1
|
Wang J, Kan S, Kong J, Nie L, Fan W, Ren Y, Reeve W, Mower JP, Wu Z. Accumulation of Large Lineage-Specific Repeats Coincides with Sequence Acceleration and Structural Rearrangement in Plantago Plastomes. Genome Biol Evol 2024; 16:evae177. [PMID: 39190481 PMCID: PMC11354287 DOI: 10.1093/gbe/evae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Repeats can mediate rearrangements and recombination in plant mitochondrial genomes and plastid genomes. While repeat accumulations are linked to heightened evolutionary rates and complex structures in specific lineages, debates persist regarding the extent of their influence on sequence and structural evolution. In this study, 75 Plantago plastomes were analyzed to investigate the relationships between repeats, nucleotide substitution rates, and structural variations. Extensive repeat accumulations were associated with significant rearrangements and inversions in the large inverted repeats (IRs), suggesting that repeats contribute to rearrangement hotspots. Repeats caused infrequent recombination that potentially led to substoichiometric shifting, supported by long-read sequencing. Repeats were implicated in elevating evolutionary rates by facilitating localized hypermutation, likely through DNA damage and repair processes. This study also observed a decrease in nucleotide substitution rates for loci translocating into IRs, supporting the role of biased gene conversion in maintaining lower substitution rates. Combined with known parallel changes in mitogenomes, it is proposed that potential dysfunction in nuclear-encoded genes associated with DNA replication, recombination, and repair may drive the evolution of Plantago organellar genomes. These findings contribute to understanding how repeats impact organellar evolution and stability, particularly in rapidly evolving plant lineages.
Collapse
Affiliation(s)
- Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Marine College, Shandong University, Weihai 264209, China
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Weishu Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Wayne Reeve
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
2
|
Zwonitzer KD, Tressel LG, Wu Z, Kan S, Broz AK, Mower JP, Ruhlman TA, Jansen RK, Sloan DB, Havird JC. Genome copy number predicts extreme evolutionary rate variation in plant mitochondrial DNA. Proc Natl Acad Sci U S A 2024; 121:e2317240121. [PMID: 38427600 PMCID: PMC10927533 DOI: 10.1073/pnas.2317240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages. The mechanisms responsible for this acceleration are generally unknown. Because plants rely on homologous recombination to repair mtDNA damage, we hypothesized that mtDNA copy numbers may predict evolutionary rates, as lower copy numbers may provide fewer templates for such repair mechanisms. In support of this hypothesis, we found that copy number explains 47% of the variation in synonymous substitution rates of mtDNA across 60 diverse seed plant species representing ~300 million years of evolution. Copy number was also negatively correlated with mitogenome size, which may be a cause or consequence of mutation rate variation. Both relationships were unique to mtDNA and not observed in plastid DNA. These results suggest that homologous recombinational repair plays a role in driving mtDNA substitution rates in plants and may explain variation in mtDNA evolution more broadly across eukaryotes. Our findings also contribute to broader questions about the relationships between mutation rates, genome size, selection efficiency, and the drift-barrier hypothesis.
Collapse
Affiliation(s)
- Kendra D. Zwonitzer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Lydia G. Tressel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
- Marine College, Shandong University, Weihai264209, China
| | - Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Jeffrey P. Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE68588
| | - Tracey A. Ruhlman
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Robert K. Jansen
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Justin C. Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
3
|
Kang JS, Giang VNL, Park HS, Park YS, Cho W, Nguyen VB, Shim H, Waminal NE, Park JY, Kim HH, Yang TJ. Evolution of the Araliaceae family involved rapid diversification of the Asian Palmate group and Hydrocotyle specific mutational pressure. Sci Rep 2023; 13:22325. [PMID: 38102332 PMCID: PMC10724125 DOI: 10.1038/s41598-023-49830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
The Araliaceae contain many valuable species in medicinal and industrial aspects. We performed intensive phylogenomics using the plastid genome (plastome) and 45S nuclear ribosomal DNA sequences. A total of 66 plastome sequences were used, 13 of which were newly assembled in this study, 12 from new sequences, and one from existing data. While Araliaceae plastomes showed conserved genome structure, phylogenetic reconstructions based on four different plastome datasets revealed phylogenetic discordance within the Asian Palmate group. The divergence time estimation revealed that splits in two Araliaceae subfamilies and the clades exhibiting phylogenetic discordances in the Asian Palmate group occurred at two climatic optima, suggesting that global warming events triggered species divergence, particularly the rapid diversification of the Asian Palmate group during the Middle Miocene. Nucleotide substitution analyses indicated that the Hydrocotyloideae plastomes have undergone accelerated AT-biased mutations (C-to-T transitions) compared with the Aralioideae plastomes, and the acceleration may occur in their mitochondrial and nuclear genomes as well. This implies that members of the genus Hydrocotyle, the only aquatic plants in the Araliaceae, have experienced a distinct evolutionary history from the other species. We also discussed the intercontinental disjunction in the genus Panax and proposed a hypothesis to complement the previously proposed hypothesis. Our results provide the evolutionary trajectory of Araliaceae and advance our current understanding of the evolution of Araliaceae species.
Collapse
Affiliation(s)
- Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Vo Ngoc Linh Giang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, South Korea
| | - Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Woohyeon Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Van Binh Nguyen
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Faculty of Biology, Dalat University, Dalat, 670000, Vietnam
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Nomar Espinosa Waminal
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, 01795, South Korea
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Gatersleben, Germany
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Hee Kim
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, 01795, South Korea.
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
4
|
Liu X, Bai Y, Wang Y, Chen Y, Dong W, Zhang Z. Complete Chloroplast Genome of Hypericum perforatum and Dynamic Evolution in Hypericum (Hypericaceae). Int J Mol Sci 2023; 24:16130. [PMID: 38003320 PMCID: PMC10671389 DOI: 10.3390/ijms242216130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Hypericum perforatum (St. John's Wort) is a medicinal plant from the Hypericaceae family. Here, we sequenced the whole chloroplast genome of H. perforatum and compared the genome variation among five Hypericum species to discover dynamic changes and elucidate the mechanisms that lead to genome rearrangements in the Hypericum chloroplast genomes. The H. perforatum chloroplast genome is 139,725 bp, exhibiting a circular quadripartite structure with two copies of inverted repeats (IRs) separating a large single-copy region and a small single-copy region. The H. perforatum chloroplast genome encodes 106 unique genes, including 73 protein-coding genes, 29 tRNAs, and 4 rRNAs. Hypericum chloroplast genomes exhibit genome rearrangement and significant variations among species. The genome size variation among the five Hypericum species was remarkably associated with the expansion or contraction of IR regions and gene losses. Three genes-trnK-UUU, infA, and rps16-were lost, and three genes-rps7, rpl23, and rpl32-were pseudogenized in Hypericum. All the Hypericum chloroplast genomes lost the two introns in clpP, the intron in rps12, and the second intron in ycf3. Hypericum chloroplast genomes contain many long repeat sequences, suggesting a role in facilitating rearrangements. Most genes, according to molecular evolution assessments, are under purifying selection.
Collapse
Affiliation(s)
- Xinyu Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.L.); (Y.B.); (Y.C.)
| | - Yuran Bai
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.L.); (Y.B.); (Y.C.)
| | - Yachao Wang
- School of Life Sciences, Fudan University, Shanghai 200437, China;
| | - Yifeng Chen
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.L.); (Y.B.); (Y.C.)
| | - Wenpan Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.L.); (Y.B.); (Y.C.)
| | - Zhixiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.L.); (Y.B.); (Y.C.)
| |
Collapse
|