1
|
Wilf P. Osmoxylon-like fossils from early Eocene South America: West Gondwana-Malesia connections in Araliaceae. AMERICAN JOURNAL OF BOTANY 2025:e70045. [PMID: 40387275 DOI: 10.1002/ajb2.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 05/20/2025]
Abstract
PREMISE Araliaceae comprise a moderately diverse, predominantly tropical angiosperm family with a limited fossil record. Gondwanan history of Araliaceae is hypothesized in the literature, but no fossils have previously been reported from the former supercontinent. METHODS I describe large (to macrophyll size), palmately compound-lobed leaf fossils and an isolated umbellate infructescence from the early Eocene (52 Ma), late-Gondwanan paleorainforest flora at Laguna del Hunco in Argentine Patagonia. RESULTS The leaf fossils are assigned to Caffapanax canessae gen. et sp. nov. (Araliaceae). Comparable living species belong to five genera that are primarily distributed from Malesia to South China. The most similar genus is Osmoxylon, which is centered in east Malesia and includes numerous threatened species. The infructescence is assigned to Davidsaralia christophae gen. et sp. nov. (Araliaceae) and is also comparable to Osmoxylon. CONCLUSIONS The Caffapanax leaves and Davidsaralia infructescence, potentially representing the same source taxon, are the oldest araliaceous macrofossils and provide direct evidence of Gondwanan history in the family. The new fossils and their large leaves enrich the well-established biogeographic and climatic affinities of the fossil assemblage with imperiled Indo-Pacific, everwet tropical rainforests. The fossils most likely represent shrubs or small trees, adding to the rich record of understory vegetation recovered from Laguna del Hunco.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, 16802, PA, USA
- IUCN/SSC Global Tree Specialist Group, Botanic Gardens Conservation International, Richmond TW9 3BW, UK
| |
Collapse
|
2
|
Magon G, Palumbo F, Barcaccia G. Genetics, genomics and breeding of fennel. BMC PLANT BIOLOGY 2025; 25:595. [PMID: 40335931 PMCID: PMC12057180 DOI: 10.1186/s12870-025-06608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025]
Abstract
Fennel (Foeniculum vulgare Mill. or Anethum foeniculum) stands out as a versatile herb whose cultivation spans across various regions worldwide, thanks to its adaptability to diverse climatic conditions. Its economic importance is mainly due to its numerous pharmaceutical properties and its widespread use in culinary applications. In this review, we first reviewed the chemical composition of this species, stressing the importance of two volatile compounds: t-anethole and estragole. The few cytological and genetic information available in the scientific literature were summarized. Regarding this latter aspect, we pointed out the almost complete absence of classical genetic studies, the lack of a chromosome-level reference genome, and the shortage of adequate transcriptomic studies. We also reviewed the main agronomic practices, with particular emphasis on breeding schemes aimed at the production of F1 hybrids and synthetic varieties. The few available studies on biotic and abiotic stresses were discussed too. Subsequently, we summarized the main studies on genetic diversity conducted in fennel and the available germplasm collections. Finally, we outlined an overview of the main in vitro regeneration techniques successfully applied in this species.
Collapse
Affiliation(s)
- Gabriele Magon
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale Dell'Università 16, Legnaro, PD, 35020, Italy
| | - Fabio Palumbo
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale Dell'Università 16, Legnaro, PD, 35020, Italy.
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale Dell'Università 16, Legnaro, PD, 35020, Italy
| |
Collapse
|
3
|
Zhong Q, Wang Z, Xu J, Yan L, Sun Q. Comparative and phylogenetic analysis of the complete chloroplast genome sequences of Melanoseris cyanea group. Sci Rep 2025; 15:10566. [PMID: 40148540 PMCID: PMC11950356 DOI: 10.1038/s41598-025-95325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Melanoseris, a diverse genus in the Lactucinae subtribe, has 21 species in China, with 13 being endemic. The high diversity of this genus presents taxonomic challenges, particularly in the M. cyanea group, where overlapping distributions and transitional morphological traits complicate classification. This study aims to analyze the chloroplast genomes of Melanoseris, with a focus on the M. cyanea group, to explore structural differences and phylogenetic relationships among these closely related species. We analyzed the chloroplast genomes of 16 Melanoseris samples, including 12 new genomes from the M. cyanea group. The genome sizes ranged from 152,255 to 152,558 bp and exhibited a typical quadripartite structure, with an average GC content of 37.7%. Each genome encodes 132 genes, including 87 protein-coding genes, 37 tRNAs, and 8 rRNAs. Repeat analysis identified 89 to 105 dispersed repeats, 24 to 28 tandem repeats, and 35 to 39 SSRs, with mononucleotide A/T repeats being the most common. Sequence alignment revealed that variable regions were mainly concentrated in the single-copy regions. Nucleotide diversity ranged from 0 to 0.00485, highlighting 10 mutation hotspot regions. Phylogenetic analysis showed a limited differentiation among species within the M. cyanea group. This research enhances our understanding of the genetic diversity of Melanoseris, laying the foundation for future taxonomic and phylogenetic studies.
Collapse
Affiliation(s)
- Qianqian Zhong
- Department of Traditional Chinese Medicine Resources and Development, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Zehuan Wang
- Department of Traditional Chinese Medicine Resources and Development, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China.
| | - Jiaju Xu
- Department of Traditional Chinese Medicine Resources and Development, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Li Yan
- Department of Traditional Chinese Medicine Resources and Development, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Qingwen Sun
- Department of Traditional Chinese Medicine Resources and Development, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| |
Collapse
|
4
|
Park S, Hwang Y, Kim H, Choi K. Insights into the nuclear-organelle DNA integration in Cicuta virosa (Apiaceae) provided by complete plastid and mitochondrial genomes. BMC Genomics 2025; 26:102. [PMID: 39901091 PMCID: PMC11792336 DOI: 10.1186/s12864-025-11230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Gene transfer between the organelles and the nucleus plays a central role in shaping plant genome evolution. The identification and analysis of nuclear DNA of plastid (NUPTs) and mitochondrial (NUMTs) origins are important for exploring the extent of intracellular DNA transfer in genomes. RESULTS We report the complete plastid and mitochondrial genomes (plastome and mitogenome) of Cicuta virosa (Apiaceae) as well as a draft nuclear genome using high-fidelity (HiFi) PacBio sequencing technologies. The C. virosa plastome (154,449 bp) is highly conserved, with a quadripartite structure, whereas the mitogenome (406,112 bp) exhibits two chromosomes (352,718 bp and 53,394 bp). The mitochondrial-encoded genes (rpl2, rps14, rps19, and sdh3) were successfully transferred to the nuclear genome. Our findings revealed extensive DNA transfer from organelles to the nucleus, with 6,686 NUPTs and 6,237 NUMTs detected, covering nearly the entire plastome (99.93%) and a substantial portion of the mitogenome (77.04%). These transfers exhibit a range of sequence identities (80-100%), suggesting multiple transfer events over evolutionary timescales. Recent DNA transfer between organelles and the nucleus is more frequent in mitochondria than that in plastids. CONCLUSIONS This study contributes to the understanding of ongoing genome evolution in C. virosa and underscores the significance of the organelle-nuclear genome interplay in plant species. Our findings provide valuable insights into the evolutionary processes that shape organelle genomes in Apiaceae, with implications for broader plant genome evolution.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Yong Hwang
- Biological Specimen Conservation Division, Diversity Conservation Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, 37242, South Korea
| | - Heesoo Kim
- Divesity Forecast & Evaluation Division, Diversity Conservation Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, 37242, South Korea
| | - KyoungSu Choi
- Department of Biology, College of Natural Science, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
5
|
Han J, Munakata R, Takahashi H, Koeduka T, Kubota M, Moriyoshi E, Hehn A, Sugiyama A, Yazaki K. Catalytic mechanism underlying the regiospecificity of coumarin-substrate transmembrane prenyltransferases in Apiaceae. PLANT & CELL PHYSIOLOGY 2025; 66:1-14. [PMID: 39575581 PMCID: PMC11775389 DOI: 10.1093/pcp/pcae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 01/30/2025]
Abstract
Plant membrane-bound prenyltransferases (PTs) catalyze the transfer of prenyl groups to acceptor substrates, phenols, using prenyl diphosphates as the donor substrate. The presence of prenyl residues in the reaction products, prenylated phenols, is key to the expression of a variety of physiological activities. Plant PTs generally exhibit high specificities for both substrate recognition and prenylation sites, while the molecular mechanism involved in these enzymatic properties is largely unknown. In this study, we performed a systematic biochemical analysis to elucidate the catalytic mechanism responsible for the reaction specificity of plant PTs. Using two representative PTs, PsPT1 and PsPT2, from parsnip (Pastinaca sativa, Apiaceae), which differ only in the regiospecificity of the prenylation site, we performed domain swapping and site-directed mutagenesis of these PTs, followed by detailed enzymatic analysis combined with 3D modeling. As a result, we discovered the domains that control prenylation site specificity and further defined key amino acid residues responsible for the catalytic mechanism. In addition, we showed that the control mechanism of prenylation specificity revealed here is also highly conserved among coumarin-substrate PTs. These data suggest that the regulatory domain revealed here is commonly involved in prenylation regiospecificity in Apiaceae PTs.
Collapse
Affiliation(s)
- Junwen Han
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hironobu Takahashi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Takao Koeduka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi City, Yamaguchi 753-8511, Japan
| | - Mayumi Kubota
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi City, Yamaguchi 753-8511, Japan
| | - Eiko Moriyoshi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Alain Hehn
- Université de Lorraine, INRAE, LAE, Nancy F54000, France
| | - Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
6
|
Song BN, Liu CK, Deng JJ, Tan WY, Zhou SD, He XJ. Genome skimming provides evidence to accept two new genera (Apiaceae) separated from the Peucedanum s.l. FRONTIERS IN PLANT SCIENCE 2025; 15:1518418. [PMID: 39902214 PMCID: PMC11788392 DOI: 10.3389/fpls.2024.1518418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 02/05/2025]
Abstract
Background The Peucedanum s.l. genus, the backbone member of subfamily Apioideae, includes many medically and economically important plants. Although previous studies have proved that the genus was not a natural taxonomic unit and taxonomists also conducted several taxonomic revisions for taxa of this genus, classifications of numerous taxa of the genus still have not been satisfactorily resolved, especially for those endemic to China. Therefore, we conducted a comprehensive taxonomic revision of taxa within the polyphyletic Peucedanum s.l. genus in this study. Methods We used two molecular datasets (103 plastomes and 43 nrDNA sequences) generated by genome skimming to reconstructed a reliable phylogenetic framework with high support and resolution. In addition, we also investigated the divergence time of core clade of endemic taxa. Results and Discussion Both analyses failed to recover Peucedanum s.l. as a monophyletic group and robustly supported that P. morisonii, the representative of Peucedanum s.s., was distantly related to other Peucedanum s.l. members, which implied that these Peucedanum s.l. taxa were not "truly Peucedanum plants". Among these Peucedanum s.l. members, plastid-based phylogenies recognized two monophyletic clades, clade A (four species) and clade B (10 taxa). Meanwhile, obvious recognized features for morphology, plastome, and chromosome number for each clade were detected: dorsally compressed and glabrous mericarps with filiform dorsal ribs, winged lateral ribs, numerous vittae in commissure and each furrow, IRa/LSC border falling into rpl23 gene, an overall plastome size of 152,288-154,686 bp, and chromosome numbers of 2n=20 were found in clade A; whereas dorsally compressed and pubescent mericarps with filiform dorsal ribs, winged lateral ribs, numerous vittae in commissure and each furrow, IRa/LSC border falling into the ycf2 gene, an overall plastome size of 146,718-147,592 bp, and chromosome numbers of 2n=22 were discovered in clade B. Therefore, we established two new genera (Shanopeucedanum gen. nov. and Sinopeucedanum gen. nov.) to respectively accommodate the taxa of clades A and B. Furthermore, molecular dating analysis showed that the diversification of clades A and B occurred in the early Pleistocene and late Pliocene, respectively, which may have been driven by the complex geological and climate shifts of these periods. In summary, our study impelled a revision of Peucedanum s.l. members and improved the taxonomic system of the Apiaceae family.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- College of Resources Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| | - Jiao-Jiao Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wei-Yan Tan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Song BN, Aou X, Tian RM, Cai J, Tan WY, Liu CK, He XJ, Zhou SD. Morphology, phylogeography, phylogeny, and taxonomy of Cyclorhiza (Apiaceae). FRONTIERS IN PLANT SCIENCE 2025; 15:1504734. [PMID: 39845492 PMCID: PMC11750748 DOI: 10.3389/fpls.2024.1504734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/29/2024] [Indexed: 01/24/2025]
Abstract
Background The genus Cyclorhiza is endemic to China and belongs to the Apiaceae family, which is widely distributed in the Himalaya-Hengduan Mountains (HHM) region. However, its morphology, phylogeny, phylogeography, taxonomy, and evolutionary history were not investigated due to insufficient sampling and lack of population sampling and plastome data. Additionally, we found that Seseli purpureovaginatum was not similar to Seseli members but resembled Cyclorhiza species in morphology, indicating that the taxonomic position of S. purpureovaginatum needs to be re-evaluated. Methods First, we observed the morphology of the genus. Second, we newly sequenced four plastomes and conducted comparative analyses. Third, we used the newly sequenced internal transcribed spacer (ITS) and chloroplast DNA (cpDNA) (matK, trnQ-rps16, and trnD-trnT) from 27 populations totaling 244 individuals to explore the genetic diversity and structure. Finally, we performed the phylogenetic analyses based on three datasets (plastome data, ITS sequences, and haplotypes) and estimated the origin and divergence time of the genus. Results and discussion The morphology of Cyclorhiza plants and S. purpureovaginatum was highly similar, and their plastomes in structure and features were conserved. The genus possessed high genetic diversity and significant lineage geographic structure, which may be associated with the long-term evolutionary history, complex terrain and habitat, and its sexual reproduction mode. The genus Cyclorhiza originated in the late Eocene (36.03 Ma), which was closely related to the early uplift of the Qinghai-Tibetan Plateau (QTP) and Hengduan Mountains (HDM). The diversification of the genus occurred in the late Oligocene (25.43 Ma), which was largely influenced by the colonization of the newly available climate and terrain. The phylogenetic results showed that Cyclorhiza species clustered into a separate clade and S. purpureovaginatum nested within Cyclorhiza. Cyclorhiza waltonii was sister to Cyclorhiza peucedanifolia, and Cyclorhiza puana clustered with S. purpureovaginatum. Thus, based on the morphology, plastome analyses, and phylogenetic evidence, S. purpureovaginatum should be transferred to Cyclorhiza. All these evidences further supported the monophyly of the genus after including S. purpureovaginatum. Finally, we clarified the generic limits of Cyclorhiza and provided a species classification key index for the genus. In conclusion, the study comprehensively investigated the morphology, phylogeography, phylogeny, taxonomy, and evolution of the genus Cyclorhiza for the first time.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xueyimu Aou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rong-Ming Tian
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Cai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wei-Yan Tan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- College of Resources Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Joh HJ, Park YS, Kang JS, Kim JT, Lado JP, Han SI, Chin YW, Park HS, Park JY, Yang TJ. A recent large-scale intraspecific IR expansion and evolutionary dynamics of the plastome of Peucedanum japonicum. Sci Rep 2025; 15:104. [PMID: 39748098 PMCID: PMC11696177 DOI: 10.1038/s41598-024-84540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Peucedanum japonicum (PJ), a member of the Apiaceae family, is widely distributed and cultivated in East Asian countries for edible and functional foods. In this study, we compared the plastid genomes (plastomes) and 45S nuclear ribosomal DNA (45S nrDNA) simultaneously from 10 PJ collections. Plastome-based phylogenetic analysis showed that the PJ accessions were monophyletic within the genus Peucedanum. However, ten plastomes were classified into two different groups according to their length of inverted repeat (IR) block, the short-type (S-type) plastome group containing the 18.6 kbp of the original IR and the long-type (L-type) plastome group containing the 35.7 kbp of expanded IR by duplication of the 17.1 kbp of the large single copy region. A total of nine single nucleotide polymorphisms and eight insertions or deletions were identified among the five L-type plastomes, whereas large variations were identified among the five S-type plastomes. Calculation of synonymous substitution rates and divergence time estimation suggested that the 17 kbp IR expansion occurred recently. Molecular markers were developed and validated to classify the 55 PJ germplasm according to their plastome types. Our study would be useful for unraveling the dynamic evolution of plastomes in the Apiaceae family and for the molecular breeding of PJ.
