1
|
Zhou L, Yang Y, Sharma A, Singh VP, Tripathi DK, Ding W, Rao MJ, Zheng B, Wang X. A Rapid Method for Obtaining the Transgenic Roots of Crassulaceae Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3024. [PMID: 39519943 PMCID: PMC11548563 DOI: 10.3390/plants13213024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Crassulaceae plants are valued for their horticultural, ecological, and economic significance, but their genetic improvement is hindered by the absence of efficient and stable genetic transformation methods. Therefore, the development of a tailored genetic transformation method is crucial for enhancing the progress of the genetic improvement of Crassulaceae plants. The results indicate that, in the transformation experiments conducted on Kalanchoe tetraphylla, the K599 strain exhibited the highest transformation efficiency (76.67%), while C58C1 was least efficient (21.43%). An acetosyringone concentration of 100 μM was optimal for the hairy root transformation, and the immersion method yielded the highest efficiency. Additionally, the Silwet L-77 concentration significantly influenced the transformation efficiency, with 0.05% leading to a decrease. Upon four Crassulaceae species, notable differences were observed, with K. tetraphylla exhibiting the highest efficiency of 100%, and Sedum alfredii displaying the lowest efficiency of 5%. The RUBY reporter gene offers a more distinct advantage over GFP in observing the transformation effects. This study developed a simple, feasible, and cost-effective method for obtaining transgenic roots from leaves of Crassulaceae. The methodology provides technical support for the genetic improvement and gene function research of Crassulaceae plants.
Collapse
Affiliation(s)
- Lan Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yulu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Vijay Pratap Singh
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Biology Laboratory, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida 201303, Uttar Pradesh, India
| | - Wona Ding
- College of Science and Technology, Ningbo University, Ningbo 315300, China
| | - Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Xue T, Feng T, Liang Y, Yang X, Qin F, Yu J, Janssens SB, Yu S. Radiating diversification and niche conservatism jointly shape the inverse latitudinal diversity gradient of Potentilla L. (Rosaceae). BMC PLANT BIOLOGY 2024; 24:443. [PMID: 38778263 PMCID: PMC11112792 DOI: 10.1186/s12870-024-05083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The latitudinal diversity gradient (LDG), characterized by an increase in species richness from the poles to the equator, is one of the most pervasive biological patterns. However, inverse LDGs, in which species richness peaks in extratropical regions, are also found in some lineages and their causes remain unclear. Here, we test the roles of evolutionary time, diversification rates, and niche conservatism in explaining the inverse LDG of Potentilla (ca. 500 species). We compiled the global distributions of ~ 90% of Potentilla species, and reconstructed a robust phylogenetic framework based on whole-plastome sequences. Next, we analyzed the divergence time, ancestral area, diversification rate, and ancestral niche to investigate the macroevolutionary history of Potentilla. RESULTS The genus originated in the Qinghai-Tibet Plateau during the late Eocene and gradually spread to other regions of the Northern Hemisphere posterior to the late Miocene. Rapid cooling after the late Pliocene promoted the radiating diversification of Potentilla. The polyploidization, as well as some cold-adaptive morphological innovations, enhanced the adaptation of Potentilla species to the cold environment. Ancestral niche reconstruction suggests that Potentilla likely originated in a relatively cool environment. The species richness peaks at approximately 45 °N, a region characterized by high diversification rates, and the environmental conditions are similar to the ancestral climate niche. Evolutionary time was not significantly correlated with species richness in the latitudinal gradient. CONCLUSIONS Our results suggest that the elevated diversification rates in middle latitude regions and the conservatism in thermal niches jointly determined the inverse LDG in Potentilla. This study highlights the importance of integrating evolutionary and ecological approaches to explain the diversity pattern of biological groups on a global scale.
Collapse
Affiliation(s)
- Tiantian Xue
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Feng
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Gelderland, the Netherlands
| | - Yunfen Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Fei Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianghong Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, Meise, BE-1860, Belgium.
