1
|
Bartáková V, Bryjová A, Polačik M, Alila DO, Nagy B, Watters B, Bellstedt D, Blažek R, Žák J, Reichard M. Phylogenomics and population genomics of Nothobranchius in lowland Tanzania: species delimitation and comparative genetic structure. Mol Phylogenet Evol 2025; 208:108357. [PMID: 40254113 DOI: 10.1016/j.ympev.2025.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
Annual killifishes of the genus Nothobranchius are widespread across East Africa, with a particularly high biodiversity in lowland Tanzania. While they are typically found in ephemeral pools, the pools vary greatly in size, connectivity and inundation patterns. It was previously suggested that main river channels formed significant barriers to Nothobranchius dispersal. Here, we study the distribution of genetic lineages in an equatorial part of their range where main river channels that may act as barriers occur and closely related lineages frequently coexist in secondary contact zones. We used single-nucleotide polymorphism (SNP) dataset from double-digest restriction site-associated DNA (ddRAD) sequencing to investigate how genetic diversity is structured in Nothobranchius species from the coastal lowlands of Tanzania. Our analyses resolved some uncertain phylogenetic relationships within the N. melanospilus and N. guentheri species groups and placed N. flammicomantis outside the Coastal clade. Rather than a shared intraspecific genetic diversity pattern across four coexisting and widely distributed species, we found highly diverse patterns of intra-specific genetic structure among N. eggersi, N. janpapi, N. melanospilus and N. ocellatus. Populations of Nothobranchius species from the humid coastal lowlands of Tanzania are therefore structured, but not constrained by barriers formed by river channels or by basins - in contrast to Nothobranchius species from the dry part of their distribution. Some of the genetic relationships determined call for a re-evaluation of taxonomic delimitations.
Collapse
Affiliation(s)
- Veronika Bartáková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Anna Bryjová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Matej Polačik
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - David O Alila
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution, and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79 CH-6047 Kastanienbaum, Switzerland; Division of Aquatic Ecology and Evolution, Institute of Ecology & Evolution, University of Bern 3012 Bern, Switzerland; Department of Biological Sciences, Mkwawa University College of Education, University of Dar es salaam, P.O Box 2513 Iringa, Tanzania
| | - Béla Nagy
- 30, rue du Mont Ussy 77300 Fontainebleau, France
| | - Brian Watters
- 6141 Parkwood Drive, Nanaimo, British Columbia V9T6A2, Canada
| | - Dirk Bellstedt
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Radim Blažek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jakub Žák
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic; University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| |
Collapse
|
2
|
Šumbera R, Uhrová M, Montoya-Sanhueza G, Bryjová A, Bennett NC, Mikula O. Genetic diversity of the largest African mole-rat genus, Bathyergus. One, two or four species? Mol Phylogenet Evol 2024; 199:108157. [PMID: 39029550 DOI: 10.1016/j.ympev.2024.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Recent advances in sequencing technology and phylogenetic methods allow us to solve puzzling taxonomic questions using detailed analyses of genetic diversity of populations and gene flow between them. The genus of solitary-living dune mole-rat, Bathyergus, is quite unique among six genera of African mole-rats. The animals are by far the largest and the only scratch digging mole-rat genus possessing a skull less adapted to digging, grooved upper incisors, and more surface locomotor activity. Most authors recognize two species of dune mole-rats, B. suillus and B. janetta, but according to others, the genus is monotypic. In addition, recent molecular studies have revealed cryptic genetic diversity and suggested the existence of up to four species. In our study, we used mitochondrial and genome-wide nuclear data collected throughout the distribution of the genus to investigate the number of species. In agreement with previous studies, we found Bathyergus to be differentiated into several distinct lineages, but we also found evidence for a degree of gene flow between some of them. Furthermore, we confirmed that B. janetta is nested within B. suillus, making the latter paraphyletic and we documented an instance of local mitochondrial introgression between these two nominal species. Phylogeographic structure of the genus was found to be very shallow. Although traditionally dated to the Miocene, we found the first split within the genus to be much younger estimated to 0.82 Ma before present. Genealogical distinctiveness of some lineages was very low, and the coancestry matrix showed extensive sharing of closely related haplotypes throughout the genus. Accordingly, Infomap clustering on the matrix showed all populations to form a single cluster. Overall, our study tends to support the existence of only one species of Bathyergus namely, B. suillus. Environmental niche modelling confirmed its dependence on sandy soils and the preference for soils with relatively high carbon content. Bayesian skyline plots indicate recent population decline in the janetta lineage, probably related to global environmental change.