Collapse
Affiliation(s)
- Ho Jun Joh
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Forest Bioresources, National Institute Forest Science, Suwon, 16631, Republic of Korea
| | - Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin Tae Kim
- Interdisciplinary Program in Agricultural Genomics, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jickerson P Lado
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Genetics and Molecular Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Laguna, Philippines
| | - Sang Il Han
- Medicinal Plant Garden, College of Pharmacy, Seoul National University, Koyang, 10257, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Integrative Biological Sciences and Industry, Convergence Research Center for Natural Products, Sejong University, Seoul, 05006, Republic of Korea
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Agricultural Genomics, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Institute of Seed Biotechnology, Institutes of Green Bioscience and Technology, Seoul National University, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
9
|
Zhou N, Miao K, Hou L, Liu H, Chen J, Ji Y. Phylotranscriptomic analyses reveal the evolutionary complexity of Paris L. (Melanthiaceae), a morphologically distinctive genus with significant pharmaceutical importance. ANNALS OF BOTANY 2024; 134:1277-1290. [PMID: 39221840 PMCID: PMC11688527 DOI: 10.1093/aob/mcae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Previous phylogenetic studies on the pharmaceutically significant genus Paris (Melanthiaceae) have consistently revealed substantial cytonuclear discordance, yet the underlying mechanism responsible for this phenomenon remains elusive. This study aims to reconstruct a robust nuclear backbone phylogeny and elucidate the potential evolutionarily complex events contributing to previously observed cytonuclear discordance within Paris. METHODS Based on a comprehensive set of nuclear low-copy orthologous genes obtained from transcriptomic data, the intrageneric phylogeny of Paris, along with its phylogenetic relationships to allied genera, were inferred using coalescent and concatenated approaches. The analysis of gene tree discordance and reticulate evolution, in conjunction with an incomplete lineage sorting (ILS) simulation, was conducted to explore potential hybridization and ILS events in the evolutionary history of Paris and assess their contribution to the discordance of gene trees. KEY RESULTS The nuclear phylogeny unequivocally confirmed the monophyly of Paris and its sister relationship with Trillium, while widespread incongruences in gene trees were observed at the majority of internal nodes within Paris. The reticulate evolution analysis identified five instances of hybridization events in Paris, indicating that hybridization events might have occurred recurrently throughout the evolutionary history of Paris. In contrast, the ILS simulations revealed that only two internal nodes within section Euthyra experienced ILS events. CONCLUSIONS Our data suggest that the previously observed cytonuclear discordance in the phylogeny of Paris can primarily be attributed to recurrent hybridization events, with secondary contributions from infrequent ILS events. The recurrent hybridization events in the evolutionary history of Paris not only drove lineage diversification and speciation but also facilitated morphological innovation, and enhanced ecological adaptability. Therefore, artificial hybridization has great potential for breeding medicinal Paris species. These findings significantly contribute to our comprehensive understanding of the evolutionary complexity of this pharmaceutically significant plant lineage, thereby facilitating effective exploitation and conservation efforts.
Collapse
Affiliation(s)
- Nian Zhou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ke Miao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Luxiao Hou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunheng Ji
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
10
|
Wen J, Zhu JW, Ma XD, Li HM, Wu BC, Zhou W, Yang JX, Song CF. Phylogenomics and adaptive evolution of hydrophytic umbellifers (tribe Oenantheae, Apioideae) revealed from chloroplast genomes. BMC PLANT BIOLOGY 2024; 24:1140. [PMID: 39609760 PMCID: PMC11603818 DOI: 10.1186/s12870-024-05863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Tribe Oenantheae consists mainly of aquatic species within the Apioideae. The unique morphology and habitat distinguish this group from other Apioideae groups. However, the genomic information of these group species has not been widely developed, and the molecular mechanisms of adaptive evolution remain unclear. RESULTS We provide comparative analyses on 30 chloroplast genomes of this tribe representing five genera to explore the molecular variation response to plant adaptations. The Oenantheae chloroplast genomes presented typical quadripartite structures, with sizes ranging from 153,024 bp to 155,006 bp. Gene content and order were highly conserved with no significant expansion or contraction observed. Seven regions (rps16 intron-trnK, rpoB-trnC, trnE-trnT-psbD, petA-psbJ, ndhF-rpl32-trnL, ycf1a-rps15, and ycf1a gene) were identified as remarkable candidate DNA markers for future studies on species identification, biogeography, and phylogeny of tribe Oenantheae. Our study elucidated the relationships among the genera of tribe Oenantheae and subdivided the genera of Sium and Oenanthe. However, relationships among the Oenanthe I clade remain to be further clarified. Eight positively selected genes (accD, rbcL, rps8, ycf1a, ycf1b, ycf2, ndhF, and ndhK) were persuasively detected under site models tests, and these genes might have played roles in Oenantheae species adaptation to the aquatic environments. CONCLUSIONS Our results provide sufficient molecular markers for the subsequent molecular studies of the tribe Oenantheae, and promote the understanding of the adaptation of the Oenantheae species to aquatic environments.
Collapse
Affiliation(s)
- Jun Wen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jun-Wen Zhu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Xu-Dong Ma
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Hui-Min Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Bao-Cheng Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Wei Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jia-Xin Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223000, China
| | - Chun-Feng Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
11
|
Song YX, Yang CY, Zhou YY, Yu Y. Speciation and diversification of the Bupleurum (Apiaceae) in East Asia. PHYTOKEYS 2024; 248:41-57. [PMID: 39484083 PMCID: PMC11522740 DOI: 10.3897/phytokeys.248.132707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/31/2024] [Indexed: 11/03/2024]
Abstract
Bupleurum, belonging to the Apiaceae, is widely distributed across the Eurasian continent. The origin and species diversification of Bupleurum in East Asia, remain incompletely resolved due to the limited samples in previous studies. To address these issues, we have reconstructed a robust phylogenetic framework for Bupleurum in East Asia based on the ITS and three plastid genes. Our phylogenetic analysis confirms the monophyly of Bupleurum with strong support. Both ITS and chloroplast dataset divided the Bupleurum in East Asia into East Asia Group I and East Asia Group II in this study. The divergence time and ancestral area reconstruction of ITS dataset indicated that the Bupleurum originated in the Mediterranean basin and its adjacent areas around 50.33 Ma. subg. Penninervia and subg. Bupleurum diverged at about 44.35 Ma, which may be related to the collision of India with the Eurasian continent. Both East Asia Group I and East Asia Group II originated from a common ancestor in the Mediterranean, East Asia Group I divergence around 12.95 Ma; East Asia Group II divergence around 13.32 Ma. The character reconstruction showed that the morphological characters and altitude distribution analyzed in this study exhibit a scattered distribution in East Asian Group I and East Asian Group II. Additionally, diversification rate analysis shows that the East Asian Group I and East Asian Group II exhibited no significant shifts in diversification rates in the evolutionary history according to ITS and combined dataset. Both molecular and morphological data supports that East Asian Bupleurum is a museum taxon, meaning that the species diversity of East Asian Bupleurum has gradually accumulated over time.
Collapse
Affiliation(s)
- Yong-xiu Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, ChinaSichuan UniversityChengduChina
| | - Ceng-yue Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, ChinaSichuan UniversityChengduChina
| | - Yu-Yang Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, ChinaSichuan UniversityChengduChina
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, ChinaSichuan UniversityChengduChina
| |
Collapse
|
12
|
Chen L, Song BN, Yang L, Wang Y, Wang YY, Aou X, He XJ, Zhou SD. Phylogeny, adaptive evolution, and taxonomy of Acronema (Apiaceae): evidence from plastid phylogenomics and morphological data. FRONTIERS IN PLANT SCIENCE 2024; 15:1425158. [PMID: 39220016 PMCID: PMC11362068 DOI: 10.3389/fpls.2024.1425158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Introduction The genus Acronema, belonging to Apiaceae, includes approximately 25 species distributed in the high-altitude Sino-Himalayan region from E Nepal to SW China. This genus is a taxonomically complex genus with often indistinct species boundaries and problematic generic delimitation with Sinocarum and other close genera, largely due to the varied morphological characteristics. Methods To explore the phylogenetic relationships and clarify the limits of the genus Acronema and its related genera, we reconstructed a reliable phylogenetic framework with high support and resolution based on two molecular datasets (plastome data and ITS sequences) and performed morphological analyses. Results Both phylogenetic analyses robustly supported that Acronema was a non-monophyletic group that fell into two clades: Acronema Clade and East-Asia Clade. We also newly sequenced and assembled sixteen Acronema complete plastomes and performed comprehensively comparative analyses for this genus. The comparative results showed that the plastome structure, gene number, GC content, codon bias patterns were high similarity, but varied in borders of SC/IR and we identified six different types of SC/IR border. The SC/IR boundaries of Acronema chienii were significantly different from the other Acronema members which was consistent with the type VI pattern in the genus Tongoloa. We also identified twelve potential DNA barcode regions (ccsA, matK, ndhF, ndhG, psaI, psbI, rpl32, rps15, ycf1, ycf3, psaI-ycf4 and psbM-trnD) for species identification in Acronema. The molecular evolution of Acronema was relatively conservative that only one gene (petG) was found to be under positive selection (ω = 1.02489). Discussion The gene petG is one of the genes involved in the transmission of photosynthetic electron chains during photosynthesis, which plays a crucial role in the process of photosynthesis in plants. This is also a manifestation of the adaptive evolution of plants in high-altitude areas to the environment. In conclusion, our study provides novel insights into the plastome adaptive evolution, phylogeny, and taxonomy of genus Acronema.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Wen J, Wu BC, Li HM, Zhou W, Song CF. Plastome structure and phylogenetic relationships of genus Hydrocotyle (apiales): provide insights into the plastome evolution of Hydrocotyle. BMC PLANT BIOLOGY 2024; 24:778. [PMID: 39148054 PMCID: PMC11325595 DOI: 10.1186/s12870-024-05483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The genus Hydrocotyle Tourn. ex L. is a key group for further study on the evolution of Apiales, comprising around 170 species globally. Previous studies mainly focused on separate sections and provided much information about this genus, but its infrageneric relationships are still confusing. In addition, the genetic basis of its adaptive evolution remains poorly understood. To investigate the phylogeny and evolution of the genus, we selected ten representative species covering two of three diversity distribution centers and exhibiting rich morphology diversity. Comparative plastome analysis was conducted to clarify the structural character of Hydrocotyle plastomes. Positive selection analyses were implemented to assess the evolution of the genus. Phylogenetic inferences with protein-coding sequences (CDS) of Hydrocotyle and 17 related species were also performed. RESULTS Plastomes within Hydrocotyle were generally conservative in structure, gene order, and size. A total of 14 regions (rps16-trnK, trnQ-rps16, atpI-atpH, trnC-petN-psbM, ycf3-trnS, accD-psaI-ycf4, petA-psbJ, rps12-rpl20, rpl16 intron, rps3-rpl16 intron, rps9-rpl22, ndhF-rpl32, ndhA intron, and ycf1a) were recognized as hotspot regions within the genus, which suggested to be promising DNA barcodes for global phylogenetic analysis of Hydrocotyle. The ycf15 gene was suggested to be a protein-coding gene for Hydrocotyle species, and it could be used as a DNA barcode to identify Hydrocotyle. In phylogenetic analysis, three monophyletic clades (Clade I, II, III) were identified with evidence of rapid radiation speciation within Clade I. The selective pressure analysis detected that six CDS genes (ycf1b, matK, atpF, accD, rps14, and psbB) of Hydrocotyle species were under positive selection. Within the genus, the last four genes were conservative, suggesting a relation to the unique evolution of the genus in Apiales. Seven genes (atpE, matK, psbH, ycf1a, ycf1b, rpoA, and ycf2) were detected to be under some degree of positive selection in different taxa within the genus Hydrocotyle, indicating their role in the adaptive evolution of species. CONCLUSIONS Our study offers new insights into the phylogeny and adaptive evolution of Hydrocotyle. The plastome sequences could significantly enhance phylogenetic resolution and provide genomic resources and potential DNA markers useful for future studies of the genus.
