results confirm that Lappula is polyphyletic, with L. mogoltavica clustering with Pseudolappula sinaica and forming a sister relationship with other taxa included in this study. Additionally, three Lepechiniella taxa nested within distinct clades of Lappula. Significant gene tree discordance was observed at several nodes within Lappula. Coalescent simulations and hybrid detection analyses suggest that both ILS and hybridization contribute to these discrepancies. Flow cytometry (FCM) analyses confirmed the presence of both diploid and tetraploid taxa within Lappula. Phylogenetic network analyses further revealed that Clades IV and VII likely originated through hybridization, with the tetraploids in Clade IV arising from two independent hybridization events. Additionally, the "ghost lineage" identified as sister to Lappula redowskii serves as one of the donors in allopolyploidization. In conclusion, our study provides new insights into the deep phylogenetic relationships of Asian Lappula and its closely allied genera, contributing to a more comprehensive understanding of the evolution and diversification of Lappula.
Collapse
Affiliation(s)
- Dan-Hui Liu
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; China-Tajikistan Belt and Road Joint Laboratory on Biodiversity Conservation and Sustainable Use, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Quan-Ru Liu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Komiljon Sh Tojibaev
- Institute of Botany, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan
| | - Alexander P Sukhorukov
- Department of Higher Plants, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Hafiz Muhammad Wariss
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Department of Botany, University of Sargodha, Sargodha, 40100, Pakistan
| | - Yue Zhao
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Lei Yang
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jun Li
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; China-Tajikistan Belt and Road Joint Laboratory on Biodiversity Conservation and Sustainable Use, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Gan QL, Xu WB, Li XW. Prunuszhuxiensis (Rosaceae), a new species from Hubei, China. PHYTOKEYS 2025; 255:203-213. [PMID: 40322666 PMCID: PMC12046342 DOI: 10.3897/phytokeys.255.142428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/02/2025] [Indexed: 05/08/2025]
Abstract
In the present paper, we describe a new species, Prunuszhuxiensis (P.subg.Cerasus), from Hubei, China, based on long-term field observations. This species closely resembles P.serrulata in having corymbose-racemose or subumbellate inflorescences, hairy petiole, pedicel, involucral bracts and black drupes. However, P.zhuxiensis differs distinctly from P.serrulata by its sweet edible drupes (versus bitter, inedible drupes in P.serrulata), stipules 4-lobed at the base (versus linear stipules in P.serrulata), smaller bracts, shorter pedicels and styles pilose at the base (versus glabrous styles in P.serrulata). Furthermore, molecular phylogenetic analyses indicate that P.zhuxiensis and P.serrulata are placed in separate clades, supporting their distinction.
Collapse
Affiliation(s)
- Qi-liang Gan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, Hubei, ChinaHubei University of Chinese MedicineWuhanChina
| | - Wen-bin Xu
- Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, ChinaWuhan Botanical Garden, the Chinese Academy of SciencesWuhanChina
| | - Xin-wei Li
- Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, ChinaWuhan Botanical Garden, the Chinese Academy of SciencesWuhanChina
| |
Collapse
|
3
|
Zhai T, Zhao Z, Fu C, Huang L, Jiang C, Li M, Wang Z, Yang X. De novo assembly and comparative analysis of cherry ( Prunus subgenus Cerasus) mitogenomes. FRONTIERS IN PLANT SCIENCE 2025; 16:1568698. [PMID: 40196431 PMCID: PMC11973375 DOI: 10.3389/fpls.2025.1568698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 04/09/2025]
Abstract
Prunus subgenus Cerasus (Mill) A. Gray, commonly known as cherries and cherry blossoms, possesses significant edible and ornamental value. However, the mitochondrial genomes (mitogenomes) of cherry species remain largely unexplored. Here, we successfully assembled the mitogenomes of five cherry species (P. campanulata, P. fruticosa, P. mahaleb, P. pseudocerasus, and P. speciosa), revealing common circular structures. The assembled mitogenomes exhibited sizes ranging from 383,398 bp to 447,498 bp, with GC content varying between 45.54% and 45.76%. A total of 62 to 69 genes were annotated, revealing variability in the copy number of protein-coding genes (PCGs) and tRNA genes. Mitogenome collinearity analysis indicated genomic rearrangements across Prunus species, driven by repetitive sequences, particularly dispersed repeats. Additionally, the five cherry species displayed highly conserved codon usage and RNA editing patterns, highlighting the evolutionary conservation of the mitochondrial PCGs. Phylogenetic analyses confirmed the monophyly of subg. Cerasus, although notable phylogenetic incongruences were observed between the mitochondrial and plastid datasets. These results provide significant genomic resources for forthcoming studies on the evolution and molecular breeding of cherry mitogenomes, enhancing the overall comprehension of mitogenome structure and evolution within Prunus.
Collapse
Affiliation(s)
- Tianya Zhai
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhuang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Chenlong Fu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Lizhen Huang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Changci Jiang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Meng Li
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zefu Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Xiaoyue Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Lin XH, Xie SY, Liu GN, Ma DK, Zou FR, Peng WD, Xu C, Liu B, Zhao L, Liu BB. Plastome-based subgenus-level phylogenetic backbone of hawthorns: insights into the maternal position and taxonomic synopsis of Crataegusshandongensis (Rosaceae, Maleae). PHYTOKEYS 2025; 252:87-108. [PMID: 39981217 PMCID: PMC11840429 DOI: 10.3897/phytokeys.252.136506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/14/2024] [Indexed: 02/22/2025]
Abstract
The recent recognition of the five-subgenera classification within Crataegus has prompted discussion about the maternal phylogenetic relationships among these subgenera, with inconsistencies in taxon sampling, marker selection, and inference methods contributing to differing interpretations. In this study, we performed deep genome skimming sequencing and assembled 63 whole plastomes, including 58 from Crataegus and five from related genera as the outgroups. We employed multiple phylogenetic inference methods (Maximum Likelihood and Bayesian Inference) to reconstruct an accurate phylogeny. The whole plastome-based, maternally inherited trees consistently supported two major clades within Crataegus: one comprising C.subg.Crataegus and C.subg.Brevispinae, the other encompassing the remaining three subgenera. Within the latter clade, C.subg.Sanguineae and C.subg.Americanae formed a sister group, which together were sister to C.subg.Mespilus. Our analysis also revealed a close maternal relationship between C.shandongensis and C.pinnatifidavar.major, suggesting the shared maternal ancestry. Furthermore, we updated the description of C.shandongensis based on extensive specimen examination and designated the lectotype for this species. This comprehensive taxonomic synopsis, supported by both phylogenomic and morphological analyses, provides a robust foundation for future taxonomic and evolutionary studies of the Shandong hawthorn.
