1
|
Wang J, Xu W, Pu T, Zhang N, Song Y. Four new erythroneurine leafhopper species from karst areas in Southwestern China (Hemiptera, Cicadellidae, Typhlocybinae, Erythroneurini). Zookeys 2024; 1204:1-13. [PMID: 38873221 PMCID: PMC11167276 DOI: 10.3897/zookeys.1204.122042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/05/2024] [Indexed: 06/15/2024] Open
Abstract
Four new erythroneurine leafhopper species, Empoascanaraaparaoides Wang & Song, sp. nov., Motagamengyangensis Wang & Song, sp. nov., Motagaacicularis Wang & Song, sp. nov., and Tautoneuraqingxiuensis Wang & Song, sp. nov. from karst areas in Southwestern China, are described and illustrated.
Collapse
Affiliation(s)
- Jinqiu Wang
- School of Karst Science, Guizhou Normal University, Guizhou, Guiyang 550001, ChinaGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, ChinaState Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Wenming Xu
- School of Karst Science, Guizhou Normal University, Guizhou, Guiyang 550001, ChinaGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, ChinaState Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Tianyi Pu
- School of Karst Science, Guizhou Normal University, Guizhou, Guiyang 550001, ChinaGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, ChinaState Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Ni Zhang
- School of Karst Science, Guizhou Normal University, Guizhou, Guiyang 550001, ChinaGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, ChinaState Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University, Guizhou, Guiyang 550001, ChinaGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, ChinaState Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| |
Collapse
|
2
|
Sinaiko G, Cao Y, Dietrich CH. Phylogenomics of the leafhopper genus Neoaliturus Distant, 1918 (Hemiptera: Cicadellidae: Deltocephalinae) reveals genetically divergent lineages in the invasive beet leafhopper. Mol Phylogenet Evol 2024; 195:108071. [PMID: 38579933 DOI: 10.1016/j.ympev.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Phylogenomic analysis based on nucleotide sequences of 398 nuclear gene loci for 67 representatives of the leafhopper genus Neoaliturus yielded well-resolved estimates of relationships among species of the genus. Subgenus Neoaliturus (Neoaliturus) is consistently paraphyletic with respect to Neoaliturus (Circulifer). The analysis revealed the presence of at least ten genetically divergent clades among specimens consistent with the previous morphology-based definition of the leafhopper genus "Circulifer" which includes three previously recognized "species complexes." Specimens of the American beet leafhopper, N. tenellus (Baker), collected from the southwestern USA consistently group with one of these clades, comprising specimens from the eastern Mediterranean. Some of the remaining lineages are consistent with ecological differences previously observed among eastern Mediterranean populations and suggest that N. tenellus, as previously defined, comprises multiple monophyletic species, distinguishable by slight morphological differences.
Collapse
Affiliation(s)
- Guy Sinaiko
- School of Zoology, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| | - Yanghui Cao
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
3
|
Luo G, Pu T, Wang J, Ran W, Zhao Y, Dietrich CH, Li C, Song Y. Genetic differentiation and phylogeography of Erythroneurini (Hemiptera, Cicadellidae, Typhlocybinae) in the southwestern karst area of China. Ecol Evol 2024; 14:e11264. [PMID: 38606344 PMCID: PMC11007260 DOI: 10.1002/ece3.11264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Erythroneurini is the largest tribe of the microleafhopper subfamily Typhlocybinae. Most prior research on this tribe has focused on traditional classification, phylogeny, and control of agricultural pests, and the phylogeography of the group remains poorly understood. In this study, the mitochondrial genomes of 10 erythroneurine species were sequenced, and sequences of four genes were obtained for 12 geographical populations of Seriana bacilla. The new sequence data were combined with previously available mitochondrial DNA sequence data and analyzed using Bayesian and Maximum-Likelihood-based phylogenetic methods to elucidate relationships among genera and species and estimate divergence times. Seriana was shown to be derived from within Empoascanara. Phylogeographic and population genetic analysis of the endemic Chinese species Seriana bacilla suggest that the species diverged about 54.85 Mya (95% HPD: 20.76-66.23 million years) in the Paleogene period and that population divergence occurred within the last 14 million years. Ancestral area reconstruction indicates that Seriana bacilla may have originated in the central region of Guizhou, and geographical barriers are the main factors affecting gene flow among populations. Ecological niche modeling using the MaxEnt model suggests that the distribution of the species was more restricted in the past but is likely to expand in the future years 2050 and 2070.