Collapse
Affiliation(s)
- Jun Wen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Bao-Cheng Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hui-Min Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Wei Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Chun-Feng Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China.
| |
Collapse
|
14
|
Huang XC, Tang H, Wei X, He Y, Hu S, Wu JY, Xu D, Qiao F, Xue JY, Zhao Y. The gradual establishment of complex coumarin biosynthetic pathway in Apiaceae. Nat Commun 2024; 15:6864. [PMID: 39127760 PMCID: PMC11316762 DOI: 10.1038/s41467-024-51285-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Complex coumarins (CCs) represent characteristic metabolites found in Apiaceae plants, possessing significant medical value. Their essential functional role is likely as protectants against pathogens and regulators responding to environmental stimuli. Utilizing genomes and transcriptomes from 34 Apiaceae plants, including our recently sequenced Peucedanum praeruptorum, we conduct comprehensive phylogenetic analyses to reconstruct the detailed evolutionary process of the CC biosynthetic pathway in Apiaceae. Our results show that three key enzymes - p-coumaroyl CoA 2'-hydroxylase (C2'H), C-prenyltransferase (C-PT), and cyclase - originated successively at different evolutionary nodes within Apiaceae through various means of gene duplications: ectopic and tandem duplications. Neofunctionalization endows these enzymes with novel functions necessary for CC biosynthesis, thus completing the pathway. Candidate genes are cloned for heterologous expression and subjected to in vitro enzymatic assays to test our hypothesis regarding the origins of the key enzymes, and the results precisely validate our evolutionary inferences. Among the three enzymes, C-PTs are likely the primary determinant of the structural diversity of CCs (linear/angular), due to divergent activities evolved to target different positions (C-6 or C-8) of umbelliferone. A key amino acid variation (Ala161/Thr161) is identified and proven to play a crucial role in the alteration of enzymatic activity, possibly resulting in distinct binding forms between enzymes and substrates, thereby leading to different products. In conclusion, this study provides a detailed trajectory for the establishment and evolution of the CC biosynthetic pathway in Apiaceae. It explains why only a portion, not all, of Apiaceae plants can produce CCs and reveals the mechanisms of CC structural diversity among different Apiaceae plants.
Collapse
Affiliation(s)
- Xin-Cheng Huang
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huanying Tang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Xuefen Wei
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuedong He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Shuaiya Hu
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jia-Yi Wu
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dingqiao Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, China
| | - Fei Qiao
- National Key Laboratory for Tropical Crop Breeding, Sanya, 572024, Hainan, China.
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
15
|
Song BN, Liu CK, Ren T, Xiao YL, Chen L, Xie DF, He AG, Xu P, Fan X, Zhou SD, He XJ. Plastid phylogenomics contributes to the taxonomic revision of taxa within the genus Sanicula L. and acceptance of two new members of the genus. FRONTIERS IN PLANT SCIENCE 2024; 15:1351023. [PMID: 38916035 PMCID: PMC11194442 DOI: 10.3389/fpls.2024.1351023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/14/2024] [Indexed: 06/26/2024]
Abstract
Introduction The genus Sanicula L. is a taxonomically complicated taxa within Apiaceae, as its high variability in morphology. Although taxonomists have performed several taxonomic revisions for this genus, the interspecific relationships and species boundaries have not been satisfactorily resolved, especially for those endemic to China. This study mainly focused on S. giraldii var. ovicalycina, S. tienmuensis var. pauciflora, and S. orthacantha var. stolonifera and also described two new members of the genus. Methods We newly sequenced sixteen plastomes from nine Sanicula species. Combined with eleven plastomes previously reported by us and one plastome downloaded, we performed a comprehensively plastid phylogenomics analysis of 21 Sanicula taxa. Results and Discussion The comparative results showed that 21 Sanicula plastomes in their structure and features were highly conserved and further justified that two new species were indeed members of Sanicula. Nevertheless, eleven mutation hotspot regions were still identified. Phylogenetic analyses based on plastome data and the ITS sequences strongly supported that these three varieties were clearly distant from three type varieties. The results implied that these three varieties should be considered as three independent species, which were further justified by their multiple morphological characters. Therefore, revising these three varieties into three independent species was reasonable and convincing. Moreover, we also identified and described two new Sanicula species (S. hanyuanensis and S. langaoensis) from Sichuan and Shanxi, China, respectively. Based on their distinct morphological characteristics and molecular phylogenetic analysis, two new species were included in Sanicula. In summary, our study impelled the revisions of Sanicula members and improved the taxonomic system of the genus.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chang-Kun Liu
- College of Resources Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| | - Ting Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu-Lin Xiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lian Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - An-Guo He
- Administration of Zhejiang Dapanshan National Nature Reserve, Zhejiang, China
| | - Ping Xu
- Chengdu Branch of Giant Panda National Park, Chengdu, China
| | - Xing Fan
- Chengdu Branch of Giant Panda National Park, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Jia L, Wang S, Hu J, Miao K, Huang Y, Ji Y. Plastid phylogenomics and fossil evidence provide new insights into the evolutionary complexity of the 'woody clade' in Saxifragales. BMC PLANT BIOLOGY 2024; 24:277. [PMID: 38605351 PMCID: PMC11010409 DOI: 10.1186/s12870-024-04917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The "woody clade" in Saxifragales (WCS), encompassing four woody families (Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae), is a phylogenetically recalcitrant node in the angiosperm tree of life, as the interfamilial relationships of the WCS remain contentious. Based on a comprehensive sampling of WCS genera, this study aims to recover a robust maternal backbone phylogeny of the WCS by analyzing plastid genome (plastome) sequence data using Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) methods, and to explore the possible causes of the phylogenetic recalcitrance with respect to deep relationships within the WCS, in combination with molecular and fossil evidence. RESULTS Although the four WCS families were identically resolved as monophyletic, the MP analysis recovered different tree topologies for the relationships among Altingiaceae, Cercidiphyllaceae, and Daphniphyllaceae from the ML and BI phylogenies. The fossil-calibrated plastome phylogeny showed that the WCS underwent a rapid divergence of crown groups in the early Cretaceous (between 104.79 and 100.23 Ma), leading to the origin of the stem lineage ancestors of Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae within a very short time span (∼4.56 Ma). Compared with the tree topology recovered in a previous study based on nuclear genome data, cytonuclear discordance regarding the interfamilial relationships of the WCS was detected. CONCLUSIONS Molecular and fossil evidence imply that the early divergence of the WCS might have experienced radiative diversification of crown groups, extensive extinctions at the genus and species levels around the Cretaceous/Paleocene boundary, and ancient hybridization. Such evolutionarily complex events may introduce biases in topological estimations within the WCS due to incomplete lineage sorting, cytonuclear discordance, and long-branch attraction, potentially impacting the accurate reconstruction of deep relationships.
Collapse
Affiliation(s)
- Linbo Jia
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shuying Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinjin Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ke Miao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Yongjiang Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
17
|
Jiang QP, Guo XL, Zhao AQ, Fan X, Li Q, Zhou SD, He XJ. Phylogeny and Taxonomic Revision of the Genus Melanosciadium (Apiaceae), Based on Plastid Genomes and Morphological Evidence. PLANTS (BASEL, SWITZERLAND) 2024; 13:907. [PMID: 38592923 PMCID: PMC10974901 DOI: 10.3390/plants13060907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Melanosciadium is considered a monotypic genus and is also endemic to the southwest of China. No detailed phylogenetic studies or plastid genomes have been identified in Melanosciadium. In this study, the plastid genome sequence and nrDNA sequence were used for the phylogenetic analysis of Melanosciadium and its related groups. Angelica tsinlingensis was previously considered a synonym of Hansenia forbesii. Similarly, Ligusticum angelicifolium was previously thought to be the genus Angelica or Ligusticopsis. Through field observations and morphological evidence, we believe that the two species are more similar to M. pimpinelloideum in leaves, umbel rays, and fruits. Meanwhile, we found a new species from Anhui Province (eastern China) that is similar to M. pimpinelloideum and have named it M. Jinzhaiensis. We sequenced and assembled the complete plastid genomes of these species and another three Angelica species. The genome comparison results show that M. pimpinelloideum, A. tsinlingensis, Ligusticum angelicifolium, and M. jinzhaiensis have similarities to each other in the plastid genome size, gene number, and length of the LSC and IR regions; the plastid genomes of these species are distinct from those of the Angelica species. In addition, we reconstruct the phylogenetic relationships using both plastid genome sequences and nrDNA sequences. The phylogenetic analysis revealed that A. tsinlingensis, M. pimpinelloideum, L. angelicifolium, and M. jinzhaiensis are closely related to each other and form a monophyletic group with strong support within the Selineae clade. Consequently, A. tsinlingensis and L. angelicifolium should be classified as members of the genus Melanosciadium, and suitable taxonomical treatments have been proposed. Meanwhile, a comprehensive description of the new species, M. jinzhaiensis, is presented, encompassing its habitat environment and detailed morphological traits.
Collapse
Affiliation(s)
- Qiu-Ping Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Q.-P.J.); (A.-Q.Z.); (S.-D.Z.)
| | - Xian-Lin Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610093, China;
| | - An-Qi Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Q.-P.J.); (A.-Q.Z.); (S.-D.Z.)
| | - Xing Fan
- Chengdu Branch of Giant Panda National Park, Chengdu 610083, China; (X.F.); (Q.L.)
| | - Qing Li
- Chengdu Branch of Giant Panda National Park, Chengdu 610083, China; (X.F.); (Q.L.)
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Q.-P.J.); (A.-Q.Z.); (S.-D.Z.)
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (Q.-P.J.); (A.-Q.Z.); (S.-D.Z.)
| |
Collapse
|
18
|
Zhou N, Miao K, Liu C, Jia L, Hu J, Huang Y, Ji Y. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics. PLANT DIVERSITY 2024; 46:219-228. [PMID: 38807906 PMCID: PMC11128834 DOI: 10.1016/j.pld.2023.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 05/30/2024]
Abstract
Here, we infer the historical biogeography and evolutionary diversification of the genus Lilium. For this purpose, we used the complete plastomes of 64 currently accepted species in the genus Lilium (14 plastomes were newly sequenced) to recover the phylogenetic backbone of the genus and a time-calibrated phylogenetic framework to estimate biogeographical history scenarios and evolutionary diversification rates of Lilium. Our results suggest that ancient climatic changes and geological tectonic activities jointly shaped the distribution range and drove evolutionary radiation of Lilium, including the Middle Miocene Climate Optimum (MMCO), the late Miocene global cooling, as well as the successive uplift of the Qinghai-Tibet Plateau (QTP) and the strengthening of the monsoon climate in East Asia during the late Miocene and the Pliocene. This case study suggests that the unique geological and climatic events in the Neogene of East Asia, in particular the uplift of QTP and the enhancement of monsoonal climate, may have played an essential role in formation of uneven distribution of plant diversity in the Northern Hemisphere.