Collapse
Affiliation(s)
- Xiao-Hua Lin
- College of Life Sciences & Herbarium of Northwest A&F University, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Si-Yu Xie
- College of Life Sciences & Herbarium of Northwest A&F University, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | | | - Dai-Kun Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, China National Botanical Garden (North Garden), Beijing 100093, China
| | - Fei-Ran Zou
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Dong Peng
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Bing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Liang Zhao
- College of Life Sciences & Herbarium of Northwest A&F University, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin-Bin Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
5
|
Jiang LJ, Zhao J, Wang JG, Landrein S, Shi JP, Huang CJ, Luo M, Zhou XM, Niu HB, He ZR. Deciphering the evolution and biogeography of ant-ferns Lecanopteris s.s. Mol Phylogenet Evol 2024; 201:108199. [PMID: 39278383 DOI: 10.1016/j.ympev.2024.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Southeast Asia is a biodiversity hotspot characterized by a complex paleogeography, and its Polypodiopsida flora is particularly diverse. While hybridization is recognized as common in ferns, further research is needed to investigate the relationship between hybridization events and fern diversity. Lecanopteris s.s., an ant-associated fern, has been subject to debate regarding species delimitations primarily due to limited DNA markers and species sampling. Our study integrates 22 newly generated plastomes, 22 transcriptomes, and flow cytometry of all native species along with two cultivated hybrids. Our objective is to elucidate the reticulate evolutionary history within Lecanopteris s.s. through the integration of phylobiogeographic reconstruction, gene flow inference, and genome size estimation. Key findings of our study include: (1) An enlarged plastome size (178-187 Kb) in Lecanopteris s.s., attributed to extreme expansion of the Inverted Repeat (IR) regions; (2) The traditional 'pumila' and 'crustacea' groups are paraphyletic; (3) Significant cytonuclear discordance attributed to gene flow; (4) Natural hybridization and introgression in the 'pumila' and 'darnaedii' groups; (5) L. luzonensis is the maternal parent of L. 'Yellow Tip', with L. pumila suggested as a possible paternal parent; (6) L. 'Tatsuta' is a hybrid between L. luzonensis and L. crustacea; (7) Lecanopteris s.s. first diverged during the Neogene and then during the middle Miocene climatic optimum in the Indochina and Sundaic regions. In conclusion, the biogeographic history and speciation of Lecanopteris have been profoundly shaped by past climate changes and geodynamics of Southeast Asia. Dispersals, hybridization and introgression between species act as pivotal factors in the evolutionary trajectory of Lecanopteris s.s.. This research provides a robust framework for further exploration and understanding of the complex dynamics driving the diversification and distribution patterns within Polypodiaceae subfamily Microsoroideae.
Collapse
Affiliation(s)
- Li-Ju Jiang
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Sven Landrein
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong Special Administrative Region of China
| | - Ji-Pu Shi
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Miao Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Hong-Bin Niu
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China.
| |
Collapse
|
6
|
Wang Y, Wu X, Chen Y, Xu C, Wang Y, Wang Q. Phylogenomic analyses revealed widely occurring hybridization events across Elsholtzieae (Lamiaceae). Mol Phylogenet Evol 2024; 198:108112. [PMID: 38806075 DOI: 10.1016/j.ympev.2024.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Obtaining a robust phylogeny proves challenging due to the intricate evolutionary history of species, where processes such as hybridization and incomplete lineage sorting can introduce conflicting signals, thereby complicating phylogenetic inference. In this study, we conducted comprehensive sampling of Elsholtzieae, with a particular focus on its largest genus, Elsholtzia. We utilized 503 nuclear loci and complete plastome sequences obtained from 99 whole-genome sequencing datasets to elucidate the interspecific relationships within the Elsholtzieae. Additionally, we explored various sources of conflicts between gene trees and species trees. Fully supported backbone phylogenies were recovered, and the monophyly of Elsholtzia and Keiskea was not supported. Significant gene tree heterogeneity was observed at numerous nodes, particularly regarding the placement of Vuhuangia and the E. densa clade. Further investigations into potential causes of this discordance revealed that incomplete lineage sorting (ILS), coupled with hybridization events, has given rise to substantial gene tree discordance. Several species, represented by multiple samples, exhibited a closer association with geographical distribution rather than following a strictly monophyletic pattern in plastid trees, suggesting chloroplast capture within Elsholtzieae and providing evidence of hybridization. In conclusion, this study provides phylogenomic insights to untangle taxonomic problems in the tribe Elsholtzieae, especially the genus Elsholtzia.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuexue Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yinghui Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Wang J, Kan J, Wang J, Yan X, Li Y, Soe T, Tembrock LR, Xing G, Li S, Wu Z, Jia M. The pan-plastome of Prunus mume: insights into Prunus diversity, phylogeny, and domestication history. FRONTIERS IN PLANT SCIENCE 2024; 15:1404071. [PMID: 38887455 PMCID: PMC11181306 DOI: 10.3389/fpls.2024.1404071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Backgrounds Prunus mume in the Rosaceae and commonly referred to as mei or Chinese plum is widely used as a traditional ornamental flowering plant and fruit tree in China. Although some population and genetic analyses have been conducted for this species, no extensive comparisons of genetic variation from plastomes have yet been investigated. Methods We de novo assembled a total of 322 complete P. mume plastomes in this study and did a series of comparative analyses to better resolve pan-plastomic patterns of P. mume. To determine the phylogeny and domestication history of this species, we reconstructed the phylogenetic tree of Prunus genus, and resolved the population structure of P. mume. We also examined the nucleotide variation of P. mume to find potential DNA barcodes. Results The assembled plastomes exhibited a typical quadripartite structure and ranged from 157,871 bp to 158,213 bp in total size with a GC content ranging from 36.73 to 36.75%. A total of 112 unique genes were identified. Single nucleotide variants (SNVs) were the most common variants found among the plastomes, followed by nucleotide insertions/deletions (InDels), and block substitutions with the intergenic spacer (IGS) regions containing the greatest number of variants. From the pan-plastome data six well-supported genetic clusters were resolved using multiple different population structure analyses. The different cultivars were unevenly distributed among multiple clades. We also reconstructed a phylogeny for multiple species of Prunus to better understand genus level diversity and history from which a complex introgressive relationship between mei and other apricots/plums was resolved. Conclusion This study constructed the pan-plastome of P. mume, which indicated the domestication of P. mume involved multiple genetic origins and possible matrilineal introgression from other species. The phylogenetic analysis in Prunus and the population structure of P. mume provide an important maternal history for Prunus and the groundwork for future studies on intergenomic sequence transfers, cytonuclear incompatibility, and conservation genetics.
Collapse
Affiliation(s)
- Jie Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junhu Kan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Xinlin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Thida Soe
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Zhiqiang Wu
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Minlong Jia
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
8
|
Yang X, Su Y, Huang S, Hou Q, Wei P, Hao Y, Huang J, Xiao H, Ma Z, Xu X, Wang X, Cao S, Cao X, Zhang M, Wen X, Ma Y, Peng Y, Zhou Y, Cao K, Qiao G. Comparative population genomics reveals convergent and divergent selection in the apricot-peach-plum-mei complex. HORTICULTURE RESEARCH 2024; 11:uhae109. [PMID: 38883333 PMCID: PMC11179850 DOI: 10.1093/hr/uhae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/06/2024] [Indexed: 06/18/2024]
Abstract
The economically significant genus Prunus includes fruit and nut crops that have been domesticated for shared and specific agronomic traits; however, the genomic signals of convergent and divergent selection have not been elucidated. In this study, we aimed to detect genomic signatures of convergent and divergent selection by conducting comparative population genomic analyses of the apricot-peach-plum-mei (APPM) complex, utilizing a haplotype-resolved telomere-to-telomere (T2T) genome assembly and population resequencing data. The haplotype-resolved T2T reference genome for the plum cultivar was assembled through HiFi and Hi-C reads, resulting in two haplotypes 251.25 and 251.29 Mb in size, respectively. Comparative genomics reveals a chromosomal translocation of ~1.17 Mb in the apricot genomes compared with peach, plum, and mei. Notably, the translocation involves the D locus, significantly impacting titratable acidity (TA), pH, and sugar content. Population genetic analysis detected substantial gene flow between plum and apricot, with introgression regions enriched in post-embryonic development and pollen germination processes. Comparative population genetic analyses revealed convergent selection for stress tolerance, flower development, and fruit ripening, along with divergent selection shaping specific crop, such as somatic embryogenesis in plum, pollen germination in mei, and hormone regulation in peach. Notably, selective sweeps on chromosome 7 coincide with a chromosomal collinearity from the comparative genomics, impacting key fruit-softening genes such as PG, regulated by ERF and RMA1H1. Overall, this study provides insights into the genetic diversity, evolutionary history, and domestication of the APPM complex, offering valuable implications for genetic studies and breeding programs of Prunus crops.