Collapse
Affiliation(s)
- R Šumbera
- Department of Zoology, Faculty of Sciences, University of South Bohemia in České Budějovice, Czech Republic.
| | - M Uhrová
- Department of Zoology, Faculty of Sciences, University of South Bohemia in České Budějovice, Czech Republic
| | - G Montoya-Sanhueza
- Department of Zoology, Faculty of Sciences, University of South Bohemia in České Budějovice, Czech Republic; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile (UACh), Valdivia, Chile
| | - A Bryjová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - N C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - O Mikula
- Department of Zoology, Faculty of Sciences, University of South Bohemia in České Budějovice, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
3
|
Montoya‐Sanhueza G, Bennett NC, Šumbera R. Functional and morphological divergence in the forelimb musculoskeletal system of scratch-digging subterranean mammals (Rodentia: Bathyergidae). J Anat 2024; 245:420-450. [PMID: 38760952 PMCID: PMC11306765 DOI: 10.1111/joa.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024] Open
Abstract
Whether the forelimb-digging apparatus of tooth-digging subterranean mammals has similar levels of specialization as compared to scratch-diggers is still unknown. We assessed the scapular morphology and forelimb musculature of all four solitary African mole rats (Bathyergidae): two scratch-diggers, Bathyergus suillus and Bathyergus janetta, and two chisel-tooth diggers, Heliophobius argenteocinereus and Georychus capensis. Remarkable differences were detected: Bathyergus have more robust neck, shoulder, and forearm muscles as compared to the other genera. Some muscles in Bathyergus were also fused and often showing wider attachment areas to bones, which correlate well with its more robust and larger scapula, and its wider and medially oriented olecranon. This suggests that shoulder, elbow, and wrist work in synergy in Bathyergus for generating greater out-forces and that the scapula and proximal ulna play fundamental roles as pivots to maximize and accommodate specialized muscles for better (i) glenohumeral and scapular stabilization, (ii) powerful shoulder flexion, (iii) extension of the elbow and (iv) flexion of the manus and digits. Moreover, although all bathyergids showed a similar set of muscles, Heliophobius lacked the m. tensor fasciae antebrachii (aiding with elbow extension and humeral retraction), and Heliophobius and Georychus lacked the m. articularis humeri (aiding with humeral adduction), indicating deeper morphogenetic differences among digging groups and suggesting a relatively less specialized scratch-digging ability. Nevertheless, Heliophobius and Bathyergus shared some similar adaptations allowing scratch-digging. Our results provide new information about the morphological divergence within this family associated with the specialization to distinct functions and digging behaviors, thus contributing to understand the mosaic of adaptations emerging in phylogenetically and ecologically closer subterranean taxa. This and previous anatomical studies on the Bathyergidae will provide researchers with a substantial basis on the form and function of the musculoskeletal system for future kinematic investigations of digging behavior, as well as to define potential indicators of scratch-digging ability.