Collapse
Affiliation(s)
- Nian Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Miao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changkun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Linbo Jia
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jinjin Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yongjiang Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
19
|
Zhou J, Wang X, Zhou S, Niu J, Yue J, Liu Z, Downie SR. Circumscription of the East Asia clade (Apiaceae subfamily Apioideae) and the taxonomic placements of several problematic genera. PLANT DIVERSITY 2024; 46:206-218. [PMID: 38807902 PMCID: PMC11128858 DOI: 10.1016/j.pld.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 05/30/2024]
Abstract
The East Asia (or Physospermopsis) clade was recognized in previous molecular phylogenetic investigations into the higher-level relationships of Apiaceae subfamily Apioideae. The composition of this clade, the phylogenetic relationships among its constituent taxa, and the placement of species previously determined to be problematic have yet to be resolved. Herein, nrDNA ITS sequences were obtained for 150 accessions of Apioideae, representing species whose distributions are in East Asia or genera having one or more species included within the East Asia clade. These data, along with published ITS sequences from other Apioideae (for 3678 accessions altogether), were subjected to maximum likelihood and Bayesian inference analyses. The results show that the East Asia clade contains representatives of 11 currently recognized genera: Hansenia, Hymenolaena, Keraymonia, Sinolimprichtia, Acronema, Hymenidium, Physospermopsis, Pimpinella, Sinocarum, Tongoloa, and Trachydium. However, the latter seven genera have members falling outside of the East Asia clade, including the generic types of all except Tongoloa. Within the clade, the species comprising these seven genera are widely intermingled, greatly increasing confusion among relationships than previously realized. The problematic species Physospermopsis cuneata is confirmed as falling within the East Asia clade, whereas P. rubrinervis allies with the generic type in tribe Pleurospermeae. Physospermopsis kingdon-wardii is confirmed as a member of the genus Physospermopsis, whereas the generic attributions of P. cuneata and Tongoloa stewardii remain unclear. Two species of Sinocarum (S. filicinum and S. wolffianum) are transferred into the genus Meeboldia. This is the most comprehensive molecular phylogenetic investigation of the East Asia clade to date, and while the results increase systematic understanding of the clade, they also highlight the need for further studies of one of the most taxonomically intractable groups in Apioideae.
Collapse
Affiliation(s)
- Jing Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming 650500, China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming 650500, China
| | - Xinyue Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming 650500, China
| | - Shilin Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming 650500, China
| | - Junmei Niu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming 650500, China
| | - Jiarui Yue
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming 650500, China
| | - Zhenwen Liu
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
- Gaoligong Mountain, Forest Ecosystem, Observation and Research Station of Yunnan Province, Kunming 650201, China
- Yunnan Key Laboratory of Biodiversity of Gaoligong Mountain, Kunming 650201, China
| | - Stephen R. Downie
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Liu LJ, Liu CK, Cai J, Deng JJ, He XJ, Zhou SD. The complete plastomes of thirteen Libanotis (Apiaceae, Apioideae) plants: comparative and phylogenetic analyses provide insights into the plastome evolution and taxonomy of Libanotis. BMC PLANT BIOLOGY 2024; 24:106. [PMID: 38342898 PMCID: PMC10860227 DOI: 10.1186/s12870-024-04784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The genus Libanotis Haller ex Zinn, nom. cons., a contentious member of Apiaceae, encompasses numerous economically and medicinally significant plants, comprising approximately 30 species distributed across Eurasia. Despite many previous taxonomic insights into it, phylogenetic studies of the genus are still lacking. And the establishment of a robust phylogenetic framework remains elusive, impeding advancements and revisions in the taxonomic system for this genus. Plastomes with greater variability in their genetic characteristics hold promise for building a more robust Libanotis phylogeny. RESULTS During our research, we sequenced, assembled, and annotated complete plastomes for twelve Libanotis species belong to three sections and two closely related taxa. We conducted a comprehensive comparative analysis through totally thirteen Libanotis plastomes for the genus, including an additional plastome that had been published. Our results suggested that Libanotis plastome was highly conserved between different subclades, while the coding regions were more conserved than the non-coding regions, and the IR regions were more conserved than the single copy regions. Nevertheless, eight mutation hotspot regions were identified among plastomes, which can be considered as candidate DNA barcodes for accurate species identification in Libanotis. The phylogenetic analyses generated a robustly framework for Libanotis and revealed that Libanotis was not a monophyletic group and their all three sections were polygenetic. Libanotis schrenkiana was sister to L. sibirica, type species of this genus, but the remainders scattered within Selineae. CONCLUSION The plastomes of Libanotis exhibited a high degree of conservation and was effective in enhancing the support and resolution of phylogenetic analyses within this genus. Based on evidence from both phylogeny and morphology, we propose the recognition of "Libanotis sensu stricto" and provide taxonomic recommendations for other taxa that previously belonged to Libanotis. In conclusion, our study not only revealed the phylogenetic position and plastid evolution of Libanotis, but also provided new insights into the phylogeny of the family Apiaceae and phylogenetic relationships within the tribe Selineae.
Collapse
Affiliation(s)
- Li-Jia Liu
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- College of Resources Environment and Chemistry, Chuxiong Normal University, Chuxiong, 675000, China
| | - Jing Cai
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiao-Jiao Deng
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Song-Dong Zhou
- Key Laboratory of Bio‑Resources and Eco‑Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
21
|
Song BN, Liu CK, Zhao AQ, Tian RM, Xie DF, Xiao YL, Chen H, Zhou SD, He XJ. Phylogeny and diversification of genus Sanicula L. (Apiaceae): novel insights from plastid phylogenomic analyses. BMC PLANT BIOLOGY 2024; 24:70. [PMID: 38263006 PMCID: PMC10807117 DOI: 10.1186/s12870-024-04750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND The genus Sanicula L. is a unique perennial herb that holds important medicinal values. Although the previous studies on Sanicula provided us with a good research basis, its taxonomic system and interspecific relationships have not been satisfactorily resolved, especially for those endemic to China. Moreover, the evolutionary history of this genus also remains inadequately understood. The plastid genomes possessing highly conserved structure and limited evolutionary rate have proved to be an effective tool for studying plant phylogeny and evolution. RESULTS In the current study, we newly sequenced and assembled fifteen Sanicula complete plastomes. Combined with two previously reported plastomes, we performed comprehensively plastid phylogenomics analyses to gain novel insights into the evolutionary history of this genus. The comparative results indicated that the seventeen plastomes exhibited a high degree of conservation and similarity in terms of their structure, size, GC content, gene order, IR borders, codon bias patterns and SSRs profiles. Such as all of them displayed a typical quadripartite structure, including a large single copy region (LSC: 85,074-86,197 bp), a small single copy region (SSC: 17,047-17,132 bp) separated by a pair of inverted repeat regions (IRs: 26,176-26,334 bp). And the seventeen plastomes had similar IR boundaries and the adjacent genes were identical. The rps19 gene was located at the junction of the LSC/IRa, the IRa/SSC junction region was located between the trnN gene and ndhF gene, the ycf1 gene appeared in the SSC/IRb junction and the IRb/LSC boundary was located between rpl12 gene and trnH gene. Twelve specific mutation hotspots (atpF, cemA, accD, rpl22, rbcL, matK, ycf1, trnH-psbA, ycf4-cemA, rbcL-accD, trnE-trnT and trnG-trnR) were identified that can serve as potential DNA barcodes for species identification within the genus Sanicula. Furthermore, the plastomes data and Internal Transcribed Spacer (ITS) sequences were performed to reconstruct the phylogeny of Sanicula. Although the tree topologies of them were incongruent, both provided strong evidence supporting the monophyly of Saniculoideae and Apioideae. In addition, the sister groups between Saniculoideae and Apioideae were strongly suggested. The Sanicula species involved in this study were clustered into a clade, and the Eryngium species were also clustered together. However, it was clearly observed that the sections of Sanicula involved in the current study were not respectively recovered as monophyletic group. Molecular dating analysis explored that the origin of this genus was occurred during the late Eocene period, approximately 37.84 Ma (95% HPD: 20.33-52.21 Ma) years ago and the diversification of the genus was occurred in early Miocene 18.38 Ma (95% HPD: 10.68-25.28 Ma). CONCLUSION The plastome-based tree and ITS-based tree generated incongruences, which may be attributed to the event of hybridization/introgression, incomplete lineage sorting (ILS) and chloroplast capture. Our study highlighted the power of plastome data to significantly improve the phylogenetic supports and resolutions, and to efficiently explore the evolutionary history of this genus. Molecular dating analysis explored that the diversification of the genus occurred in the early Miocene, which was largely influenced by the prevalence of the East Asian monsoon and the uplift of the Hengduan Mountains (HDM). In summary, our study provides novel insights into the plastome evolution, phylogenetic relationships, taxonomic framework and evolution of genus Sanicula.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - An-Qi Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Rong-Ming Tian
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yu-Lin Xiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
22
|
Park S, Park S. Intrageneric structural variation in organelle genomes from the genus Dystaenia (Apiaceae): genome rearrangement and mitochondrion-to-plastid DNA transfer. FRONTIERS IN PLANT SCIENCE 2023; 14:1283292. [PMID: 38116150 PMCID: PMC10728875 DOI: 10.3389/fpls.2023.1283292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Introduction During plant evolution, intracellular DNA transfer (IDT) occurs not only from organelles to the nucleus but also between organelles. To further comprehend these events, both organelle genomes and transcriptomes are needed. Methods In this study, we constructed organelle genomes and transcriptomes for two Dystaenia species and described their dynamic IDTs between their nuclear and mitochondrial genomes, or plastid and mitochondrial genomes (plastome and mitogenome). Results and Discussion We identified the putative functional transfers of the mitochondrial genes 5' rpl2, rps10, rps14, rps19, and sdh3 to the nucleus in both Dystaenia species and detected two transcripts for the rpl2 and sdh3 genes. Additional transcriptomes from the Apicaceae species also provided evidence for the transfers and duplications of these mitochondrial genes, showing lineage-specific patterns. Intrageneric variations of the IDT were found between the Dystaenia organelle genomes. Recurrent plastid-to-mitochondrion DNA transfer events were only identified in the D. takeshimana mitogenome, and a pair of mitochondrial DNAs of plastid origin (MIPTs) may generate minor alternative isoforms. We only found a mitochondrion-to-plastid DNA transfer event in the D. ibukiensis plastome. This event may be linked to inverted repeat boundary shifts in its plastome. We inferred that the insertion region involved an MIPT that had already acquired a plastid sequence in its mitogenome via IDT. We propose that the MIPT acts as a homologous region pairing between the donor and recipient sequences. Our results provide insight into the evolution of organelle genomes across the family Apiaceae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
23
|
Yan R, Geng Y, Jia Y, Xiang C, Zhou X, Hu G. Comparative analyses of Linderniaceae plastomes, with implications for its phylogeny and evolution. FRONTIERS IN PLANT SCIENCE 2023; 14:1265641. [PMID: 37828930 PMCID: PMC10565954 DOI: 10.3389/fpls.2023.1265641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Introduction The recently established Linderniaceae, separated from the traditionally defined Scrophulariaceae, is a taxonomically complicated family. Although previous phylogenetic studies based on a few short DNA markers have made great contributions to the taxonomy of Linderniaceae, limited sampling and low resolution of the phylogenetic tree have failed to resolve controversies between some generic circumscriptions. The plastid genome exhibits a powerful ability to solve phylogenetic relationships ranging from shallow to deep taxonomic levels. To date, no plastid phylogenomic studies have been carried out in Linderniaceae. Methods In this study, we newly sequenced 26 plastid genomes of Linderniaceae, including eight genera and 25 species, to explore the phylogenetic relationships and genome evolution of the family through plastid phylogenomic and comparative genomic analyses. Results The plastid genome size of Linderniaceae ranged from 152,386 bp to 154,402 bp, exhibiting a typical quartile structure. All plastomes encoded 114 unique genes, comprising 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. The inverted repeat regions were more conserved compared with the single-copy regions. A total of 1803 microsatellites and 1909 long sequence repeats were identified, and five hypervariable regions (petN-psbM, rps16-trnQ, rpl32-trnL, rpl32, and ycf1) were screened out. Most protein-coding genes were relatively conserved, with only the ycf2 gene found under positive selection in a few species. Phylogenomic analyses confirmed that Linderniaceae was a distinctive lineage and revealed that the presently circumscribed Vandellia and Torenia were non-monophyletic. Discussion Comparative analyses showed the Linderniaceae plastomes were highly conservative in terms of structure, gene order, and gene content. Combining morphological and molecular evidence, we supported the newly established Yamazakia separating from Vandellia and the monotypic Picria as a separate genus. These findings provide further evidence to recognize the phylogenetic relationships among Linderniaceae and new insights into the evolution of the plastid genomes.