Collapse
Affiliation(s)
- Xuanwen Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Su
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi 830046, China
| | - Siyang Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Pengcheng Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Yani Hao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jiaqi Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiyao Ma
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaodong Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuejing Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mengyan Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yuhua Ma
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Ke Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Li E, Wang Y, Liu K, Liu Y, Xu C, Dong W, Zhang Z. Historical climate change and vicariance events contributed to the intercontinental disjunct distribution pattern of ash species (Fraxinus, Oleaceae). Commun Biol 2024; 7:603. [PMID: 38769470 PMCID: PMC11106067 DOI: 10.1038/s42003-024-06296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
The Northern Hemisphere temperate forests exhibit a disjunct distributional pattern in Europe, North America, and East Asia. Here, to reveal the promoter of intercontinental disjunct distribution, Fraxinus was used as a model organism to integrate abundant fossil evidence with high-resolution phylogenies in a phytogeographic analysis. We constructed a robust phylogenetic tree using genomic data, reconstructed the geographic ancestral areas, and evaluated the effect of incorporating fossil information on the reconstructed biogeographic history. The phylogenetic relationships of Fraxinus were highly resolved and divided into seven clades. Fraxinus originated in western North America during Eocene, and six intercontinental dispersal events and five intercontinental vicariance events were occured. Results suggest that climate change and vicariance contributed to the intercontinental disjunct distribution pattern of Fraxinus. Moreover, results highlight the necessity of integrating phylogenetic relationship and fossil to improve the reliability of inferred biogeographic events and our understanding of the processes underlying disjunct distributions.
Collapse
Affiliation(s)
- Enze Li
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yushuang Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Kangjia Liu
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yanlei Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
10
|
Dong J, Yi X, Wang X, Li M, Chen X, Gao S, Fu W, Qian S, Zeng X, Yun Y. Population Variation and Phylogeography of Cherry Blossom ( Prunus conradinae) in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:974. [PMID: 38611504 PMCID: PMC11013036 DOI: 10.3390/plants13070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Prunus conradinae (subgenus Cerasus, Rosaceae) is a significant germplasm resource of wild cherry blossom in China. To ensure the comprehensiveness of this study, we used a large sample size (12 populations comprising 244 individuals) which involved the fresh leaves of P. conradinae in Eastern, Central, and Southwestern China. We combined morphological and molecular evidence (three chloroplast DNA (cpDNA) sequences and one nuclear DNA (nr DNA) sequence) to examine the population of P. conradinae variation and differentiation. Our results revealed that Central, East, and Southwest China are important regions for the conservation of P. conradinae to ensure adequate germplasm resources in the future. We also found support for a new variant, P. conradinae var. rubrum. We observed high genetic diversity within P. conradinae (haplotype diversity [Hd] = 0.830; ribotype diversity [Rd] = 0.798), with novel genetic variation and a distinct genealogical structure among populations. There was genetic variation among populations and phylogeographic structure among populations and three geographical groups (Central, East, and Southwest China). The genetic differentiation coefficient was the lowest in the Southwest region and the gene exchange was obvious, while the differentiation was obvious in Central China. In the three geographic groups, we identified two distinct lineages: an East China lineage (Central China and East China) and a Southwest China lineage ((Central China and Southwest China) and East China). These two lineages originated approximately 4.38 million years ago (Mya) in the early Pliocene due to geographic isolation. P. conradinae expanded from Central China to East China at 3.32 Mya (95% HPD: 1.12-5.17 Mya) in the Pliocene. The population of P. conradinae spread from East China to Southwest China, and the differentiation time was 2.17 Mya (95% (HPD: 0.47-4.54 Mya), suggesting that the population of P. conradinae differentiated first in Central and East China. The population of P. conradinae experienced differentiation from Central China to Southwest China around 1.10 Mya (95% HPD: 0.11-2.85 Mya) during the early Pleistocene of the Quaternary period. The southeastern region of East China, near Mount Wuyi, likely serves as a refuge for P. conradinae. This study establishes a theoretical foundation for the classification, identification, conservation, and exploitation of germplasm resources of P. conradinae.
Collapse
Affiliation(s)
- Jingjing Dong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangui Yi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xianrong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Meng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangzhen Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Shucheng Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyi Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Siyu Qian
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xinglin Zeng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yingke Yun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (M.L.); (X.C.); (S.G.); (W.F.); (S.Q.); (X.Z.); (Y.Y.)
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Zhang G, Ma H. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:546-578. [PMID: 38289011 DOI: 10.1111/jipb.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the "abominable mystery," hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
12
|
Laczkó L, Jordán S, Póliska S, Rácz HV, Nagy NA, Molnár V A, Sramkó G. The draft genome of Spiraea crenata L. (Rosaceae) - the first complete genome in tribe Spiraeeae. Sci Data 2024; 11:219. [PMID: 38368431 PMCID: PMC10874383 DOI: 10.1038/s41597-024-03046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
Spiraea crenata L. is a deciduous shrub distributed across the Eurasian steppe zone. The species is of cultural and horticultural importance and occurs in scattered populations throughout its westernmost range. Currently, there is no genomic information on the tribe of Spiraeeae. Therefore we sequenced and assembled the whole genome of S. crenata using second- and third-generation sequencing and a hybrid assembly approach to expand genomic resources for conservation and support research on this horticulturally important lineage. In addition to the organellar genomes (the plastome and the mitochondrion), we present the first draft genome of the species with an estimated size of 220 Mbp, an N50 value of 7.7 Mbp, and a BUSCO score of 96.0%. Being the first complete genome in tribe Spiraeeae, this may not only be the first step in the genomic study of a rare plant but also a contribution to genomic resources supporting the study of biodiversity and evolutionary history of Rosaceae.
Collapse
Affiliation(s)
- Levente Laczkó
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Conservation Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - Sándor Jordán
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Conservation Biology Research Group, University of Debrecen, Debrecen, Hungary
- Juhász-Nagy Pál Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hanna Viktória Rácz
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Nikoletta Andrea Nagy
- Department of Evolutionary Zoology and Human Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Attila Molnár V
- HUN-REN-UD Conservation Biology Research Group, University of Debrecen, Debrecen, Hungary
- Evolutionary Genomics Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gábor Sramkó
- HUN-REN-UD Conservation Biology Research Group, University of Debrecen, Debrecen, Hungary.