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven, BE-3001, Belgium.
| | - Shengxiang Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Liu J, Zang E, Tian Y, Zhang L, Li Y, Shi L, Xu L, Xiao P. Comparative chloroplast genomes: insights into the identification and phylogeny of rapid radiation genus Rhodiola. FRONTIERS IN PLANT SCIENCE 2024; 15:1404447. [PMID: 38799090 PMCID: PMC11116683 DOI: 10.3389/fpls.2024.1404447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Rhodiola L. is a genus exhibiting rapid radiation and represents a typical case for studying plastid gene adaptation in species that spread from high altitudes to low altitudes. In this study, 23 samples of 18 Rhodiola species were collected from the Qinghai-Tibetan Plateau and five scattered alpine areas, and the plastid genomes (plastomes) of these species were sequenced, annotated, and compared between high-altitude and widely distributed groups. The plastomes of Rhodiola were found to be highly conserved in terms of gene size, content, and order but highly variable in several lineage-specific features, such as codon usage bias, IR boundary shifting, and distinct repeat sequence structures binding to SSRs. Codon usage in the genes of photosystem II exhibited an obvious preference, reflecting significant environmental adaptation pressures. In this study, three repeat regions compounded with trinucleotide and mononucleotide repeats were found for the first time in R. forrestii, R. himalensis, and R. yunnanensis. High-variability regions such as ndhF, ycf1, trnH-psbA, and rpoC1-rpoB were screened, laying the foundation for the precise identification of these species. The phylogenetic analysis revealed the occurrence of cyto-nuclear discordance, likely originating from the frequent interspecific hybridization events observed within Rhodiola species during rapid radiation. Dioecious and hermaphrodite species can be broadly categorized into two subclades, probably they have different environmental adaptation strategies in response to climate change. In addition, the phylogenetic tree supported the monophyly of R. forrestii and R. yunnanensis, which compose R. Sect. Pseudorhodiola. In conclusion, plastome data enrich the genetic information available for the Rhodiola genus and may provide insight into species migration events during climate change.
Collapse
Affiliation(s)
- Jinxin Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Erhuan Zang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Tian
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Liqiu Zhang
- School of Medicine and Pharmacy, Tonghua Normal University, Tonghua, China
| | - Yimin Li
- College of Pharmacy and Key Laboratory for Research and Development of “Qin Medicine” of Shaanxi Administration of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Linchun Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Lijia Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Peigen Xiao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Zhang DQ, Liu XY, Qiu LF, Liu ZR, Yang YP, Huang L, Wang SY, Zhang JQ. Two chromosome-level genome assemblies of Rhodiola shed new light on genome evolution in rapid radiation and evolution of the biosynthetic pathway of salidroside. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:464-482. [PMID: 37872890 DOI: 10.1111/tpj.16501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Rhodiola L. is a genus that has undergone rapid radiation in the mid-Miocene and may represent a typic case of adaptive radiation. Many species of Rhodiola have also been widely used as an important adaptogen in traditional medicines for centuries. However, a lack of high-quality chromosome-level genomes hinders in-depth study of its evolution and biosynthetic pathway of secondary metabolites. Here, we assembled two chromosome-level genomes for two Rhodiola species with different chromosome number and sexual system. The assembled genome size of R. chrysanthemifolia (2n = 14; hermaphrodite) and R. kirilowii (2n = 22; dioecious) were of 402.67 and 653.62 Mb, respectively, with approximately 57.60% and 69.22% of transposable elements (TEs). The size difference between the two genomes was mostly due to proliferation of long terminal repeat-retrotransposons (LTR-RTs) in the R. kirilowii genome. Comparative genomic analysis revealed possible gene families responsible for high-altitude adaptation of Rhodiola, including a homolog of plant cysteine oxidase 2 gene of Arabidopsis thaliana (AtPCO2), which is part of the core molecular reaction to hypoxia and contributes to the stability of Group VII ethylene response factors (ERF-VII). We found extensive chromosome fusion/fission events and structural variations between the two genomes, which might have facilitated the initial rapid radiation of Rhodiola. We also identified candidate genes in the biosynthetic pathway of salidroside. Overall, our results provide important insights into genome evolution in plant rapid radiations, and possible roles of chromosome fusion/fission and structure variation played in rapid speciation.
Collapse
Affiliation(s)
- Dan-Qing Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao-Ying Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Lin-Feng Qiu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhao-Rui Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Ya-Peng Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Long Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Shi-Yu Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Jian-Qiang Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|