1
|
Alarcón H, Bonzon-Kulichenko E, Peinado R, Lim F, Vázquez J, Rodríguez A. Generation of a lentiviral vector system to efficiently express bioactive recombinant human prolactin hormones. Mol Cell Endocrinol 2020; 499:110605. [PMID: 31580897 DOI: 10.1016/j.mce.2019.110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
The contribution of the pleiotropic hormone Prolactin (PRL) to several physiological and pathological processes is still unknown. To clarify the role of PRL in these processes during the last decade, different human PRL antagonists have been produced to either partially or fully block the wild type hormone activity. In this work, we have cloned these wild type and antagonist sequences in lentivectors (LV) to express them as recombinant self-processing polypeptides by employing a P2A sequence (hPRL-P2A-GFP). We show that these LVs can efficiently transduce and express the hPRL proteins in different cell types and that the P2A sequence does not affect their activities. Additionally, we have tested their activities in paracrine and autocrine cell culture experiments. Our results demonstrate that these recombinant hPRL-P2A proteins are bioactive in both paracrine and autocrine modes, highlighting the potential usefulness of these hPRL-containing LVs for determining the contribution of hPRL to different biological processes.
Collapse
Affiliation(s)
- Hernán Alarcón
- Department of Molecular Biology, Autonomous University of Madrid, Madrid, 28049, Spain
| | - Elena Bonzon-Kulichenko
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, 28029, Spain
| | - Rocío Peinado
- Department of Molecular Biology, Autonomous University of Madrid, Madrid, 28049, Spain
| | - Filip Lim
- Department of Molecular Biology, Autonomous University of Madrid, Madrid, 28049, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, 28029, Spain
| | - Antonio Rodríguez
- Department of Molecular Biology, Autonomous University of Madrid, Madrid, 28049, Spain.
| |
Collapse
|
2
|
Jakobsen M, Askou AL, Stenderup K, Rosada C, Dagnæs-Hansen F, Jensen TG, Corydon TJ, Mikkelsen JG, Aagaard L. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin. Hum Gene Ther Methods 2016. [PMID: 26204415 DOI: 10.1089/hgtb.2014.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.
Collapse
Affiliation(s)
- Maria Jakobsen
- 1 Department of Biomedicine, Aarhus University , Denmark .,2 Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University , Denmark
| | | | - Karin Stenderup
- 3 Department of Dermatology, Aarhus University Hospital , Aarhus, Denmark
| | - Cecilia Rosada
- 3 Department of Dermatology, Aarhus University Hospital , Aarhus, Denmark
| | | | | | | | | | - Lars Aagaard
- 1 Department of Biomedicine, Aarhus University , Denmark
| |
Collapse
|
3
|
The role of microRNAs in skin fibrosis. Arch Dermatol Res 2014; 305:763-76. [PMID: 24022477 DOI: 10.1007/s00403-013-1410-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/19/2013] [Accepted: 08/27/2013] [Indexed: 12/13/2022]
Abstract
Fibrotic skin disorders may be debilitating and impair quality of life. There are few effective treatment options for cutaneous fibrotic diseases. In this review, we discuss our current understanding of the role of microRNAs (miRNAs) in skin fibrosis. miRNAs are a class of small, non-coding RNAs involved in skin fibrosis. These small RNAs range from 18 to 25 nucleotides in length and modify gene expression by binding to target messenger RNA (mRNA), causing degradation of the target mRNA or inhibiting the translation into proteins. We present an overview of the biogenesis, maturation and function of miRNAs. We highlight miRNA’s role in key skin fibrotic processes including: transforming growth factor-beta signaling, extracellular matrix deposition, and fibroblast proliferation and differentiation. Some miRNAs are profibrotic and their upregulation favors these processes contributing to fibrosis, while anti-fibrotic miRNAs inhibit these processes and may be reduced in fibrosis. Finally, we describe the diagnostic and therapeutic significance of miRNAs in the management of skin fibrosis. The discovery that miRNAs are detectable in serum, plasma, and other bodily fluids, and are relatively stable, suggests that miRNAs may serve as valuable biomarkers to monitor disease progression and response to treatment. In the treatment of skin fibrosis, antifibrotic miRNAs may be upregulated using mimics and viral vectors. Conversely, profibrotic miRNAs may be downregulated by employing anti-miRNAs, sponges, erasers and masks. We believe that miRNA-based therapies hold promise as important treatments and may transform the management of fibrotic skin diseases by physicians.