- Evolutionary Genomics Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
13
|
Shen X, Zong W, Li Y, Liu X, Zhuge F, Zhou Q, Zhou S, Jiang D. Evolution of Cherries ( Prunus Subgenus Cerasus) Based on Chloroplast Genomes. Int J Mol Sci 2023; 24:15612. [PMID: 37958595 PMCID: PMC10650623 DOI: 10.3390/ijms242115612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Cherries (Prunus Subgenus Cerasus) have economic value and ecological significance, yet their phylogeny, geographic origin, timing, and dispersal patterns remain challenging to understand. To fill this gap, we conducted a comprehensive analysis of the complete chloroplast genomes of 54 subg. Cerasus individuals, along with 36 additional genomes from the NCBI database, resulting in a total of 90 genomes for comparative analysis. The chloroplast genomes of subg. Cerasus exhibited varying sizes and consisted of 129 genes, including protein-coding, transfer RNA, and ribosomIal RNA genes. Genomic variation was investigated through InDels and SNPs, showcasing distribution patterns and impact levels. A comparative analysis of chloroplast genome boundaries highlighted variations in inverted repeat (IR) regions among Cerasus and other Prunus species. Phylogeny based on whole-chloroplast genome sequences supported the division of Prunus into three subgenera, I subg. Padus, II subg. Prunus and III subg. Cerasus. The subg. Cerasus was subdivided into seven lineages (IIIa to IIIg), which matched roughly to taxonomic sections. The subg. Padus first diverged 51.42 Mya, followed by the separation of subg. Cerasus from subg. Prunus 39.27 Mya. The subg. Cerasus started diversification at 15.01 Mya, coinciding with geological and climatic changes, including the uplift of the Qinghai-Tibet Plateau and global cooling. The Himalayans were the refuge of cherries, from which a few species reached Europe through westward migration and another species reached North America through northeastward migration. The mainstage of cherry evolution was on the Qing-Tibet Plateau and later East China and Japan as well. These findings strengthen our understanding of the evolution of cherry and provide valuable insights into the conservation and sustainable utilization of cherry's genetic resources.
Collapse
Affiliation(s)
- Xin Shen
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| | - Wenjin Zong
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| | - Yingang Li
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| | - Xinhong Liu
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| | - Fei Zhuge
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| | - Qi Zhou
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| | - Shiliang Zhou
- State Key Laboratory of Systematic & Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dongyue Jiang
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou 310023, China; (X.S.); (W.Z.); (Y.L.); (X.L.); (F.Z.); (Q.Z.)
| |
Collapse
|
14
|
Su N, Hodel RG, Wang X, Wang JR, Xie SY, Gui CX, Zhang L, Chang ZY, Zhao L, Potter D, Wen J. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses. PLANT DIVERSITY 2023; 45:397-408. [PMID: 37601549 PMCID: PMC10435964 DOI: 10.1016/j.pld.2023.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 08/22/2023]
Abstract
Prunus is an economically important genus widely distributed in the temperate Northern Hemisphere. Previous studies on the genus using a variety of loci yielded conflicting phylogenetic hypotheses. Here, we generated nuclear reduced representation sequencing data and plastid genomes for 36 Prunus individuals and two outgroups. Both nuclear and plastome data recovered a well-resolved phylogeny. The species were divided into three main clades corresponding to their inflorescence types, - the racemose group, the solitary-flower group and the corymbose group - with the latter two sister to one another. Prunus was inferred to have diversified initially in the Late Cretaceous around 67.32 million years ago. The diversification of the three major clades began between the Paleocene and Miocene, suggesting that paleoclimatic events were an important driving force for Prunus diversification. Ancestral state reconstructions revealed that the most recent common ancestor of Prunus had racemose inflorescences, and the solitary-flower and corymb inflorescence types were derived by reduction of flower number and suppression of the rachis, respectively. We also tested the hybrid origin hypothesis of the racemose group proposed in previous studies. Prunus has undergone extensive hybridization events, although it is difficult to identify conclusively specific instances of hybridization when using SNP data, especially deep in the phylogeny. Our study provides well-resolved nuclear and plastid phylogenies of Prunus, reveals substantial cytonuclear discord at shallow scales, and sheds new light on inflorescence evolution in this economically important lineage.
Collapse
Affiliation(s)
- Na Su
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Richard G.J. Hodel
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Xi Wang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Jun-Ru Wang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Si-Yu Xie
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Chao-Xia Gui
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Ling Zhang
- College of Life Sciences, Tarim University, Alaer 843300, China
| | - Zhao-Yang Chang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Liang Zhao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Herbarium of Northwest A&F University, Yangling 712100, China
| | - Daniel Potter
- Department of Plant Sciences, MS2, University of California, Davis, CA 95616, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| |
Collapse
|
15
|
Talavera A, Nie ZL, Ma ZY, Johnson G, Ickert-Bond SM, Zimmer EA, Wen J. Phylogenomic analyses using a new 1013-gene Vitaceae bait-set support major groups of North American Vitis. Mol Phylogenet Evol 2023:107866. [PMID: 37354923 DOI: 10.1016/j.ympev.2023.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
A set of newly designed Vitaceae baits targeting 1013 genes was employed to explore phylogenetic relationships among North American Vitis. Eurasian Vitis taxa including Vitis vinifera were found to be nested within North American Vitis subgenus Vitis. North American Vitis subgenus Vitis can be placed into nine main groups: the Monticola group, the Occidentales group, the Californica group, the Vinifera group (introduced from Eurasia), the Mustangensis group, the Palmata group, the Aestivalis group, the Labrusca group, and the Cinerea group. Strong cytonuclear discordances were detected in North American Vitis, with many species non-monophyletic in the plastid phylogeny, while monophyletic in the nuclear phylogeny. The phylogenomic analyses support recognizing four distinct species in the Vitis cinerea complex in North America: V. cinerea, V. baileyana, V. berlandieri, and V. simpsonii. Such treatment will better serve the conservation of wild Vitis diversity in North America. Yet the evolutionary history of Vitis is highly complex, with the concordance analyses indicating conflicting signals across the phylogeny. Cytonuclear discordances and Analyses using the Species Networks applying Quartets (SNaQ) method support extensive hybridizations in North American Vitis. The results further indicate that plastid genomes alone are insufficient for resolving the evolutionary history of plant groups that have undergone rampant hybridization, like the case in North American Vitis. Nuclear gene data are essential for species delimitation, identification and reconstructing evolutionary relationships; therefore, they are imperative for plant phylogenomic studies.
Collapse
Affiliation(s)
- Alicia Talavera
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC 20013-7012, USA; Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071, Málaga, Spain.