Collapse
Affiliation(s)
- Germán Montoya‐Sanhueza
- Department of Zoology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| | - Radim Šumbera
- Department of Zoology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| |
Collapse
|
4
|
Šumbera R, Uhrová M, Begall S, Caspar KR, Jerkovičová D, Van Daele P, Chitaukali WN, Faulkes CG, Bennett NC, Johannes C, Burda H, Mikula O. The biology of an isolated Mashona mole-rat population from southern Malawi, with implications for the diversity and biogeography of the genus Fukomys. ORG DIVERS EVOL 2023. [DOI: 10.1007/s13127-023-00604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
AbstractThe Mashona mole-rat, Fukomys darlingi (Thomas, 1895), is a little studied social African mole-rat (Bathyergidae) from south-astern Africa. Here, we present an integrative study characterizing the genetic diversity of populations assigned to F. darlingi with special focus on animals from Nsanje, southern Malawi. These mole-rats show pronounced differences in body mass and general appearance compared to nominate F. darlingi from Zimbabwe and Mozambique, but their taxonomic status has so far remained unclear. A genetic analysis encompassing all major lineages of the genus Fukomys suggests that this population indeed represents a deeply nested lineage within the F. darlingi clade. The karyotype of the Nsanje mole-rats also corresponds to that of the nominate form, being 2n = 54. While both nuclear and mitochondrial data agree about the assignment of the Nsanje mole-rats to F. darlingi, our analyses revealed substantial mitonuclear discordance for other branches within the Fukomys phylogenetic tree. Nsanje mole-rats are significantly larger than nominate F. darlingi and their ontogeny and reproduction closely resemble similar-sized congeneric species rather than the nominate population. The somatic growth of the Nsanje form is the slowest of all African mole-rats. The maximum life span of F. darlingi is at least 19 years. The observed differences between nominate F. darlingi and mole-rats from Nsanje may be attributed mainly to their different body mass. Our study highlights the advantages of an integrative approach for understanding the diversity of African mole-rats and emphasizes the great intraspecific variability that may be encountered in these underground-dwelling rodents.
Collapse
|
5
|
Dianat M, Voet I, Ortiz D, Goüy de Bellocq J, Cuypers LN, Kryštufek B, Bureš M, Čížková D, Bryjová A, Bryja J, Nicolas V, Konečný A. Cryptic diversity of Crocidura shrews in the savannahs of Eastern and Southern Africa. Mol Phylogenet Evol 2023; 180:107708. [PMID: 36657626 DOI: 10.1016/j.ympev.2023.107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Crocidura (Eulipotyphla, Soricidae) is the most species-rich genus among mammals, with high cryptic diversity and complicated taxonomy. The hirta-flavescens group of Crocidura represents the most abundant and widespread shrews in savannahs of eastern and southern Africa, making them a suitable phylogeographical model for assessing the role of paleoclimatic changes on current biodiversity in open African habitats. We present the first comprehensive study on the phylogeography, evolutionary history, geographical distribution, systematics, and taxonomy of the group, using the integration of mitochondrial, genome-wide (ddRAD sequencing), morphological and morphometrical data collected from specimens over most of the known geographic distribution. Our genomic data confirmed the monophyly of this group and its sister relationship with the olivieri group of Crocidura. There is a substantial genetic variation within the hirta-flavescens group, with three highly supported clades showing parapatric distribution and which can be distinguished morphologically: C. hirta, distributed in both the Zambezian and Somali-Masai bioregions, C. flavescens, known from South Africa and south-western Zambia, and C. cf. flavescens, which is known to occur only in central and western Tanzania. Morphometric data revealed relatively minor differences between C. hirta and C. cf. flavescens, but they differ in the colouration of the pelage. Diversification of the hirta-flavescens group has most likely happened during phases of grassland expansion and contraction during Plio-Pleistocene climatic cycles. Eastern African Rift system, rivers, and the distinctiveness of Zambezian and Somali-Masai bioregions seem to have also shaped the pattern of their diversity, which is very similar to sympatric rodent species living in open habitats. Finally, we review the group's taxonomy and propose to revalidate C. bloyeti, currently a synonym of C. hirta, including the specimens treated as C. cf. flavescens.