Collapse
Affiliation(s)
- Rongrong Yan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yanfei Geng
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China
| | - Yuhuan Jia
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Chunlei Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xinxin Zhou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Guoxiong Hu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
24
|
Li H, Wu M, Lai Q, Zhou W, Song C. Complete chloroplast of four Sanicula taxa (Apiaceae) endemic to China: lights into genome structure, comparative analysis, and phylogenetic relationships. BMC PLANT BIOLOGY 2023; 23:444. [PMID: 37730528 PMCID: PMC10512634 DOI: 10.1186/s12870-023-04447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The genus Sanicula comprises ca. 45 taxa, widely distributed from East Asia to North America, which is a taxonomically difficult genus with high medicinal value in Apiaceae. The systematic classification of the genus has been controversial for a long time due to varied characters in key morphological traits. China is one of the most important distributed centers, with ca. 18 species and two varieties. At present, chloroplast genomes are generally considered to be conservative and play an important role in evolutionary relationship study. To investigate the plastome evolution and phylogenetic relationships of Chinese Sanicula, we comprehensively analyzed the structural characteristics of 13 Chinese Sanicula chloroplasts and reconstructed their phylogenetic relationships. RESULTS In present study, four newly complete chloroplast genome of Sanicula taxa by using Illumina sequencing were reported, with the typical quadripartite structure and 155,396-155,757 bp in size. They encoded 126 genes, including 86 protein-coding genes, 32 tRNA genes and 8 rRNA genes. Genome structure, distributions of SDRs and SSRs, gene content, among Sanicula taxa, were similar. The nineteen intergenic spacers regions, including atpH-atpI, ndhC-trnM, petB-petD, petD-rpoA, petN-psbM, psaJ-rpl33, rbcL-accD, rpoB-trnC, rps16-trnQ, trnE-psbD, trnF-ndhJ, trnH-psbA, trnN-ndhF, trnS-psbZ, trnS-trnR, trnT-trnF, trnV-rps12, ycf3-trnS and ycf4-cemA, and one coding region (ycf1 gene) were the most variable. Results of maximum likelihood analysis based on 79 unique coding genes of 13 Chinese Sanicula samples and two Eryngium (Apiaceae-Saniculoideae) species as outgroup taxa revealed that they divided into four subclades belonged to two clades, and one subclade was consistent with previously traditional Sanicula section of its system. The current classification based on morphology at sect. Sanicla and Sect. Tuberculatae in Chinese Sanicula was not supported by analysis of cp genome phylogeny. CONCLUSIONS The chloroplast genome structure of Sanicula was similar to other angiosperms and possessed the typical quadripartite structure with the conserved genome arrangement and gene features. However, their size varied owing to expansion/contraction of IR/SC boundaries. The variation of non-coding regions was larger than coding regions of the chloroplast genome. Phylogenetic analysis within these Chinese Sanicula were determined using the 79 unique coding genes. These results could provide important data for systematic, phylogenomic and evolutionary research in the genus for the future studies.
Collapse
Affiliation(s)
- Huimin Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, Jiangsu, China
| | - Mingsong Wu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Qiang Lai
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Wei Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, Jiangsu, China
| | - Chunfeng Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
25
|
Sun H, Chu S, Jiang L, Tong Z, Cheng M, Peng H, Huang L. Integrative analysis of chloroplast genome, chemicals, and illustrations in Bencao literature provides insights into the medicinal value of Peucedanum huangshanense. FRONTIERS IN PLANT SCIENCE 2023; 14:1179915. [PMID: 37600207 PMCID: PMC10436485 DOI: 10.3389/fpls.2023.1179915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023]
Abstract
The genus Peucedanum L. (Apiaceae) is a large group comprising more than 120 species distributed worldwide. Many plants of the genus Peucedanum have been studied and used in traditional Chinese medicine. In 2020, a new species, Peucedanum huangshanense Lu Q. Huang, H. S. Peng & S. S. Chu, was found in the Huangshan Mountains of Anhui Province, China. However, little is known about its medicinal properties. Thus, the objective of this study is to explore the potential medicinal value of P. huangshanense and its relationship with other Peucedanum species. Through textual research on illustrations of Qianhu in Bencao literature, it can be inferred that at least five species of genus Peucedanum have been used in Chinese medicine. Therefore, we chose these five species of Peucedanum and P. huangshanense together for subsequent research. We conducted morphological, chloroplast genome, and chemical analyses of six Peucedanum species, including the newly discovered P. huangshanense. The chloroplast genomes of Peucedanum showed a typical tetrad structure, and the gene structure and content were similar and conservative. There were significant differences in genome size and the expansion of the inverted repeat boundary. Through nucleotide polymorphism analysis, we screened 14 hotspot mutation regions that have the potential to be used as specific molecular markers for the taxonomy of Peucedanum. Our results showed an inversion of the trnD-trnY-trnE gene in the P. huangshanense chloroplast genome, which can be developed as a specific molecular marker for species identification. Phylogenetic analysis showed that the phylogenetic trees had high support and resolution, which strongly supports the view that Peucedanum is not a monophyletic group. P. huangshanense had the closest genetic relationship to P. ampliatum K. T. Fu, followed by P. harry-smithii Fedde ex Wolff. Furthermore, the main coumarins of P. huangshanense were most similar to those of P. japonicum Thunb. and P. harry-smithii. In summary, our research lays a foundation for the systematic classification of Peucedanum and sheds light on the medicinal value of P. huangshanense.
Collapse
Affiliation(s)
- Haibing Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Scientific Research Base of Traditional Chinese Medicine Heritage (Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences), State Administration of Cultural Heritage, Beijing, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine, Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Lu Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhenzhen Tong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ming’en Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Scientific Research Base of Traditional Chinese Medicine Heritage (Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences), State Administration of Cultural Heritage, Beijing, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Scientific Research Base of Traditional Chinese Medicine Heritage (Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences), State Administration of Cultural Heritage, Beijing, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Zhou J, Niu J, Wang X, Yue J, Zhou S, Liu Z. Plastome evolution in the genus Sium (Apiaceae, Oenantheae) inferred from phylogenomic and comparative analyses. BMC PLANT BIOLOGY 2023; 23:368. [PMID: 37488499 PMCID: PMC10367252 DOI: 10.1186/s12870-023-04376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Sium L. (Apiaceae) is a small genus distributed primarily in Eurasia, with one species also occurring in North America. Recently, its circumscription has been revised to include 10 species, however, the phylogenetic relationships within its two inclusive clades were poorly supported or collapsed in previous studies based on nuclear ribosomal DNA ITS or cpDNA sequences. To identify molecular markers suitable for future intraspecific phylogeographic and population genetic studies, and to evaluate the efficacy of plastome in resolving the phylogenetic relationships of the genus, the complete chloroplast (cp) genomes of six Sium species were sequenced. RESULTS The Sium plastomes exhibited typical quadripartite structures of Apiaceae and most other higher plant plastid DNAs, and were relatively conserved in their size (153,029-155,006 bp), gene arrangement and content (with 114 unique genes). A total of 61-67 SSRs, along with 12 highly divergent regions (trnQ, trnG-atpA, trnE-trnT, rps4-trnT, accD-psbI, rpl16, ycf1-ndhF, ndhF-rpl32, rpl32-trnL, ndhE-ndhG, ycf1a and ycf1b) were discovered in the plastomes. No significant IR length variation was detected showing that plastome evolution was conserved within this genus. Phylogenomic analysis based on whole chloroplast genome sequences produced a highly resolved phylogenetic tree, in which the monophyly of Sium, as well as the sister relationship of its two inclusive clades were strongly supported. CONCLUSIONS The plastome sequences could greatly improve phylogenetic resolution, and will provide genomic resources and potential markers useful for future studies of the genus.
Collapse
Affiliation(s)
- Jing Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, China
| | - Junmei Niu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, China
| | - Xinyue Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, China
| | - Jiarui Yue
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, China
| | - Shilin Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, China
| | - Zhenwen Liu
- Yunnan Academy of Forestry and Grassland, Kunming, China.
- Gaoligong Mountain, Forest Ecosystem, Observation and Research Station of Yunnan Province, Kunming, China.
- Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming, China.
| |
Collapse
|
27
|
Weng L, Jiang Y, Wang Y, Zhang X, Zhou P, Wu M, Li H, Sun H, Chen S. Chloroplast genome characteristics and phylogeny of the sinodielsia clade (apiaceae: apioideae). BMC PLANT BIOLOGY 2023; 23:284. [PMID: 37246219 DOI: 10.1186/s12870-023-04271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/07/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The Sinodielsia clade of the subfamily Apioideae (Apiacieae) was established in 2008, and it is composed of 37 species from 17 genera. Its circumscription is still poorly delimited and unstable, and interspecific relationships in the clade lack comprehensive analysis. Chloroplast (cp.) genomes provide valuable and informative data sources for evolutionary biology and have been widely used in studies on plant phylogeny. To infer the phylogenetic history of the Sinodielsia clade, we assembled complete cp. genomes of 39 species and then performed phylogenetic analysis based on these cp. genome sequence data combined with 66 published cp. genomes from 16 genera relative to the Sinodielsia clade. RESULTS These 39 newly assembled genomes had a typical quadripartite structure with two inverted repeat regions (IRs: 17,599-31,486 bp) separated by a large single-copy region (LSC: 82,048-94,046 bp) and a small single-copy region (SSC: 16,343-17,917 bp). The phylogenetic analysis showed that 19 species were clustered into the Sinodielsia clade, and they were divided into two subclades. Six mutation hotspot regions were detected from the whole cp. genomes among the Sinodielsia clade, namely, rbcL-accD, ycf4-cemA, petA-psbJ, ycf1-ndhF, ndhF-rpl32 and ycf1, and it was found that ndhF-rpl32 and ycf1 were highly variable in the 105 sampled cp. genomes. CONCLUSION The Sinodielsia clade was subdivided into two subclades relevant to geographical distributions, except for cultivated and introduced species. Six mutation hotspot regions, especially ndhF-rpl32 and ycf1, could be used as potential DNA markers in the identification and phylogenetic analyses of the Sinodielsia clade and Apioideae. Our study provided new insights into the phylogeny of the Sinodielsia clade and valuable information on cp. genome evolution in Apioideae.
Collapse
Affiliation(s)
- Long Weng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yunhui Jiang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yong Wang
- Yunnan Institute of Forest Inventory and Planning, Kunming, 650051, China
| | - Xuemei Zhang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ping Zhou
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Mei Wu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hongzhe Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shaotian Chen
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
28
|
Tian R, Aou X, Song B, Li Z, He X, Zhou S. Plastid Phylogenomic Analyses Reveal a Cryptic Species of Ligusticopsis (Apiaceae, Angiosperms). Int J Mol Sci 2023; 24:ijms24087419. [PMID: 37108580 PMCID: PMC10138589 DOI: 10.3390/ijms24087419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ligusticopsis litangensis is identified and described as a cryptic species from Sichuan Province, China. Although the distribution of this cryptic species overlaps with that of Ligusticopsis capillacea and Ligusticopsis dielsiana, the morphological boundaries between them are explicit and have obviously distinguishable characters. The main distinguishing features of the cryptic species are as follows: long conical multi-branched roots, very short pedicels in compound umbels, unequal rays, oblong-globose fruits, 1-2 vittae per furrow and 3-4 vittae on the commissure. The above-mentioned features differ somewhat from other species within the genus Ligusticopsis, but generally coincide with the morphological boundaries defined for the genus Ligusticopsis. To determine the taxonomic position of L. litangensis, we sequenced and assembled the plastomes of L. litangensis and compared them with the plastomes of 11 other species of the genus Ligusticopsis. Notably, both phylogenetic analyses based on ITS sequences and the complete chloroplast genome robustly supported that three accessions of L. litangensis are monophyletic clade and then nested in Ligusticopsis genus. Moreover, the plastid genomes of 12 Ligusticopsis species, including the new species, were highly conserved in terms of gene order, gene content, codon bias, IR boundaries and SSR content. Overall, the integration of morphological, comparative genomic and phylogenetic evidence indicates that Ligusticopsis litangensis actually represents a new species.
Collapse
Affiliation(s)
- Rongming Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xueyimu Aou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Boni Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zixuan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xingjin He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Songdong Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
29
|
Peng C, Guo XL, Zhou SD, He XJ. Backbone phylogeny and adaptive evolution of Pleurospermum s. l.: New insights from phylogenomic analyses of complete plastome data. FRONTIERS IN PLANT SCIENCE 2023; 14:1148303. [PMID: 37063181 PMCID: PMC10101341 DOI: 10.3389/fpls.2023.1148303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Pleurospermum is a taxonomically challenging taxon of Apiaceae, as its circumscription and composition remain controversial for morphological similarities with several related genera, leading to a dispute between Pleurospermum in the broad sense and strict sense. While evidence from previous molecular studies recognized plural branching lineages within the Pleurospermum s. l., it did not support the latest delimitation of Pleurospermum s. str. by only two closely related northern species. So far, no proper delimitation for Pleurospermum has come up, and many of the plural taxa in Pleurospermum s. l. remain unresolved, which may be due to poor phylogenetic resolution yielded barely from ITS sequences. Herein, we newly assembled 40 complete plastomes from 36 species of Pleurospermum s. l. and related genera, 34 of which were first reported and generated a well-resolved backbone phylogeny in a framework of the subfamily Apioideae. From the phylogeny with greatly improved resolution, a total of six well-supported monophyletic lineages within Pleurospermum s. l. were recognized falling in different major clades of Apioideae. Combining morphological characteristics with phylogenetic inference, we suggested to re-delimit the Pleurospermum s. str. by introducing nine species mainly from the Himalayan regions and proposed its boundary features; the remaining species were suggested to be excluded from Pleurospermum to incorporate into their more related taxa being revealed. On this basis, the plastome comparison revealed not only the high conservatism but also the mild differences among lineages in plastome structure and gene evolution. Overall, our study provided a backbone phylogeny essential for further studies of the taxonomically difficult taxa within Pleurospermum s. l.