Collapse
Affiliation(s)
- Guimei Luo
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous RegionGuiyang UniversityGuiyangGuizhouChina
- Illinois Natural History Survey, Prairie Research InstituteUniversity of IllinoisChampaignIllinoisUSA
| | - Tianyi Pu
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous RegionGuiyang UniversityGuiyangGuizhouChina
| | - Jinqiu Wang
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
| | - Weiwei Ran
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
| | - Yuanqi Zhao
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
| | - Christopher H. Dietrich
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
- Illinois Natural History Survey, Prairie Research InstituteUniversity of IllinoisChampaignIllinoisUSA
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous RegionGuiyang UniversityGuiyangGuizhouChina
| | - Yuehua Song
- School of Karst ScienceGuizhou Norml University/State Engineering Technology Institute for Karst Desertification ControlGuiyangGuizhouChina
| |
Collapse
|
4
|
Zhang N, Wang J, Pu T, Li C, Song Y. Two new species of Erythroneurini (Hemiptera, Cicadellidae, Typhlocybinae) from southern China based on morphology and complete mitogenomes. PeerJ 2024; 12:e16853. [PMID: 38344292 PMCID: PMC10859084 DOI: 10.7717/peerj.16853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Erythroneurine leafhoppers (Hemiptera, Cicadellidae, Typhlocybinae, Erythroneurini) are utilized to resolve the relationship between the four erythroneurine leafhopper (Hemiptera, Cicadellidae, Typhlocybinae, Erythroneurini): Arboridia (Arboridia) rongchangensis sp. nov., Thaia (Thaia) jiulongensis sp. nov., Mitjaevia bifurcata Luo, Song & Song, 2021 and Mitjaevia diana Luo, Song & Song, 2021, the two new species are described and illustrated. The mitochondrial gene sequences of these four species were determined to update the mitochondrial genome database of Erythroneurini. The mitochondrial genomes of four species shared high parallelism in nucleotide composition, base composition and gene order, comprising 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs) and an AT control region, which was consistent with majority of species in Cicadellidae; all genes revealed common trait of a positive AT skew and negative GC skew. The mitogenomes of four species were ultra-conservative in structure, and which isanalogous to that of others in size and A + T content. Phylogenetic trees based on the mitogenome data of these species and another 24 species were built employing the maximum likelihood and Bayesian inference methods. The results indicated that the four species belong to the tribe Erythroneurini, M. diana is the sister-group relationship of M. protuberanta + M. bifurcata. The two species Arboridia (Arboridia) rongchangensis sp. nov. and Thaia (Thaia) jiulongensis sp. nov. also have a relatively close genetic relationship with the genus Mitjaevia.
Collapse
Affiliation(s)
- Ni Zhang
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Jinqiu Wang
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Tianyi Pu
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region/Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| |
Collapse
|
5
|
Evangelou V, Lytra I, Krokida A, Antonatos S, Georgopoulou I, Milonas P, Papachristos DP. Insights into the Diversity and Population Structure of Predominant Typhlocybinae Species Existing in Vineyards in Greece. INSECTS 2023; 14:894. [PMID: 37999093 PMCID: PMC10672024 DOI: 10.3390/insects14110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Insects of the subfamily Typhlocybinae (Hemiptera: Cicadellidae) are pests of economically important agricultural and horticultural crops. They damage the plants directly or indirectly by transmitting plant pathogens, resulting in significant yield loss. Several leafhoppers of this subfamily use vines as hosts. Accurate and rapid identification is the key to their successful management. The aim of this study is to determine the Typhlocybinae species that exist in vineyards all over Greece and investigate the relationship between them. For this purpose, yellow sticky traps were placed, morphological and molecular data were collected, and phylogenetic models were analyzed. The mitochondrial marker Cytochrome Oxidase Subunit I (mtCOI) was applied for the DNA and phylogenetic analysis. The combination of morphological and molecular data resulted in identifying the existence of six different species all over Greece: Arboridia adanae, Asymmetrasca decedens, Hebata decipiens, Hebata vitis, Jacobiasca lybica and Zygina rhamni. Forty-eight different haplotypes were found to exist in the different regions of the country.