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Zhi-Yao Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000 China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Stefanie M Ickert-Bond
- UA Museum of the North Herbarium and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-6960, USA
| | - Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| |
Collapse
|
16
|
Goeckeritz CZ, Rhoades KE, Childs KL, Iezzoni AF, VanBuren R, Hollender CA. Genome of tetraploid sour cherry (Prunus cerasus L.) 'Montmorency' identifies three distinct ancestral Prunus genomes. HORTICULTURE RESEARCH 2023; 10:uhad097. [PMID: 37426879 PMCID: PMC10323630 DOI: 10.1093/hr/uhad097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 07/11/2023]
Abstract
Sour cherry (Prunus cerasus L.) is a valuable fruit crop in the Rosaceae family and a hybrid between progenitors closely related to extant Prunus fruticosa (ground cherry) and Prunus avium (sweet cherry). Here we report a chromosome-scale genome assembly for sour cherry cultivar Montmorency, the predominant cultivar grown in the USA. We also generated a draft assembly of P. fruticosa to use alongside a published P. avium sequence for syntelog-based subgenome assignments for 'Montmorency' and provide compelling evidence P. fruticosa is also an allotetraploid. Using hierarchal k-mer clustering and phylogenomics, we show 'Montmorency' is trigenomic, containing two distinct subgenomes inherited from a P. fruticosa-like ancestor (A and A') and two copies of the same subgenome inherited from a P. avium-like ancestor (BB). The genome composition of 'Montmorency' is AA'BB and little-to-no recombination has occurred between progenitor subgenomes (A/A' and B). In Prunus, two known classes of genes are important to breeding strategies: the self-incompatibility loci (S-alleles), which determine compatible crosses, successful fertilization, and fruit set, and the Dormancy Associated MADS-box genes (DAMs), which strongly affect dormancy transitions and flowering time. The S-alleles and DAMs in 'Montmorency' and P. fruticosa were manually annotated and support subgenome assignments. Lastly, the hybridization event 'Montmorency' is descended from was estimated to have occurred less than 1.61 million years ago, making sour cherry a relatively recent allotetraploid. The 'Montmorency' genome highlights the evolutionary complexity of the genus Prunus and will inform future breeding strategies for sour cherry, comparative genomics in the Rosaceae, and questions regarding neopolyploidy.
Collapse
Affiliation(s)
- Charity Z Goeckeritz
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Kathleen E Rhoades
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Amy F Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Stull GW, Pham KK, Soltis PS, Soltis DE. Deep reticulation: the long legacy of hybridization in vascular plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:743-766. [PMID: 36775995 DOI: 10.1111/tpj.16142] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Hybridization has long been recognized as a fundamental evolutionary process in plants but, until recently, our understanding of its phylogenetic distribution and biological significance across deep evolutionary scales has been largely obscure. Over the past decade, genomic and phylogenomic datasets have revealed, perhaps not surprisingly, that hybridization, often associated with polyploidy, has been common throughout the evolutionary history of plants, particularly in various lineages of flowering plants. However, phylogenomic studies have also highlighted the challenges of disentangling signals of ancient hybridization from other sources of genomic conflict (in particular, incomplete lineage sorting). Here, we provide a critical review of ancient hybridization in vascular plants, outlining well-documented cases of ancient hybridization across plant phylogeny, as well as the challenges unique to documenting ancient versus recent hybridization. We provide a definition for ancient hybridization, which, to our knowledge, has not been explicitly attempted before. Further documenting the extent of deep reticulation in plants should remain an important research focus, especially because published examples likely represent the tip of the iceberg in terms of the total extent of ancient hybridization. However, future research should increasingly explore the macroevolutionary significance of this process, in terms of its impact on evolutionary trajectories (e.g. how does hybridization influence trait evolution or the generation of biodiversity over long time scales?), as well as how life history and ecological factors shape, or have shaped, the frequency of hybridization across geologic time and plant phylogeny. Finally, we consider the implications of ubiquitous ancient hybridization for how we conceptualize, analyze, and classify plant phylogeny. Networks, as opposed to bifurcating trees, represent more accurate representations of evolutionary history in many cases, although our ability to infer, visualize, and use networks for comparative analyses is highly limited. Developing improved methods for the generation, visualization, and use of networks represents a critical future direction for plant biology. Current classification systems also do not generally allow for the recognition of reticulate lineages, and our classifications themselves are largely based on evidence from the chloroplast genome. Updating plant classification to better reflect nuclear phylogenies, as well as considering whether and how to recognize hybridization in classification systems, will represent an important challenge for the plant systematics community.
Collapse
Affiliation(s)
- Gregory W Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
18
|
Prunus Knotted-like Genes: Genome-Wide Analysis, Transcriptional Response to Cytokinin in Micropropagation, and Rootstock Transformation. Int J Mol Sci 2023; 24:ijms24033046. [PMID: 36769369 PMCID: PMC9918302 DOI: 10.3390/ijms24033046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Knotted1-like homeobox (KNOX) transcription factors are involved in plant development, playing complex roles in aerial organs. As Prunus species include important fruit tree crops of Italy, an exhaustive investigation of KNOX genes was performed using genomic and RNA-seq meta-analyses. Micropropagation is an essential technology for rootstock multiplication; hence, we investigated KNOX transcriptional behavior upon increasing 6-benzylaminopurine (BA) doses and the effects on GF677 propagules. Moreover, gene function in Prunus spp. was assessed by Gisela 6 rootstock transformation using fluorescence and peach KNOX transgenes. Based on ten Prunus spp., KNOX proteins fit into I-II-M classes named after Arabidopsis. Gene number, class member distribution, and chromosome positions were maintained, and exceptions supported the diversification of Prunus from Cerasus subgenera, and that of Armeniaca from the other sections within Prunus. Cytokinin (CK) cis-elements occurred in peach and almond KNOX promoters, suggesting a BA regulatory role in GF677 shoot multiplication as confirmed by KNOX expression variation dependent on dose, time, and interaction. The tripled BA concentration exacerbated stress, altered CK perception genes, and modified KNOX transcriptions, which are proposed to concur in in vitro anomalies. Finally, Gisela 6 transformation efficiency varied (2.6-0.6%) with the genetic construct, with 35S:GFP being more stable than 35S:KNOPE1 lines, which showed leaf modification typical of KNOX overexpression.
Collapse
|
19
|
Guo C, Luo Y, Gao LM, Yi TS, Li HT, Yang JB, Li DZ. Phylogenomics and the flowering plant tree of life. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:299-323. [PMID: 36416284 DOI: 10.1111/jipb.13415] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The advances accelerated by next-generation sequencing and long-read sequencing technologies continue to provide an impetus for plant phylogenetic study. In the past decade, a large number of phylogenetic studies adopting hundreds to thousands of genes across a wealth of clades have emerged and ushered plant phylogenetics and evolution into a new era. In the meantime, a roadmap for researchers when making decisions across different approaches for their phylogenomic research design is imminent. This review focuses on the utility of genomic data (from organelle genomes, to both reduced representation sequencing and whole-genome sequencing) in phylogenetic and evolutionary investigations, describes the baseline methodology of experimental and analytical procedures, and summarizes recent progress in flowering plant phylogenomics at the ordinal, familial, tribal, and lower levels. We also discuss the challenges, such as the adverse impact on orthology inference and phylogenetic reconstruction raised from systematic errors, and underlying biological factors, such as whole-genome duplication, hybridization/introgression, and incomplete lineage sorting, together suggesting that a bifurcating tree may not be the best model for the tree of life. Finally, we discuss promising avenues for future plant phylogenomic studies.