Collapse
Affiliation(s)
- Malahat Dianat
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.
| | - Inessa Voet
- Institut de Systematique, Evolution, Biodiversite (ISYEB), Museum national d'Histoire naturelle, CNRS, Sorbonne Universite, EPHE, Universite des Antilles, CP51, 75005 Paris, France
| | - David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Joëlle Goüy de Bellocq
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic
| | - Laura N Cuypers
- Evolutionary Ecology Group, Department of Biology, University of Antwerp,Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Michal Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Dagmar Čížková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic
| | - Anna Bryjová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Violaine Nicolas
- Institut de Systematique, Evolution, Biodiversite (ISYEB), Museum national d'Histoire naturelle, CNRS, Sorbonne Universite, EPHE, Universite des Antilles, CP51, 75005 Paris, France
| | - Adam Konečný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
6
|
Historical demography and climatic niches of the Natal multimammate mouse (Mastomys natalensis) in the Zambezian region. Mamm Biol 2023. [DOI: 10.1007/s42991-023-00346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
AbstractThe Natal multimammate mouse (Mastomys natalensis) is the most widespread rodent species in sub-Saharan Africa, often studied as an agricultural pest and reservoir of viruses. Its mitochondrial (Mt) phylogeny revealed six major lineages parapatrically distributed across open habitats of sub-Saharan Africa. In this study we used 1949 sequences of the mitochondrial cytochrome b gene to elaborate on distribution and evolutionary history of three Mt lineages inhabiting the open habitats of the Zambezian region (corresponding roughly to the African savannas south of the Equator). We describe in more detail contact zones between the lineages—their location and extent of co-occurrence within localities—and infer past population trends. The estimates are interpreted in the light of climatic niche models. The lineages underwent reduction in effective population size during the last glacial, but they spread widely after that: two of them after the last glacial maximum and the last one in mid-Holocene. The centers of expansion, i.e., possible long-term savanna refugia, were estimated to lie close to the Eastern Arc Mountains and lakes of the Great African Rift, geomorphological structures likely to have had long-term influence on geographical distribution of the lineages. Environmental niche modeling shows climate could also affect the broad scale distribution of the lineages but is unlikely to explain the narrow width of the contact zones. The intraspecific Mt differentiation of M. natalensis echoes phylogeographic patterns observed in multiple co-distributed mammal species, which suggests the mammal communities in the region are shaped by the same long-term processes.
Collapse
|
7
|
Montoya-Sanhueza G, Bennett NC, Chinsamy A, Šumbera R. Functional anatomy and disparity of the postcranial skeleton of African mole-rats (Bathyergidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.857474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The burrowing adaptations of the appendicular system of African mole-rats (Bathyergidae) have been comparatively less investigated than their cranial adaptations. Because bathyergids exhibit different digging modes (scratch-digging and chisel-tooth digging) and social systems (from solitary to highly social), they are a unique group to assess the effects of distinct biomechanical regimes and social organization on morphology. We investigated the morphological diversity and intraspecific variation of the appendicular system of a large dataset of mole-rats (n = 244) including seven species and all six bathyergid genera. Seventeen morpho-functional indices from stylopodial (femur, humerus) and zeugopodial (ulna, tibia-fibula) elements were analyzed with multivariate analysis. We hypothesized that scratch-diggers (i.e., Bathyergus) would exhibit a more specialized skeletal phenotype favoring powerful forelimb digging as compared to the chisel-tooth diggers, and that among chisel-tooth diggers, the social taxa will exhibit decreased limb bone specializations as compared to solitary taxa due to colony members sharing the costs of digging. Our results show that most bathyergids have highly specialized fossorial traits, although such specializations were not more developed in Bathyergus (or solitary species), as predicted. Most chisel tooth-diggers are equally, or more specialized than scratch-diggers. Heterocephalus glaber contrasted significantly from other bathyergids, presenting a surprisingly less specialized fossorial morphology. Our data suggests that despite our expectations, chisel-tooth diggers have a suite of appendicular adaptations that have allowed them to maximize different aspects of burrowing, including shoulder and neck support for forward force production, transport and removal of soils out of the burrow, and bidirectional locomotion. It is probably that both postcranial and cranial adaptations in bathyergids have played an important role in the successful colonization of a wide range of habitats and soil conditions within their present distribution.