Collapse
Affiliation(s)
- Vasiliki Evangelou
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 Stefanou Delta Str., Kifissia, 14561 Athens, Greece; (I.L.); (A.K.); (S.A.); (I.G.); (P.M.); (D.P.P.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Zhou X, Lei Y, Dietrich CH, Huang M. Investigating Monophyly of Typhlocybini Based on Complete Mitochondrial Genomes with Characterization and Comparative Analysis of 19 Species (Hemiptera: Cicadellidae: Typhlocybinae). INSECTS 2023; 14:842. [PMID: 37999041 PMCID: PMC10671860 DOI: 10.3390/insects14110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Tribes of the leafhopper subfamily Typhlocybinae have traditionally been defined based on differences in forewing and hindwing venation. Except for Typhlocybini (sensu lato), the classification of tribes is relatively stable. The monophyly of Typhlocybini needs to be examined, and the relationships among genera within Typhlocybini have not been resolved. Few mitogenome sequences representative of major lineages of Typhlocybini have been available to facilitate a comprehensive phylogenetic analysis of the tribe. In this study, the complete mitogenomes of 19 species of Typhlocybini were sequenced. The gene arrangements of the 19 new mitogenomes are consistent with ancestral insect mitogenomes. Phylogenetic analyses by both maximum-likelihood and Bayesian methods of 67 species of Typhlocybinae suggest that Zyginellini is paraphyletic with respect to Typhlocybini. The phylogenetic relationships within Typhlocybini are discussed, and the major results show that the Farynala and Linnavuoriana complexes previously recognized based on morphological characters correspond to monophyletic lineages.
Collapse
Affiliation(s)
- Xian Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (X.Z.); (Y.L.)
| | - Yuejie Lei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (X.Z.); (Y.L.)
| | - Christopher H. Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 S. Oak St., Champaign, IL 61820, USA;
| | - Min Huang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (X.Z.); (Y.L.)
| |
Collapse
|
7
|
Zhang C, Mao B, Wang H, Dai L, Huang Y, Chen Z, Huang J. The Complete Mitogenomes of Three Grasshopper Species with Special Notes on the Phylogenetic Positions of Some Related Genera. INSECTS 2023; 14:85. [PMID: 36662013 PMCID: PMC9865218 DOI: 10.3390/insects14010085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Clarifying phylogenetic position and reconstructing robust phylogeny of groups using various evidences are an eternal theme for taxonomy and systematics. In this study, the complete mitogenomes of Longzhouacris mirabilis, Ranacris albicornis, and Conophyma zhaosuensis were sequenced using next-generation sequencing (NGS), and the characteristics of the mitogenomes are presented briefly. The mitogenomes of the three species are all circular molecules with total lengths of 16,164 bp, 15,720 bp, and 16,190 bp, respectively. The gene structures and orders, as well as the characteristics of the mitogenomes, are similar to those of other published mitogenomes in Caelifera. The phylogeny of the main subfamilies of Acrididae with prosternal process was reconstructed using a selected dataset of mitogenome sequences under maximum likelihood (ML) and Bayesian inference (BI) frameworks. The results showed that the genus Emeiacris consistently fell into the subfamily Melanoplinae rather than Oxyinae, and the genus Choroedocus had the closest relationship with Shirackiacris of the subfamily Eyprepocnemidinae in both phylogenetic trees deduced from mitogenome protein coding genes (PCGs). This finding is entirely consistent with the morphological characters, which indicate that Emeiacris belongs to Melanoplinae and Choroedocus belongs to Eyprepocnemidinae. In addition, the genera Conophymacris and Xiangelilacris, as well as Ranacris and Menglacris, are two pairs of the closest relatives, but their phylogenetic positions need further study to clarify.