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
20
|
Wang L, Feng Y, Wang Y, Zhang J, Chen Q, Liu Z, Liu C, He W, Wang H, Yang S, Zhang Y, Luo Y, Tang H, Wang X. Accurate Chromosome Identification in the Prunus Subgenus Cerasus (Prunus pseudocerasus) and its Relatives by Oligo-FISH. Int J Mol Sci 2022; 23:ijms232113213. [PMID: 36361999 PMCID: PMC9653872 DOI: 10.3390/ijms232113213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
A precise, rapid and straightforward approach to chromosome identification is fundamental for cytogenetics studies. However, the identification of individual chromosomes was not previously possible for Chinese cherry or other Prunus species due to the small size and similar morphology of their chromosomes. To address this issue, we designed a pool of oligonucleotides distributed across specific pseudochromosome regions of Chinese cherry. This oligonucleotide pool was amplified through multiplex PCR with specific internal primers to produce probes that could recognize specific chromosomes. External primers modified with red and green fluorescence tags could produce unique signal barcoding patterns to identify each chromosome concomitantly. The same oligonucleotide pool could also discriminate all chromosomes in other Prunus species. Additionally, the 5S/45S rDNA probes and the oligo pool were applied in two sequential rounds of fluorescence in situ hybridization (FISH) localized to chromosomes and showed different distribution patterns among Prunus species. At the same time, comparative karyotype analysis revealed high conservation among P. pseudocerasus, P. avium, and P. persica. Together, these findings establish this oligonucleotide pool as the most effective tool for chromosome identification and the analysis of genome organization and evolution in the genus Prunus.
Collapse
Affiliation(s)
- Lei Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Feng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenshan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Congli Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 410100, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
21
|
Coca‐de‐la‐Iglesia M, Medina NG, Wen J, Valcárcel V. Evaluation of tropical-temperate transitions: An example of climatic characterization in the Asian Palmate group of Araliaceae. AMERICAN JOURNAL OF BOTANY 2022; 109:1488-1507. [PMID: 36039662 PMCID: PMC9826302 DOI: 10.1002/ajb2.16059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
PREMISE There has been a great increase in using climatic data in phylogenetic studies over the past decades. However, compiling the high-quality spatial data needed to perform accurate climatic reconstructions is time-consuming and can result in poor geographical coverage. Therefore, researchers often resort to qualitative approximations. Our aim was to evaluate the climatic characterization of the genera of the Asian Palmate Group (AsPG) of Araliaceae as an exemplar lineage of plants showing tropical-temperate transitions. METHODS We compiled a curated worldwide spatial database of the AsPG genera and created five raster layers representing bioclimatic regionalizations of the world. Then, we crossed the database with the layers to climatically characterize the AsPG genera. RESULTS We found large disagreement in the climatic characterization of genera among regionalizations and little support for the climatic nature of the tropical-temperate distribution of the AsPG. Both results are attributed to the complexity of delimiting tropical, subtropical, and temperate climates in the world and to the distribution of the study group in regions with transitional climatic conditions. CONCLUSIONS The complexity in the climatic classification of this example of the tropical-temperate transitions calls for a general climatic revision of other tropical-temperate lineages. In fact, we argue that, to properly evaluate tropical-temperate transitions across the tree of life, we cannot ignore the complexity of distribution ranges.
Collapse
Affiliation(s)
| | - Nagore G. Medina
- Departamento de BiologíaUniversidad Autónoma de MadridMadrid28049Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM)Universidad Autónoma de MadridMadrid28049Spain
| | - Jun Wen
- Department of Botany/MRC 166Smithsonian InstitutionWashington, DCUSA
| | - Virginia Valcárcel
- Departamento de BiologíaUniversidad Autónoma de MadridMadrid28049Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM)Universidad Autónoma de MadridMadrid28049Spain
| |
Collapse
|
22
|
He J, Lyu R, Luo Y, Xiao J, Xie L, Wen J, Li W, Pei L, Cheng J. A phylotranscriptome study using silica gel-dried leaf tissues produces an updated robust phylogeny of Ranunculaceae. Mol Phylogenet Evol 2022; 174:107545. [PMID: 35690374 DOI: 10.1016/j.ympev.2022.107545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
The utility of transcriptome data in plant phylogenetics has gained popularity in recent years. However, because RNA degrades much more easily than DNA, the logistics of obtaining fresh tissues has become a major limiting factor for widely applying this method. Here, we used Ranunculaceae to test whether silica-dried plant tissues could be used for RNA extraction and subsequent phylogenomic studies. We sequenced 27 transcriptomes, 21 from silica gel-dried (SD-samples) and six from liquid nitrogen-preserved (LN-samples) leaf tissues, and downloaded 27 additional transcriptomes from GenBank. Our results showed that although the LN-samples produced slightly better reads than the SD-samples, there were no significant differences in RNA quality and quantity, assembled contig lengths and numbers, and BUSCO comparisons between two treatments. Using these data, we conducted phylogenomic analyses, including concatenated- and coalescent-based phylogenetic reconstruction, molecular dating, coalescent simulation, phylogenetic network estimation, and whole genome duplication (WGD) inference. The resulting phylogeny was consistent with previous studies with higher resolution and statistical support. The 11 core Ranunculaceae tribes grouped into two chromosome type clades (T- and R-types), with high support. Discordance among gene trees is likely due to hybridization and introgression, ancient genetic polymorphism and incomplete lineage sorting. Our results strongly support one ancient hybridization event within the R-type clade and three WGD events in Ranunculales. Evolution of the three Ranunculaceae chromosome types is likely not directly related to WGD events. By clearly resolving the Ranunculaceae phylogeny, we demonstrated that SD-samples can be used for RNA-seq and phylotranscriptomic studies of angiosperms.
Collapse
Affiliation(s)
- Jian He
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Rudan Lyu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Yike Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Jiamin Xiao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Lei Xie
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China.
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| | - Wenhe Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Linying Pei
- Beijing Engineering Technology Research Center for Garden Plants, Beijing Forestry University Forest Science Co. Ltd., Beijing 100083, PR China
| | - Jin Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
23
|
de Tomás C, Bardil A, Castanera R, Casacuberta JM, Vicient CM. Absence of major epigenetic and transcriptomic changes accompanying an interspecific cross between peach and almond. HORTICULTURE RESEARCH 2022; 9:uhac127. [PMID: 35928404 PMCID: PMC9343919 DOI: 10.1093/hr/uhac127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Hybridization has been widely used in breeding of cultivated species showing low genetic variability, such as peach (Prunus persica). The merging of two different genomes in a hybrid often triggers a so-called "genomic shock" with changes in DNA methylation and in the induction of transposable element expression and mobilization. Here, we analysed the DNA methylation and transcription levels of transposable elements and genes in leaves of Prunus persica and Prunus dulcis and in an F1 hybrid using high-throughput sequencing technologies. Contrary to the "genomic shock" expectations, we found that the overall levels of DNA methylation in the transposable elements in the hybrid are not significantly altered compared with those of the parental genomes. We also observed that the levels of transcription of the transposable elements in the hybrid are in most cases intermediate as compared with that of the parental species and we have not detected cases of higher transcription in the hybrid. We also found that the proportion of genes whose expression is altered in the hybrid compared with the parental species is low. The expression of genes potentially involved in the regulation of the activity of the transposable elements is not altered. We can conclude that the merging of the two parental genomes in this Prunus persica x Prunus dulcis hybrid does not result in a "genomic shock" with significant changes in the DNA methylation or in the transcription. The absence of major changes may facilitate using interspecific peach x almond crosses for peach improvement.