Collapse
Affiliation(s)
| | | | | | - Xing-Jin He
- *Correspondence: Xing-Jin He, ; Song-Dong Zhou,
| |
Collapse
|
30
|
Ji Y, Landis JB, Yang J, Wang S, Zhou N, Luo Y, Liu H. Phylogeny and evolution of Asparagaceae subfamily Nolinoideae: new insights from plastid phylogenomics. ANNALS OF BOTANY 2023; 131:301-312. [PMID: 36434782 PMCID: PMC9992941 DOI: 10.1093/aob/mcac144] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Asparagaceae subfamily Nolinoideae is an economically important plant group, but the deep relationships and evolutionary history of the lineage remain poorly understood. Based on a large data set including 37 newly sequenced samples and publicly available plastomes, this study aims to better resolve the inter-tribal relationships of Nolinoideae, and to rigorously examine the tribe-level monophyly of Convallarieae, Ophiopogoneae and Polygonateae. METHODS Maximum likelihood (ML) and Bayesian inference (BI) methods were used to infer phylogenetic relationships of Nolinoideae at the genus level and above. The diversification history of Nolinoideae was explored using molecular dating. KEY RESULTS Both ML and BI analyses identically recovered five clades within Nolinoideae, respectively corresponding to Dracaeneae + Rusceae, Polygonateae + Theropogon, Ophiopogoneae, Nolineae, and Convallarieae excluding Theropogon, and most deep nodes were well supported. As Theropogon was embedded in Polygonateae, the plastome phylogeny failed to resolve Convallarieae and Polygonateae as reciprocally monophyletic. Divergence time estimation showed that the origins of most Nolinoideae genera were dated to the Miocene and Pliocene. The youthfulness of Nolinoideae genera is well represented in the three herbaceous tribes (Convallarieae, Ophiopogoneae and Polygonateae) chiefly distributed in temperate areas of the Northern Hemisphere, as the median stem ages of all 14 genera currently belonging to them were estimated at <12.37 Ma. CONCLUSIONS This study recovered a robust backbone phylogeny, providing new insights for better understanding the evolution and classification of Nolinoideae. Compared with the deep relationships recovered by a previous study based on transcriptomic data, our data suggest that ancient hybridization or incomplete lineage sorting may have occurred in the early diversification of Nolinoideae. Our findings will provide important reference for further study of the evolutionary complexity of Nolinoideae using nuclear genomic data. The recent origin of these herbaceous genera currently belonging to Convallarieae, Ophiopogoneae and Polygonateae provides new evidence to support the hypothesis that the global expansion of temperate habitats caused by the climate cooling over the past 15 million years may have dramatically driven lineage diversification and speciation in the Northern Hemisphere temperate flora.
Collapse
Affiliation(s)
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey Hortorium, Cornell University, Ithaca, NY 14850, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Jin Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shuying Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Nian Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Luo
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
31
|
Xu Y, Liu Y, Yu Z, Jia X. Complete Chloroplast Genome Sequence of the Long Blooming Cultivar Camellia 'Xiari Qixin': Genome Features, Comparative and Phylogenetic Analysis. Genes (Basel) 2023; 14:460. [PMID: 36833387 PMCID: PMC9956581 DOI: 10.3390/genes14020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The camellia flower is a famous woody plant with a long-cultivated history and high ornamental value. It is extensively planted and utilized around the world and owns a massive germplasm resource. Camellia 'Xiari Qixin' belongs to one of the typical cultivars in the four seasons camellia hybrids series. Due to its long flowering period, this kind of cultivar is identified as a precious resource of camellia flowers. In this study, the complete chloroplast genome sequence of C. 'Xiari Qixin' was first reported. Its whole chloroplast genome is 157,039 bp in length with an overall GC content of 37.30%, composed of a large single copy region (LSC, 86,674 bp), a small single copy region (SSC, 18,281 bp), and a pair of inverted repeat regions (IRs, 26,042 bp each). A total of 134 genes were predicted in this genome, including 8 ribosomal RNA genes, 37 transfer RNA genes, and 89 protein-coding genes. In addition, 50 simple sequence repeats (SSRs) and 36 long repeat sequences were detected. By comparing C. 'Xiari Qixin' and seven Camellia species on the chloroplast genome, seven mutation hotspot regions were identified, including psbK, trnS (GCU)-trnG(GCC), trnG(GCC), petN-psbM, trnF(GAA)-ndhJ, trnP(UGG)-psaJ, and ycf1. Phylogenetic analysis of 30 chloroplast genomes showed that the genetic relationship between C. 'Xiari Qixin' and Camellia azalea is quite close in evolution. These results could not only provide a valuable database for determining the maternal origin of Camellia cultivars, but also contribute to the exploration of the phylogenetic relationship and utilization of germplasm resources for Camellia.
Collapse
Affiliation(s)
| | | | | | - Xiaocheng Jia
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
32
|
Qin HH, Cai J, Liu CK, Zhou RX, Price M, Zhou SD, He XJ. The plastid genome of twenty-two species from Ferula, Talassia, and Soranthus: comparative analysis, phylogenetic implications, and adaptive evolution. BMC PLANT BIOLOGY 2023; 23:9. [PMID: 36604614 PMCID: PMC9814190 DOI: 10.1186/s12870-022-04027-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The Ferula genus encompasses 180-185 species and is one of the largest genera in Apiaceae, with many of Ferula species possessing important medical value. The previous studies provided more information for Ferula, but its infrageneric relationships are still confusing. In addition, its genetic basis of its adaptive evolution remains poorly understood. Plastid genomes with more variable sites have the potential to reconstruct robust phylogeny in plants and investigate the adaptive evolution of plants. Although chloroplast genomes have been reported within the Ferula genus, few studies have been conducted using chloroplast genomes, especially for endemic species in China. RESULTS Comprehensively comparative analyses of 22 newly sequenced and assembled plastomes indicated that these plastomes had highly conserved genome structure, gene number, codon usage, and repeats type and distribution, but varied in plastomes size, GC content, and the SC/IR boundaries. Thirteen mutation hotspot regions were detected and they would serve as the promising DNA barcodes candidates for species identification in Ferula and related genera. Phylogenomic analyses with high supports and resolutions showed that Talassia transiliensis and Soranthus meyeri were nested in the Ferula genus, and thus they should be transferred into the Ferula genus. Our phylogenies also indicated the monophyly of subgenera Sinoferula and subgenera Narthex in Ferula genus. Twelve genes with significant posterior probabilities for codon sites were identified in the positively selective analysis, and their function may relate to the photosystem II, ATP subunit, and NADH dehydrogenase. Most of them might play an important role to help Ferula species adapt to high-temperatures, strong-light, and drought habitats. CONCLUSION Plastome data is powerful and efficient to improve the support and resolution of the complicated Ferula phylogeny. Twelve genes with significant posterior probabilities for codon sites were helpful for Ferula to adapt to the harsh environment. Overall, our study supplies a new perspective for comprehending the phylogeny and evolution of Ferula.
Collapse
Affiliation(s)
- Huan-Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jing Cai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ren-Xiu Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Megan Price
- Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
33
|
Wang Z, Cao L, Liu J, He X. Comparative analysis of the complete plastomes of nine Pimpinella species (Apiaceae) from China. PeerJ 2023; 11:e14773. [PMID: 36874977 PMCID: PMC9983424 DOI: 10.7717/peerj.14773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/03/2023] [Indexed: 03/06/2023] Open
Abstract
Pimpinella L. is one of the large genera in the Apiaceae family. In a previous study, the molecular phylogenies of Pimpinella were explored using nuclear ribosomal DNA internal transcribed spacers (ITS) and several chloroplast DNA segments. There have been few studies conducted on chloroplast genomes in Pimpinella, which has limited systematic understanding of this genus. We assembled the complete chloroplast genomes of nine Pimpinella species from China using data generated from next generation sequencing (NGS). The chloroplast (cp) DNA used were standard double-stranded molecules, ranging from 146,432 base pairs (bp) (P. valleculosa) to 165,666 bp (P. purpurea) in length. The circular DNA contained a large single-copy (LSC) region, small single-copy (SSC) region, and pair of inverted repeats (IRs). The cp DNA of the nine species contained 82-93 protein-coding genes, 36-37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes, respectively. Four species (P. smithii, P. valleculosa, P. rhomboidea, and P. purpurea) exhibited striking distinctions in genome size, gene number, IR boundary, and sequence identity. We confirmed the non-monophyly of the Pimpinella species on the basis of the nine newly identified plastomes. The distant relationship between the above-mentioned four Pimpinella species and Pimpinelleae was indicated with high support values. Our study provides a foundation for future in-depth phylogenetic and taxonomic studies of genus Pimpinella.
Collapse
Affiliation(s)
- Zhixin Wang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, Hunan, China
| | - Limin Cao
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, Hunan, China
| | - Jianhui Liu
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, Hunan, China
| | - Xingjin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Liu C, Deng J, Zhou R, Song B, Zhou S, He X. Plastid Phylogenomics Provide Evidence to Accept Two New Members of Ligusticopsis (Apiaceae, Angiosperms). Int J Mol Sci 2022; 24:ijms24010382. [PMID: 36613825 PMCID: PMC9820081 DOI: 10.3390/ijms24010382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Peucedanum nanum and P. violaceum are recognized as members of the genus Peucedanum because of their dorsally compressed mericarps with slightly prominent dorsal ribs and narrowly winged lateral ribs. However, these species are not similar to other Peucedanum taxa but resemble Ligusticopsis in overall morphology. To check the taxonomic positions of P. nanum and P. violaceum, we sequenced their complete plastid genome (plastome) sequences and, together with eleven previously published Ligusticopsis plastomes, performed comprehensively comparative analyses. The thirteen plastomes were highly conserved and similar in structure, size, GC content, gene content and order, IR borders, and the patterns of codon bias, RNA editing, and simple sequence repeats (SSRs). Nevertheless, twelve mutation hotspots (matK, ndhC, rps15, rps8, ycf2, ccsA-ndhD, petN-psbM, psbA-trnK, rps2-rpoC2, rps4-trnT, trnH-psbA, and ycf2-trnL) were selected. Moreover, both the phylogenetic analyses based on plastomes and on nuclear ribosomal DNA internal transcribed spacer (ITS) sequences robustly supported that P. nanum and P. violaceum nested in Ligusticopsis, and this was further confirmed by the morphological evidence. Hence, transferring P. nanum and P. violaceum into Ligusticopsis genus is reasonable and convincing, and two new combinations are presented.
Collapse
Affiliation(s)
| | | | | | | | - Songdong Zhou
- Correspondence: (S.Z.); (X.H.); Tel.: +028-85415006 (X.H.)
| | - Xingjin He
- Correspondence: (S.Z.); (X.H.); Tel.: +028-85415006 (X.H.)
| |
Collapse
|
35
|
Song B, Liu C, Xie D, Xiao Y, Tian R, Li Z, Zhou S, He X. Plastid Phylogenomic Analyses Reveal the Taxonomic Position of Peucedanum franchetii. PLANTS (BASEL, SWITZERLAND) 2022; 12:97. [PMID: 36616226 PMCID: PMC9824613 DOI: 10.3390/plants12010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Peucedanum franchetii is a famous folk medicinal plant in China. However, the taxonomy of the P. franchetii has not been sufficiently resolved. Due to similar morphological features between P. franchetii and Ligusticopsis members, the World Flora Online (WFO) Plant List suggested that this species transformed into the genus Ligusticopsis and merged with Ligusticopsis likiangensis. However, both species are obviously diverse in leaf shape, bracts, and bracteoles. To check the taxonomic position of P. franchetii, we newly sequenced and assembled the plastome of P. franchetii and compared it with nine other plastomes of the genus Ligusticopsis. Ten plastomes were highly conserved and similar in gene order, codon bias, RNA editing sites, IR borders, and SSRs. Nevertheless, 10 mutation hotspot regions (infA, rps8, matK, ndhF, rps15, psbA-trnH, rps2-rpoC2, psbA-trnK, ycf2-trnL, and ccsA-ndhD) were still detected. In addition, both phylogenetic analyses based on plastome data and ITS sequences robustly supported that P. franchetii was not clustered with members of Peucedanum but nested in Ligusticopsis. P. franchetii was sister to L. likiangensis in the ITS topology but clustered with L. capillacea in the plastome tree. These findings implied that P. franchetii should be transferred to genus Ligusticopsis and not merged with L. likiangensis, but as an independent species, which was further verified by morphological evidences. Therefore, transferring P. franchetii under the genus Ligusticopsis as an independent species was reasonable, and a new combination was presented.