Collapse
|
8
|
Kraus A, Lövy M, Mikula O, Okrouhlík J, Bennett NC, Herrel A, Šumbera R. Bite force in the strictly subterranean rodent family of African mole‐rats (Bathyergidae): the role of digging mode, social organisation, and ecology. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Kraus
- Department of Zoology, Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Matěj Lövy
- Department of Zoology, Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Ondřej Mikula
- Department of Zoology, Faculty of Science University of South Bohemia České Budějovice Czech Republic
- Institute of Vertebrate Biology of the Czech Academy of Sciences Brno Czech Republic
| | - Jan Okrouhlík
- Department of Zoology, Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Nigel C. Bennett
- Department of Zoology and Entomology Mammal Research Institute, University of Pretoria Pretoria South Africa
| | - Anthony Herrel
- Département Adaptations du Vivant UMR 7179 MECADEV C.N.R.S/M.N.H.N., Bâtiment d’Anatomie Comparée Paris France
| | - Radim Šumbera
- Department of Zoology, Faculty of Science University of South Bohemia České Budějovice Czech Republic
| |
Collapse
|
9
|
Montoya-Sanhueza G, Šaffa G, Šumbera R, Chinsamy A, Jarvis JUM, Bennett NC. Fossorial adaptations in African mole-rats (Bathyergidae) and the unique appendicular phenotype of naked mole-rats. Commun Biol 2022; 5:526. [PMID: 35650336 PMCID: PMC9159980 DOI: 10.1038/s42003-022-03480-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Life underground has constrained the evolution of subterranean mammals to maximize digging performance. However, the mechanisms modulating morphological change and development of fossorial adaptations in such taxa are still poorly known. We assessed the morpho-functional diversity and early postnatal development of fossorial adaptations (bone superstructures) in the appendicular system of the African mole-rats (Bathyergidae), a highly specialized subterranean rodent family. Although bathyergids can use claws or incisors for digging, all genera presented highly specialized bone superstructures associated with scratch-digging behavior. Surprisingly, Heterocephalus glaber differed substantially from other bathyergids, and from fossorial mammals by possessing a less specialized humerus, tibia and fibula. Our data suggest strong functional and developmental constraints driving the selection of limb specializations in most bathyergids, but more relaxed pressures acting on the limbs of H. glaber. A combination of historical, developmental and ecological factors in Heterocephalus are hypothesized to have played important roles in shaping its appendicular phenotype.
Collapse
Affiliation(s)
- Germán Montoya-Sanhueza
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic.
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa.
| | - Gabriel Šaffa
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa
| | - Jennifer U M Jarvis
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Cuypers LN, Sabuni C, Šumbera R, Aghová T, Lišková E, Leirs H, Baird SJE, Goüy de Bellocq J, Bryja J. Biogeographical Importance of the Livingstone Mountains in Southern Tanzania: Comparative Genetic Structure of Small Non-volant Mammals. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.742851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Livingstone Mountains (LM; also known as the Kipengere Range) found in south-western Tanzania at the northern end of Lake Nyasa are an important region for understanding the biogeography of Eastern Africa. The two branches of the East African Rift Valley meet here and the mountains might represent stepping stones for colonization and migration between different parts of the Eastern Afromontane Biodiversity Hotspot (especially the link between the Eastern Arc Mountains, EAM, and the Southern Rift Mountains, SRM), as well as an efficient barrier to gene flow for taxa living in drier savannahs in lower elevations. Here we combine new mitochondrial sequence data from 610 recently sampled rodents and shrews with available georeferenced genetic data (3538 specimens) from southern Tanzania, northern Malawi/Zambia and northern Mozambique and compare the spatial genetic structure among different taxa. There is no universal phylogeographic pattern in taxa preferring humid montane habitats. For some of them, the Makambako Gap acts as a barrier between the SRM and the EAM, but other taxa can bridge this gap. Barriers within the EAM (frequently) and within the SRM (sometimes) appear more important. The Rukwa rift between the SRM and the ARM is an important barrier that perhaps can only be crossed by taxa that are not that strictly tied to humid montane environments. For mammals living in lower-elevation savannah-like habitats, the LM can act as a strict barrier to gene flow, and together with the Ufipa Plateau, Lake Nyasa and the EAM create a very similar phylogeographic pattern with three recognizable genetic groups in most savannah-dwellers. The Livingstone Mountains thus appear to be one of the most important biogeographic crossroads in Eastern Africa.
Collapse
|