Collapse
Affiliation(s)
- Carlos de Tomás
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona 08193, Spain
| | - Amélie Bardil
- Institut écologie et environnement (INEE), CNRS, Montpelier, France
| | - Raúl Castanera
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona 08193, Spain
| | | | | |
Collapse
|
24
|
Liu BB, Ren C, Kwak M, Hodel RGJ, Xu C, He J, Zhou WB, Huang CH, Ma H, Qian GZ, Hong DY, Wen J. Phylogenomic conflict analyses in the apple genus Malus s.l. reveal widespread hybridization and allopolyploidy driving diversification, with insights into the complex biogeographic history in the Northern Hemisphere. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1020-1043. [PMID: 35274452 DOI: 10.1111/jipb.13246] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Phylogenomic evidence from an increasing number of studies has demonstrated that different data sets and analytical approaches often reconstruct strongly supported but conflicting relationships. In this study, 785 single-copy nuclear genes and 75 complete plastomes were used to infer the phylogenetic relationships and estimate the historical biogeography of the apple genus Malus sensu lato, an economically important lineage disjunctly distributed in the Northern Hemisphere and involved in known and suspected hybridization and allopolyploidy events. The nuclear phylogeny recovered the monophyly of Malus s.l. (including Docynia); however, the genus was supported to be biphyletic in the plastid phylogeny. An ancient chloroplast capture event in the Eocene in western North America best explains the cytonuclear discordance. Our conflict analysis demonstrated that ILS, hybridization, and allopolyploidy could explain the widespread nuclear gene tree discordance. One deep hybridization event (Malus doumeri) and one recent event (Malus coronaria) were detected in Malus s.l. Furthermore, our historical biogeographic analysis integrating living and fossil data supported a widespread East Asian-western North American origin of Malus s.l. in the Eocene, followed by several extinction and dispersal events in the Northern Hemisphere. We also propose a general workflow for assessing phylogenomic discordance and biogeographic analysis using deep genome skimming data sets.
Collapse
Affiliation(s)
- Bin-Bin Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, 20013-7012, DC, USA
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Myounghai Kwak
- National Institute of Biological Resources, Incheon, 22689, South Korea
| | - Richard G J Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, 20013-7012, DC, USA
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jian He
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Wen-Bin Zhou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, 27965, NC, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, 510D Mueller Laboratory, University Park, Pennsylvania, 16802, USA
| | - Guan-Ze Qian
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - De-Yuan Hong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, 20013-7012, DC, USA
| |
Collapse
|
25
|
Dong W, Li E, Liu Y, Xu C, Wang Y, Liu K, Cui X, Sun J, Suo Z, Zhang Z, Wen J, Zhou S. Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family. BMC Biol 2022; 20:92. [PMID: 35468824 PMCID: PMC9040247 DOI: 10.1186/s12915-022-01297-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/13/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Deep-branching phylogenetic relationships are often difficult to resolve because phylogenetic signals are obscured by the long history and complexity of evolutionary processes, such as ancient introgression/hybridization, polyploidization, and incomplete lineage sorting (ILS). Phylogenomics has been effective in providing information for resolving both deep- and shallow-scale relationships across all branches of the tree of life. The olive family (Oleaceae) is composed of 25 genera classified into five tribes with tribe Oleeae consisting of four subtribes. Previous phylogenetic analyses showed that ILS and/or hybridization led to phylogenetic incongruence in the family. It was essential to distinguish phylogenetic signal conflicts, and explore mechanisms for the uncertainties concerning relationships of the olive family, especially at the deep-branching nodes. RESULTS We used the whole plastid genome and nuclear single nucleotide polymorphism (SNP) data to infer the phylogenetic relationships and to assess the variation and rates among the main clades of the olive family. We also used 2608 and 1865 orthologous nuclear genes to infer the deep-branching relationships among tribes of Oleaceae and subtribes of tribe Oleeae, respectively. Concatenated and coalescence trees based on the plastid genome, nuclear SNPs and multiple nuclear genes suggest events of ILS and/or ancient introgression during the diversification of Oleaceae. Additionally, there was extreme heterogeneity in the substitution rates across the tribes. Furthermore, our results supported that introgression/hybridization, rather than ILS, is the main factor for phylogenetic discordance among the five tribes of Oleaceae. The tribe Oleeae is supported to have originated via ancient hybridization and polyploidy, and its most likely parentages are the ancestral lineage of Jasmineae or its sister group, which is a "ghost lineage," and Forsythieae. However, ILS and ancient introgression are mainly responsible for the phylogenetic discordance among the four subtribes of tribe Oleeae. CONCLUSIONS This study showcases that using multiple sequence datasets (plastid genomes, nuclear SNPs and thousands of nuclear genes) and diverse phylogenomic methods such as data partition, heterogeneous models, quantifying introgression via branch lengths (QuIBL) analysis, and species network analysis can facilitate untangling long and complex evolutionary processes of ancient introgression, paleopolyploidization, and ILS.
Collapse
Affiliation(s)
- Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Enze Li
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yanlei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yushuang Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Kangjia Liu
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Xingyong Cui
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jiahui Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhili Suo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA.
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
26
|
Comparative Analysis of Transposable Elements and the Identification of Candidate Centromeric Elements in the Prunus Subgenus Cerasus and Its Relatives. Genes (Basel) 2022; 13:genes13040641. [PMID: 35456447 PMCID: PMC9028240 DOI: 10.3390/genes13040641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
The subgenus Cerasus and its relatives include many crucial economic drupe fruits and ornamental plants. Repetitive elements make up a large part of complex genomes, and some of them play an important role in gene regulation that can affect phenotypic variation. However, the variation in their genomes remains poorly understood. This work conducted a comprehensive repetitive sequence identification across the draft genomes of eight taxa of the genus Prunus, including four of the Prunus subgenus Cerasus (Prunus pseudocerasus, P. avium, P. yedoensis and P. × yedoensis) as well as congeneric species (Prunus salicina, P. armeniaca, P. dulcis and P. persica). Annotation results showed high proportions of transposable elements in their genomes, ranging from 52.28% (P. armeniaca) to 61.86% (P. pseudocerasus). The most notable differences in the contents of long terminal repeat retrotransposons (LTR-RTs) and tandem repeats (TRs) were confirmed with de novo identification based on the structure of each genome, which significantly contributed to their genome size variation, especially in P. avium and P.salicina. Sequence comparisons showed many similar LTR-RTs closely related to their phylogenetic relationships, and a highly similar monomer unit of the TR sequence was conserved among species. Additionally, the predicted centromere-associated sequence was located in centromeric regions with FISH in the 12 taxa of Prunus. It presented significantly different signal intensities, even within the diverse interindividual phenotypes for Prunus tomentosa. This study provides insight into the LTR-RT and TR variation within Prunus and increases our knowledge about its role in genome evolution.
Collapse
|
27
|
Abstract
Plums are a large group of closely related stone fruit species and hybrids of worldwide economic importance and diffusion. This review deals with the main aspects concerning plum agrobiodiversity and its relationship with current and potential contributions offered by breeding in enhancing plum varieties. The most recent breeding achievements are revised according to updated information proceeding from relevant scientific reports and official inventories of plum genetic resources. A special emphasis has been given to the potential sources of genetic traits of interest for breeding programs as well as to the need for efficient and coordinated efforts aimed at efficaciously preserving the rich and underexploited extant plum agrobiodiversity. The specific objective of this review was to: (i) analyze and possibly evaluate the degree of biodiversity existing in the cultivated plum germplasm, (ii) examine the set of traits of prominent agronomic and pomological interest currently targeted by the breeders, and (iii) determine how and to what extent this germplasm was appropriately exploited in breeding programs or could represent concrete prospects for the future.