Collapse
|
36
|
Zhang Z, Xie P, Guo Y, Zhou W, Liu E, Yu Y. Easy353: A Tool to Get Angiosperms353 Genes for Phylogenomic Research. Mol Biol Evol 2022; 39:6862883. [PMID: 36458838 PMCID: PMC9757696 DOI: 10.1093/molbev/msac261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
The Angiosperms353 gene set (AGS) consists of a set of 353 universal low-copy nuclear genes that were selected by examining more than 600 angiosperm species. These genes can be used for phylogenetic studies and population genetics at multiple taxonomic scales. However, current pipelines are not able to recover Angiosperms353 genes efficiently and accurately from high-throughput sequences. Here, we developed Easy353, a reference-guided assembly tool to recover the AGS from high-throughput sequencing (HTS) data (including genome skimming, RNA-seq, and target enrichment). Easy353 is an open-source user-friendly assembler for diverse types of high-throughput data. It has a graphical user interface and a command-line interface that is compatible with all widely-used computer systems. Evaluations, based on both simulated and empirical data, suggest that Easy353 yields low rates of assembly errors.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Pulin Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yongling Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Wenbin Zhou
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Enyan Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yan Yu
- Corresponding author: E-mail:
| |
Collapse
|
37
|
Lei JQ, Liu CK, Cai J, Price M, Zhou SD, He XJ. Evidence from Phylogenomics and Morphology Provide Insights into the Phylogeny, Plastome Evolution, and Taxonomy of Kitagawia. PLANTS (BASEL, SWITZERLAND) 2022; 11:3275. [PMID: 36501315 PMCID: PMC9740501 DOI: 10.3390/plants11233275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Kitagawia Pimenov is one of the segregate genera of Peucedanum sensu lato within the Apiaceae. The phylogenetic position and morphological delimitation of Kitagawia have been controversial. In this study, we used plastid genome (plastome) and nuclear ribosomal DNA (nrDNA) sequences to reconstruct the phylogeny of Kitagawia, along with comparative plastome and morphological analyses between Kitagawia and related taxa. The phylogenetic results identified that all examined Kitagawia species were divided into Subclade I and Subclade II within the tribe Selineae, and they were all distant from the representative members of Peucedanum sensu stricto. The plastomes of Kitagawia and related taxa showed visible differences in the LSC/IRa junction (JLA) and several hypervariable regions, which separated Subclade I and Subclade II from other taxa. Fruit anatomical and micromorphological characteristics, as well as general morphological characteristics, distinguished the four Kitagawia species within Subclade I from Subclade II and other related genera. This study supported the separation of Kitagawia from Peucedanum sensu lato, confirmed that Kitagawia belongs to Selineae, and two species (K. praeruptora and K. formosana) within Subclade II should be placed in a new genus. We believe that the "core" Kitagawia should be limited to Subclade I, and this genus can be distinguished by the association of a series of morphological characteristics. Overall, our study provides new insights into the phylogeny, plastome evolution, and taxonomy of Kitagawia.
Collapse
Affiliation(s)
- Jia-Qing Lei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Cai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Megan Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
38
|
Cai J, Qin HH, Lei JQ, Liu CK, He XJ, Zhou SD. The phylogeny of Seseli (Apiaceae, Apioideae): insights from molecular and morphological data. BMC PLANT BIOLOGY 2022; 22:534. [PMID: 36380268 PMCID: PMC9667662 DOI: 10.1186/s12870-022-03919-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The genus Seseli L., which consists of 125-140 species distributed in the Old World from western Europe and northwestern Africa to China and Japan, is one of the largest and most taxonomically difficult genera of Apiaceae Lindl. Although several previous studies have been conducted on Seseli based on limited morphological characteristics and molecular fragments, a robust and comprehensive phylogeny of Seseli remains elusive. Plastomes provide abundant genetic information and have been widely used in studying plant phylogeny and evolution. Consequently, we newly generated the complete plastomes of eleven Seseli taxa. We combined plastome data and morphological characteristics to investigate the phylogeny of Seseli. RESULTS In our study, we observed that the genome length, gene numbers, IR/SC borders, and repeat composition of the eleven Seseli plastomes were variable. Several appropriate mutation hotspot regions may be developed as candidate DNA barcodes for evolution, phylogeny, and species identification of Seseli. The phylogenetic results identified that Seseli was not a monophyletic group. Moreover, the eleven newly sequenced Seseli taxa did not cluster with S. tortuosum (the type species of Seseli, belonging to the tribe Selineae), where S. delavayi clustered with Eriocycla belonging to the tribe Echinophoreae and the other ten belonged to Selineae. The comparative plastome and morphological characteristics analyses confirmed the reliability of the phylogenetic analyses and implied the complex evolution of Seseli. CONCLUSION Combining molecular and morphological data is efficient and useful for studying the phylogeny of Seseli. We suggest that "a narrow sense" of Seseli will be meaningful for further study and the current taxonomic system of Seseli needs to be revised. In summary, our study can provide new insights into the phylogenetic relationships and taxonomic framework of Seseli.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huan-Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jia-Qing Lei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
39
|
Xie DF, Xie C, Ren T, Song BN, Zhou SD, He XJ. Plastid phylogenomic insights into relationships, divergence, and evolution of Apiales. PLANTA 2022; 256:117. [PMID: 36376499 DOI: 10.1007/s00425-022-04031-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Members of Apiales are monophyletic and radiated in the Late Cretaceous. Fruit morphologies are critical for Apiales evolution and negative selection and mutation pressure play important roles in environmental adaptation. Apiales include many foods, spices, medicinal, and ornamental plants, but the phylogenetic relationships, origin and divergence, and adaptive evolution remain poorly understood. Here, we reconstructed Apiales phylogeny based on 72 plastid genes from 280 species plastid genomes representing six of seven families of this order. Highly supported phylogenetic relationships were detected, which revealed that each family of Apiales is monophyletic and confirmed that Pennanticeae is a member of Apiales. Genera Centella and Dickinsia are members of Apiaceae, and the genus Hydrocotyle previously classified into Apiaceae is confirmed to belong to Araliaceae. Besides, coalescent phylogenetic analysis and gene trees cluster revealed ten genes that can be used for distinguishing species among families of Apiales. Molecular dating suggested that the Apiales originated during the mid-Cretaceous (109.51 Ma), with the families' radiation occurring in the Late Cretaceous. Apiaceae species exhibit higher differentiation compared to other families. Ancestral trait reconstruction suggested that fruit morphological evolution may be related to shifts in plant types (herbaceous or woody), which in turn is related to the distribution areas and species numbers. Codon bias and positive selection analyses suggest that negative selection and mutation pressure may play important roles in environmental adaptation of Apiales members. Our results improve the phylogenetic framework of Apiales and provide insights into the origin, divergence, and adaptive evolution of this order and its members.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Chuan Xie
- Sichuan Academy of Forestry, Chengdu, 610081, Sichuan, People's Republic of China
| | - Ting Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
40
|
Chu R, Xu X, Lu Z, Ma Y, Cheng H, Zhu S, Bakker FT, Schranz ME, Wei Z. Plastome-based phylogeny and biogeography of Lactuca L. (Asteraceae) support revised lettuce gene pool categories. FRONTIERS IN PLANT SCIENCE 2022; 13:978417. [PMID: 36311071 PMCID: PMC9597326 DOI: 10.3389/fpls.2022.978417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
This study generated and analyzed complete plastome and internal transcribed spacer (ITS) data of 46 Lactuca species, 13 African endemic (AE) Lactuca species, and 15 species from eight related genera in Lactucinae. The new plastome and nuclear ITS sequences were then used to reconstruct the phylogenetic relationships of Lactuca species. The whole-plastome data were used to estimate divergence time and ancestral area reconstruction of the identified major Lactuca lineages. The results showed that Lactuca species are generally similar in plastome size, Guanine and Cytosine (GC) content, gene structure, and categories, although crop lettuce (Lactuca sativa L.) and its gene pool relatives were found to have one unique pseudogene (ψ ndhF), and accD, atpF, cemA, clpP, and rpl22 showed signs of positive selection. Our phylogenomic analysis demonstrated that Lactuca is monophyletic after excluding Lactuca alatipes Collett and Hemsl and AE Lactuca species. AE Lactuca species are morphologically distinct from core Lactuca lineage and need to be excluded from Lactua. The core Lactuca species most likely originated from Asia-Temperate W ~6.82 Mya and then dispersed globally and formed nine clades. Finally, the lettuce gene pool concept was amended according to the phylogenetic and historical biogeographic analyses. This study revised the circumscription of Lactuca, revealed robust phylogenetic relationships within the genus, and provided insights into Lactucinae phylogeny. The lettuce gene pool species could be used as potential genetic resources for lettuce breeding.
Collapse
Affiliation(s)
- Ran Chu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuemin Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenwei Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yonggui Ma
- School of Life Sciences, Qinghai Normal University, Xining, China
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Qinghai Normal University, Xining, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Shixin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Freek T. Bakker
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - Zhen Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Zhang H, Zhang X, Sun Y, Landis JB, Li L, Hu G, Sun J, Tiamiyu BB, Kuang T, Deng T, Sun H, Wang H. Plastome phylogenomics and biogeography of the subfam. Polygonoideae (Polygonaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:893201. [PMID: 36275552 PMCID: PMC9581148 DOI: 10.3389/fpls.2022.893201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Polygonaceae has a complex taxonomic history, although a few studies using plastid or nuclear DNA fragments have explored relationships within this family, intrafamilial relationships remain controversial. Here, we newly sequenced and annotated 17 plastomes representing 12 genera within Polygonaceae. Combined with previously published data, a total of 49 plastomes representing 22/46 Polygonaceae genera and 16/20 Polygonoideae genera were collected to infer the phylogeny of Polygonaceae, with an emphasis on Polygonoideae. Plastome comparisons revealed high conservation within Polygonoideae in structure and gene order. Phylogenetic analyses using both Maximum Likelihood and Bayesian methods revealed two major clades and seven tribes within Polygonoideae. BEAST and S-DIVA analyses suggested a Paleocene origin of Polygonoideae in Asia. While most genera of Polygonoideae originated and further diversified in Asia, a few genera experienced multiple long-distance dispersal events from Eurasia to North America after the Miocene, with a few dispersal events to the Southern Hemisphere also being detected. Both ancient vicariance and long-distance events have played important roles in shaping the current distribution pattern of Polygonoideae.
Collapse
Affiliation(s)
- Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Jacob B. Landis
- Section of Plant Biology and the L.H. Bailey Hortorium, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, United States
| | - Lijuan Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Jiao Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bashir B. Tiamiyu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianhui Kuang
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
42
|
Yang L, Abduraimov O, Tojibaev K, Shomurodov K, Zhang YM, Li WJ. Analysis of complete chloroplast genome sequences and insight into the phylogenetic relationships of Ferula L. BMC Genomics 2022; 23:643. [PMID: 36076164 PMCID: PMC9461113 DOI: 10.1186/s12864-022-08868-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
Background Ferula L. is one of the largest and most taxonomically complicated genera as well as being an important medicinal plant resource in the family Apiaceae. To investigate the plastome features and phylogenetic relationships of Ferula and its neighboring genera Soranthus Ledeb., Schumannia Kuntze., and Talassia Korovin, we sequenced 14 complete plastomes of 12 species. Results The size of the 14 complete chloroplast genomes ranged from 165,607 to 167,013 base pairs (bp) encoding 132 distinct genes (87 protein-coding, 37 tRNA, and 8 rRNA genes), and showed a typical quadripartite structure with a pair of inverted repeats (IR) regions. Based on comparative analysis, we found that the 14 plastomes were similar in codon usage, repeat sequence, simple sequence repeats (SSRs), and IR borders, and had significant collinearity. Based on our phylogenetic analyses, Soranthus, Schumannia, and Talassia should be considered synonymous with Ferula. Six highly divergent regions (rps16/trnQ-UUG, trnS-UGA/psbZ, psbH/petB, ycf1/ndhF, rpl32, and ycf1) were also detected, which may represent potential molecular markers, and combined with selective pressure analysis, the weak positive selection gene ccsA may be a discriminating DNA barcode for Ferula species. Conclusion Plastids contain abundant informative sites for resolving phylogenetic relationships. Combined with previous studies, we suggest that there is still much room for improvement in the classification of Ferula. Overall, our study provides new insights into the plastome evolution, phylogeny, and taxonomy of this genus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08868-z.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 South Beijing Road, Urumqi, 830011, China.,Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, No.818 South Beijing Road, Urumqi, 830011, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Ozodbek Abduraimov
- Institute of Botany, Uzbekistan Academy of Sciences, No.32 Durmon Yuli Street, Tashkent, Uzbekistan, 100125
| | - Komiljon Tojibaev
- Institute of Botany, Uzbekistan Academy of Sciences, No.32 Durmon Yuli Street, Tashkent, Uzbekistan, 100125
| | - Khabibullo Shomurodov
- Institute of Botany, Uzbekistan Academy of Sciences, No.32 Durmon Yuli Street, Tashkent, Uzbekistan, 100125
| | - Yuan-Ming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 South Beijing Road, Urumqi, 830011, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, No.19(A) Yuquan Road, Beijing, 100049, China.,Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, No.818 South Beijing Road, Urumqi, 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 South Beijing Road, Urumqi, 830011, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, No.19(A) Yuquan Road, Beijing, 100049, China. .,Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, No.818 South Beijing Road, Urumqi, 830011, China. .,The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
43
|
Comparative Analysis of the Complete Chloroplast Genomes in Allium Section Bromatorrhiza Species (Amaryllidaceae): Phylogenetic Relationship and Adaptive Evolution. Genes (Basel) 2022; 13:genes13071279. [PMID: 35886061 PMCID: PMC9324613 DOI: 10.3390/genes13071279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/03/2022] Open
Abstract
With the development of molecular sequencing approaches, many taxonomic and phylogenetic problems of the genus Allium L. have been solved; however, the phylogenetic relationships of some subgenera or sections, such as section Bromatorrhiza, remain unresolved, which has greatly impeded our full understanding of the species relationships among the major clades of Allium. In this study, the complete chloroplast (cp) genomes of nine species in the Allium sect. Bromatorrhiza were determined using the Illumina paired-end sequencing, the NOVOPlasty de novo assembly strategy, and the PGA annotation method. The results showed that the cp genome exhibited high conservation and revealed a typical circular tetrad structure. Among the sect. Bromatorrhiza species, the gene content, SSRs, codon usage, and RNA editing site were similar. The genome structure and IR regions’ fluctuation were investigated while genes, CDSs, and non-coding regions were extracted for phylogeny reconstruction. Evolutionary rates (Ka/Ks values) were calculated, and positive selection analysis was further performed using the branch-site model. Five hypervariable regions were identified as candidate molecular markers for species authentication. A clear relationship among the sect. Bromatorrhiza species were detected based on concatenated genes and CDSs, respectively, which suggested that sect. Bromatorrhiza is monophyly. In addition, there were three genes with higher Ka/Ks values (rps2, ycf1, and ycf2), and four genes (rpoC2, atpF, atpI, and rpl14) were further revealed to own positive selected sites. These results provide new insights into the plastome component, phylogeny, and evolution of Allium species.