Collapse
Affiliation(s)
- Chulin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha 410004, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Benyong Mao
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Hanqiang Wang
- Shanghai Entomological Museum, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li Dai
- Shanghai Entomological Museum, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Zhilin Chen
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541004, China
| | - Jianhua Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha 410004, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
8
|
Wen H, Zhou X, Dietrich CH, Huang M. Morphometric analysis of forewing venation does not consistently differentiate the leafhopper tribes Typhlocybini and Zyginellini. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1003817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tribes of the leafhopper subfamily Typhlocybinae have traditionally been defined based on differences in hind wing venation, but the forewing venation also differs among some tribes. Here we used geometric morphometric analysis to determine whether previously recognized tribes can be distinguished based on the configuration of forewing veins. Focusing on the apical area of the male right forewing, 76 semi-landmarks in six curves corresponding to individual wing veins were measured for representatives of four previously recognized tribes and the data were analyzed using principal component analysis (PCA), canonical variable analysis (CVA), and UPGMA clustering analysis. The study showed that differences in the apical area of the forewing mainly occur in RP, MP′, and MP″ + CuA′. PCA, CVA, and cluster analysis showed three distinct clusters representing tribes Empoascini, Erythroneurini, and Typhlocybini (sensu lato) but failed to distinguish Typhlocybini (sensu stricto) from Zyginellini, which has been considered as either separate tribe or a synonym of Typhlocybini by recent authors. The results show that the forewing venation differs among tribes of Typhlocybinae, but also agree with recent molecular phylogenetic analyses, indicating that Zyginellini is derived from within Typhlocybini.
Collapse
|
9
|
Yan B, Dietrich CH, Yu X, Jiao M, Dai R, Yang M. Mitogenomic phylogeny of Typhlocybinae (Hemiptera: Cicadellidae) reveals homoplasy in tribal diagnostic morphological traits. Ecol Evol 2022; 12:e8982. [PMID: 35784083 PMCID: PMC9170537 DOI: 10.1002/ece3.8982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
The subfamily Typhlocybinae is a ubiquitous, highly diverse group of mostly tiny, delicate leafhoppers. The tribal classification has long been controversial and phylogenetic methods have only recently begun to test the phylogenetic status and relationships of tribes. To shed light on the evolution of Typhlocybinae, we performed phylogenetic analyses based on 28 newly sequenced and 19 previously sequenced mitochondrial genomes representing all currently recognized tribes. The results support the monophyly of the subfamily and its sister-group relationship to Mileewinae. The tribe Zyginellini is polyphyletic with some included genera derived independently within Typhlocybini. Ancestral character state reconstruction suggests that some morphological characters traditionally considered important for diagnosing tribes (presence/absence of ocelli, development of hind wing submarginal vein) are homoplastic. Divergence time estimates indicate that the subfamily arose during the Middle Cretaceous and that the extant tribes arose during the Late Cretaceous. Phylogenetic results support establishment of a new genus, Subtilissimia Yan & Yang gen. nov., with two new species, Subtilissimia fulva Yan & Yang sp. nov. and Subtilissimia pellicula Yan & Yang sp. nov.; but indicate that two previously recognized species of Farynala distinguished only by the direction of curvature of the processes of the aedeagus are synonyms, that is, Farynala dextra Yan & Yang, 2017 equals Farynala sinistra Yan & Yang, 2017 syn. nov. A key to tribes of Typhlocybinae is provided.
Collapse
Affiliation(s)
- Bin Yan
- Institute of Entomology Guizhou University Guiyang Guizhou China
| | | | | | - Meng Jiao
- Institute of Entomology Guizhou University Guiyang Guizhou China
- Illinois Natural History Survey Prairie Research Institute University of Illinois Champaign Illinois USA
| | - Renhuai Dai
- Institute of Entomology Guizhou University Guiyang Guizhou China
| | - Maofa Yang
- Institute of Entomology Guizhou University Guiyang Guizhou China
- Shandong Museum Jinan Shandong China
| |
Collapse
|