Collapse
|
28
|
Sun QH, Morales-Briones DF, Wang HX, Landis JB, Wen J, Wang HF. Phylogenomic analyses of the East Asian endemic Abelia (Caprifoliaceae) shed insights into the temporal and spatial diversification history with widespread hybridization. ANNALS OF BOTANY 2022; 129:201-216. [PMID: 34950959 PMCID: PMC8796676 DOI: 10.1093/aob/mcab139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/15/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Abelia (Caprifoliaceae) is a small genus with five species, including one artificial hybrid and several natural hybrids. The genus has a discontinuous distribution in Mainland China, Taiwan Island and the Ryukyu Islands, providing a model system to explore the mechanisms of species dispersal in the East Asian flora. However, the current phylogenetic relationships within Abelia remain uncertain. METHODS We reconstructed the phylogenetic relationships within Abelia using nuclear loci generated by target enrichment and plastomes from genome skimming. Divergence time estimation, ancestral area reconstruction and ecological niche modelling (ENM) were used to examine the diversification history of Abelia. KEY RESULTS We found extensive cytonuclear discordance across the genus. By integrating lines of evidence from molecular phylogenies, divergence times and morphology, we propose to merge Abelia macrotera var. zabelioides into A. uniflora. Network analyses suggested that there have been multiple widespread hybridization events among Abelia species. These hybridization events may have contributed to the speciation mechanism and resulted in the high observed morphological diversity. The diversification of Abelia began in the early Eocene, followed by A. chinensis var. ionandra colonizing Taiwan Island during the Middle Miocene. The ENM results suggested an expansion of climatically suitable areas during the Last Glacial Maximum and range contraction during the Last Interglacial. Disjunction between the Himalayan-Hengduan Mountain region and Taiwan Island is probably the consequence of topographical isolation and postglacial contraction. CONCLUSIONS We used genomic data to reconstruct the phylogeny of Abelia and found a clear pattern of reticulate evolution in the group. In addition, our results suggest that shrinkage of postglacial range and the heterogeneity of the terrain have led to the disjunction between Mainland China and Taiwan Island. This study provides important new insights into the speciation process and taxonomy of Abelia.
Collapse
Affiliation(s)
- Qing-Hui Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou, China
| | - Diego F Morales-Briones
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, 140 Gortner Laboratory, Saint Paul, MN, USA
- Systematics, Biodiversity and Evolution of Plants, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany
| | - Hong-Xin Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou, China
- Zhai Mingguo Academician Work Station, Sanya University, Sanya, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, Washington, DC, USA
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
29
|
Hodel RGJ, Zimmer EA, Liu BB, Wen J. Synthesis of Nuclear and Chloroplast Data Combined With Network Analyses Supports the Polyploid Origin of the Apple Tribe and the Hybrid Origin of the Maleae-Gillenieae Clade. FRONTIERS IN PLANT SCIENCE 2022; 12:820997. [PMID: 35145537 PMCID: PMC8822239 DOI: 10.3389/fpls.2021.820997] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 05/17/2023]
Abstract
Plant biologists have debated the evolutionary origin of the apple tribe (Maleae; Rosaceae) for over a century. The "wide-hybridization hypothesis" posits that the pome-bearing members of Maleae (base chromosome number x = 17) resulted from a hybridization and/or allopolyploid event between progenitors of other tribes in the subfamily Amygdaloideae with x = 8 and x = 9, respectively. An alternative "spiraeoid hypothesis" proposed that the x = 17 of Maleae arose via the genome doubling of x = 9 ancestors to x = 18, and subsequent aneuploidy resulting in x = 17. We use publicly available genomic data-448 nuclear genes and complete plastomes-from 27 species representing all major tribes within the Amygdaloideae to investigate evolutionary relationships within the subfamily containing the apple tribe. Specifically, we use network analyses and multi-labeled trees to test the competing wide-hybridization and spiraeoid hypotheses. Hybridization occurred between an ancestor of the tribe Spiraeeae (x = 9) and an ancestor of the clade Sorbarieae (x = 9) + Exochordeae (x = 8) + Kerrieae (x = 9), giving rise to the clade Gillenieae (x = 9) + Maleae (x = 17). The ancestor of the Maleae + Gillenieae arose via hybridization between distantly related tribes in the Amygdaloideae (i.e., supporting the wide hybridization hypothesis). However, some evidence supports an aspect of the spiraeoid hypothesis-the ancestors involved in the hybridization event were likely both x = 9, so genome doubling was followed by aneuploidy to result in x = 17 observed in Maleae. By synthesizing existing genomic data with novel analyses, we resolve the nearly century-old mystery regarding the origin of the apple tribe. Our results also indicate that nuclear gene tree-species tree conflict and/or cytonuclear conflict are pervasive at several other nodes in subfamily Amygdaloideae of Rosaceae.
Collapse
Affiliation(s)
- Richard G. J. Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Elizabeth A. Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Bin-Bin Liu
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
30
|
Su N, Liu BB, Wang JR, Tong RC, Ren C, Chang ZY, Zhao L, Potter D, Wen J. On the Species Delimitation of the Maddenia Group of Prunus (Rosaceae): Evidence From Plastome and Nuclear Sequences and Morphology. FRONTIERS IN PLANT SCIENCE 2021; 12:743643. [PMID: 34707629 PMCID: PMC8542774 DOI: 10.3389/fpls.2021.743643] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 05/23/2023]
Abstract
The recognition, identification, and differentiation of closely related plant species present significant and notorious challenges to taxonomists. The Maddenia group of Prunus, which comprises four to seven species, is an example of a group in which species delimitation and phylogenetic reconstruction have been difficult, due to the lack of clear morphological distinctions, limited sampling, and low informativeness of molecular evidence. Thus, the precise number of species in the group and the relationships among them remain unclear. Here, we used genome skimming to generate the DNA sequence data for 22 samples, including 17 Maddenia individuals and five outgroups in Amygdaloideae of Rosaceae, from which we assembled the plastome and 446 single-copy nuclear (SCN) genes for each sample. The phylogenetic relationships of the Maddenia group were then reconstructed using both concatenated and coalescent-based methods. We also identified eight highly variable regions and detected simple sequence repeats (SSRs) and repeat sequences in the Maddenia species plastomes. The phylogenetic analysis based on the complete plastomes strongly supported three main subclades in the Maddenia group of Prunus, while five subclades were recognized based on the nuclear tree. The phylogenetic network analysis detected six hybridization events. Integrating the nuclear and morphological evidence, we proposed to recognize five species within the Maddenia group, i.e., Prunus fujianensis, P. himalayana, P. gongshanensis, P. hypoleuca, and P. hypoxantha. Within this group, the first three species are well-supported, while the gene flow occurring throughout the Maddenia group seems to be especially frequent between P. hypoleuca and P. hypoxantha, eroding the barrier between them. The phylogenetic trees based on eight concatenated hypervariable regions had a similar topology with the complete plastomes, showing their potential as molecular markers and effective barcodes for further phylogeographic studies on Maddenia.
Collapse
Affiliation(s)
- Na Su
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Bin-bin Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, United States
| | - Jun-ru Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Ru-chang Tong
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhao-yang Chang
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Liang Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Daniel Potter
- Department of Plant Sciences, MS2, University of California, Davis, Davis, CA, United States
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|