Collapse
|
44
|
Li QJ, Liu Y, Wang AH, Chen QF, Wang JM, Peng L, Yang Y. Plastome comparison and phylogenomics of Fagopyrum (Polygonaceae): insights into sequence differences between Fagopyrum and its related taxa. BMC PLANT BIOLOGY 2022; 22:339. [PMID: 35831794 PMCID: PMC9281083 DOI: 10.1186/s12870-022-03715-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/23/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Fagopyrum (Polygonaceae) is a small plant lineage comprised of more than fifteen economically and medicinally important species. However, the phylogenetic relationships of the genus are not well explored, and the characteristics of Fagopyrum chloroplast genomes (plastomes) remain poorly understood so far. It restricts the comprehension of species diversity in Fagopyrum. Therefore, a comparative plastome analysis and comprehensive phylogenomic analyses are required to reveal the taxonomic relationship among species of Fagopyrum. RESULTS In the current study, 12 plastomes were sequenced and assembled from eight species and two varieties of Fagopyrum. In the comparative analysis and phylogenetic analysis, eight previously published plastomes of Fagopyrum were also included. A total of 49 plastomes of other genera in Polygonaceae were retrieved from GenBank and used for comparative analysis with Fagopyrum. The variation of the Fagopyrum plastomes is mainly reflected in the size and boundaries of inverted repeat/single copy (IR/SC) regions. Fagopyrum is a relatively basal taxon in the phylogenomic framework of Polygonaceae comprising a relatively smaller plastome size (158,768-159,985 bp) than another genus of Polygonaceae (158,851-170,232 bp). A few genera of Polygonaceae have nested distribution of the IR/SC boundary variations. Although most species of Fagopyrum show the same IRb/SC boundary with species of Polygonaceae, only a few species show different IRa/SC boundaries. The phylogenomic analyses of Fagopyrum supported the cymosum and urophyllum groups and resolved the systematic position of subclades within the urophyllum group. Moreover, the repeat sequence types and numbers were found different between groups of Fagopyrum. The plastome sequence identity showed significant differences between intra-group and inter-group. CONCLUSIONS The deletions of intergenic regions cause a short length of Fagopyrum plastomes, which may be the main reason for plastome size diversity in Polygonaceae species. The phylogenomic reconstruction combined with the characteristics comparison of plastomes supports grouping within Fagopyrum. The outcome of these genome resources may facilitate the taxonomy, germplasm resources identification as well as plant breeding of Fagopyrum.
Collapse
Affiliation(s)
- Qiu-Jie Li
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yu Liu
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - An-Hu Wang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, 615013, China
| | - Qing-Fu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Jian-Mei Wang
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lu Peng
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
45
|
Wen J, Zhou W, Wu BC, Li HM, Song CF. The complete chloroplast genome of Hydrocotyle pseudoconferta Masamune 1932 (Araliaceae). Mitochondrial DNA B Resour 2022; 7:1199-1200. [PMID: 35814182 PMCID: PMC9262372 DOI: 10.1080/23802359.2022.2090292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrocotyle pseudoconferta was an important medicinal plant. The complete plastid genome of this species was reported for the first time. The full length of the complete chloroplast genome is 153,302 bp, with a typical quadripartite organization: a large single-copy (LSC) region of 84,417 bp, a small single-copy (SSC) region of 18,767 bp, and a pair inverted repeat regions (IRa and IRb) with 25,059 bp for each. The complete chloroplast genome of H. pseudoconferta encoded 133 genes, comprising 86 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and 2 pseudogenes. The phylogenetic analysis suggested the closest relationship between H. pseudoconferta and Hydrocotyle nepalensis.
Collapse
Affiliation(s)
- Jun Wen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Wei Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Bao-Cheng Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hui-Min Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Chun-Feng Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
46
|
Mehravi S, Ranjbar GA, Najafi-Zarrini H, Mirzaghaderi G, Hanifei M, Severn-Ellis AA, Edwards D, Batley J. Karyology and Genome Size Analyses of Iranian Endemic Pimpinella (Apiaceae) Species. FRONTIERS IN PLANT SCIENCE 2022; 13:898881. [PMID: 35783941 PMCID: PMC9240749 DOI: 10.3389/fpls.2022.898881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 05/09/2023]
Abstract
Pimpinella species are annual, biennial, and perennial semibushy aromatic plants cultivated for folk medicine, pharmaceuticals, food, and spices. The karyology and genome size of 17 populations of 16 different Pimpinella species collected from different locations in Iran were analyzed for inter-specific karyotypic and genome size variations. For karyological studies, root tips were squashed and painted with a DAPI solution (1 mg/ml). For flow cytometric measurements, fresh leaves of the standard reference (Solanum lycopersicum cv. Stupick, 2C DNA = 1.96 pg) and the Pimpinella samples were stained with propidium iodide. We identified two ploidy levels: diploid (2x) and tetraploid (4x), as well as five metaphase chromosomal counts of 18, 20, 22, 24, and 40. 2n = 24 is reported for the first time in the Pimpinella genus, and the presence of a B-chromosome is reported for one species. The nuclear DNA content ranged from 2C = 2.48 to 2C = 5.50 pg, along with a wide range of genome sizes between 1212.72 and 2689.50 Mbp. The average monoploid genome size and the average value of 2C DNA/chromosome were not proportional to ploidy. There were considerable positive correlations between 2C DNA and total chromatin length and total chromosomal volume. The present study results enable us to classify the genus Pimpinella with a high degree of morphological variation in Iran. In addition, cytological studies demonstrate karyotypic differences between P. anthriscoides and other species of Pimpinella, which may be utilized as a novel identification key to affiliate into a distinct, new genus - Pseudopimpinella.
Collapse
Affiliation(s)
- Shaghayegh Mehravi
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Department of Plant Breeding and Biotechnology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Gholam Ali Ranjbar
- Department of Plant Breeding and Biotechnology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hamid Najafi-Zarrini
- Department of Plant Breeding and Biotechnology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Kurdistan, Iran
| | - Mehrdad Hanifei
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
47
|
Joh HJ, Park HS, Kang JS, Park JY, Yang TJ. The complete plastid genome sequence of Peucedanum hakuunense Nakai (Apiaceae), an endemic and rare species in Korea. Mitochondrial DNA B Resour 2022; 7:766-768. [PMID: 35558174 PMCID: PMC9090427 DOI: 10.1080/23802359.2022.2069522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Peucedanum hakuunense Nakai is one of the rare species in the Korean Peninsula. This study characterized the complete plastid genome (plastome) sequence of P. hakuunense by de novo assembly with next-generation sequencing data. The complete plastome of P. hakuunense is 147,426 bp in length with a typical quadripartite structure comprising a large single-copy region of 91,915 bp, a small single-copy region of 17,425 bp, and two inverted repeat regions of 19,043 bp in length. The plastome of P. hakuunense is composed of 85 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. The phylogenetic analysis revealed that two Peucedanum species formed an independent subclade, sister to the subclade of Angelica species within the tribe Selineae.
Collapse
Affiliation(s)
- Ho Jun Joh
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Ren T, Xie D, Peng C, Gui L, Price M, Zhou S, He X. Molecular evolution and phylogenetic relationships of Ligusticum (Apiaceae) inferred from the whole plastome sequences. BMC Ecol Evol 2022; 22:55. [PMID: 35501703 PMCID: PMC9063207 DOI: 10.1186/s12862-022-02010-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Background The genus Ligusticum belongs to Apiaceae, and its taxonomy has long been a major difficulty. A robust phylogenetic tree is the basis of accurate taxonomic classification of Ligusticum. We herein used 26 (including 14 newly sequenced) plastome-scale data to generate reliable phylogenetic trees to explore the phylogenetic relationships of Chinese Ligusticum. Results We found that these plastid genomes exhibited diverse plastome characteristics across all four currently identified clades in China, while the plastid protein-coding genes were conserved. The phylogenetic analyses by the concatenation and coalescent methods obtained a more robust molecular phylogeny than prior studies and showed the non-monophyly of Chinese Ligusticum. In the concatenation-based phylogeny analyses, the two datasets yielded slightly different topologies that may be primarily due to the discrepancy in the number of variable sites. Conclusions Our plastid phylogenomics analyses emphasized that the current circumscription of the Chinese Ligusticum should be reduced, and the taxonomy of Ligusticum urgently needs revision. Wider taxon sampling including the related species of Ligusticum will be necessary to explore the phylogenetic relationships of this genus. Overall, our study provided new insights into the taxonomic classification of Ligusticum and would serve as a framework for future studies on taxonomy and delimitation of Ligusticum from the perspective of the plastid genome. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02010-z.
Collapse
|
49
|
Complete Chloroplast Genome of Cnidium monnieri (Apiaceae) and Comparisons with Other Tribe Selineae Species. DIVERSITY 2022. [DOI: 10.3390/d14050323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cnidium monnieri is an economically important traditional Chinese medicinal plant. In this study, the complete chloroplast (cp) genome of C. monnieri was determined using the Illumina paired-end sequencing, the GetOrganelle de novo assembly strategy, as well as the GeSeq annotation method. Our results showed that the cp genome was 147,371 bp in length with 37.4% GC content and included a large single-copy region (94,361 bp) and a small single-copy region (17,552 bp) separated by a pair of inverted repeat regions (17,729 bp). A total of 129 genes were contained in the cp genome, including 85 protein-coding genes, 36 tRNA genes, and eight rRNA genes. We also investigated codon usage, RNA editing, repeat sequences, simple sequence repeats (SSRs), IR boundaries, and pairwise Ka/Ks ratios. Four hypervariable regions (trnD-trnY-trnE-trnT, ycf2, ndhF-rpl32-trnL, and ycf1) were identified as candidate molecular markers for species authentication. The phylogenetic analyses supported non-monophyly of Cnidium and C. monnieri located in tribe Selineae based on the cp genome sequences and internal transcribed spacer (ITS) sequences. The incongruence of the phylogenetic position of C. monnieri between ITS and cpDNA phylogenies suggested that C. monnieri might have experienced complex evolutions with hybrid and incomplete lineage sorting. All in all, the results presented herein will provide plentiful chloroplast genomic resources for studies of the taxonomy, phylogeny, and species authentication of C. monnieri. Our study is also conducive to elucidating the phylogenetic relationships and taxonomic position of Cnidium.
Collapse
|
50
|
Li ZX, Guo XL, Price M, Zhou SD, He XJ. Phylogenetic position of Ligusticopsis (Apiaceae, Apioideae): evidence from molecular data and carpological characters. AOB PLANTS 2022; 14:plac008. [PMID: 35475242 PMCID: PMC9035215 DOI: 10.1093/aobpla/plac008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 03/02/2022] [Indexed: 05/13/2023]
Abstract
Ligusticopsis (Apiaceae, Apioideae) is now considered to have an East-Asia and Sino-Himalaya distribution. The genus was not recognized as a natural and separate genus and was treated as a synonym of Ligusticum both in Flora Reipublicae Popularis Sinicae and Flora of China since first established, though Pimenov et al. have made many taxonomic revisions to Ligusticopsis, phylogenetic relationships between Ligusticopsis and Ligusticum have been in dispute. Thirty-four plastomes and 35 nrITS from Apioideae were analysed by RAxML and MrBayes to reconstruct the phylogenetic relationships, along with carpology of 10 species and comparative analyses of 17 plastomes to investigate the evidence supporting the independence of Ligusticopsis. As a result, nine species suggested to be Ligusticopsis formed a highly supported monophyletic branch (Subclade A) inside Selineae both in maximum likelihood and Bayesian inference; the results of the comparative analyses further supported the monophyly of Subclade A, mainly in the location of genes at the IRa/LSC boundary, the sequence diversity exhibited by various genes (e.g. trnH-GUG-psbA and ycf2) and same codon biases in terminator TAA (relative synonymous codon usage = 1.75). Species in Subclade A also had shared characters in mericarps, combined with other characters of the plant, 'base clothed in fibrous remnant sheaths, pinnate bracts, pinnate bracteoles longer than rays of umbellule, mericarps strongly compressed dorsally, median and lateral ribs filiform or keeled, marginal ribs winged, and numerous vittae in commissure and each furrow' should be the most important and diagnostic characters of Ligusticopsis. Our phylogenetic trees and other analyses supported the previous taxonomic treatments of Pimenov et al. that Ligusticopsis should be a natural and separate genus rather than a synonym of Ligusticum.
Collapse
Affiliation(s)
- Zi-Xuan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Xian-Lin Guo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Megan Price
- Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Corresponding authors’ e-mail addresses: ;
| | - Xing-Jin He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Corresponding authors’ e-mail addresses: ;
| |
Collapse
|