Collapse
|
4
|
Staunstrup NH, Bak RO, Cai Y, Svensson L, Petersen TK, Rosada C, Stenderup K, Bolund L, Mikkelsen JG. A lentiviral vector-based genetic sensor system for comparative analysis of permeability and activity of vitamin D3 analogues in xenotransplanted human skin. Exp Dermatol 2013; 22:178-83. [DOI: 10.1111/exd.12091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2013] [Indexed: 01/18/2023]
Affiliation(s)
| | - Rasmus O. Bak
- Department of Biomedicine; Aarhus University; Aarhus C; Denmark
| | - Yujia Cai
- Department of Biomedicine; Aarhus University; Aarhus C; Denmark
| | - Lars Svensson
- Department of Disease Pharmacology; LEO Pharma; Ballerup; Denmark
| | | | - Cecilia Rosada
- Department of Clinical Medicine; Aarhus University; Aarhus C; Denmark
| | - Karin Stenderup
- Department of Clinical Medicine; Aarhus University; Aarhus C; Denmark
| | | | | |
Collapse
|
5
|
Abstract
Post-transcriptional managing of RNA plays a key role in the intricate network of cellular pathways that regulate our genes. Numerous small RNA species have emerged as crucial regulators of RNA processing and translation. Among these, microRNAs (miRNAs) regulate protein synthesis through specific interactions with target RNAs and are believed to play a role in almost any cellular process and tissue. Skin is no exception, and miRNAs are intensively studied for their role in skin homoeostasis and as potential triggers of disease. For use in skin and many other tissues, therapeutic RNA managing by small RNA technologies is now widely explored. Despite the easy accessibility of skin, the natural barrier properties of skin have challenged genetic intervention studies, and unique tools for studying gene expression and the regulatory role of small RNAs, including miRNAs, in human skin are urgently needed. Human immunodeficiency virus (HIV)-derived lentiviral vectors (LVs) have been established as prominent carriers of foreign genetic cargo. In this review, we describe the use of HIV-derived LVs for efficient gene transfer to skin and establishment of long-term transgene expression in xenotransplanted skin. We outline the status of engineered LVs for delivery of small RNAs and their in vivo applicability for expression of genes and small RNA effectors including small hairpin RNAs, miRNAs and miRNA inhibitors. Current findings suggest that LVs may become key tools in experimental dermatology with particular significance for cutaneous RNA managing and in vivo genetic intervention.
Collapse
|
6
|
Bak RO, Mikkelsen JG. Regulation of cytokines by small RNAs during skin inflammation. J Biomed Sci 2010; 17:53. [PMID: 20594301 PMCID: PMC2905360 DOI: 10.1186/1423-0127-17-53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/01/2010] [Indexed: 02/08/2023] Open
Abstract
Intercellular signaling by cytokines is a vital feature of the innate immune system. In skin, an inflammatory response is mediated by cytokines and an entwined network of cellular communication between T-cells and epidermal keratinocytes. Dysregulated cytokine production, orchestrated by activated T-cells homing to the skin, is believed to be the main cause of psoriasis, a common inflammatory skin disorder. Cytokines are heavily regulated at the transcriptional level, but emerging evidence suggests that regulatory mechanisms that operate after transcription play a key role in balancing the production of cytokines. Herein, we review the nature of cytokine signaling in psoriasis with particular emphasis on regulation by mRNA destabilizing elements and the potential targeting of cytokine-encoding mRNAs by miRNAs. The proposed linkage between mRNA decay mediated by AU-rich elements and miRNA association is described and discussed as a possible general feature of cytokine regulation in skin. Moreover, we describe the latest attempts to therapeutically target cytokines at the RNA level in psoriasis by exploiting the cellular RNA interference machinery. The applicability of cytokine-encoding mRNAs as future clinical drug targets is evaluated, and advances and obstacles related to topical administration of RNA-based drugs targeting the cytokine circuit in psoriasis are described.
Collapse
Affiliation(s)
- Rasmus O Bak
- Department of Human Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
7
|
Pfützner W. Vectors for gene therapy of skin diseases. J Dtsch Dermatol Ges 2010; 8:582-91. [DOI: 10.1111/j.1610-0387.2010.07435.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Epo delivery by genetically engineered C2C12 myoblasts immobilized in microcapsules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 670:54-67. [PMID: 20384218 DOI: 10.1007/978-1-4419-5786-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ver the last half century, the use of erythropoietin (Epo) in the management of malignancies has been extensively studied. Originally viewed as the renal hormone responsible for red blood cell production, many recent in vivo and clinical approaches demonstrate that various tissues locally produce Epo in response to physical or metabolic stress. Thus, not only its circulating erythrocyte mass regulator activity but also the recently discovered nonhematological actions are being thoroughly investigated in order to fulfill the specific Epo delivery requirements for each therapeutic approach.
Collapse
|
9
|
Jakobsen M, Stenderup K, Rosada C, Moldt B, Kamp S, Dam TN, Jensen TG, Mikkelsen JG. Amelioration of psoriasis by anti-TNF-alpha RNAi in the xenograft transplantation model. Mol Ther 2009; 17:1743-53. [PMID: 19568223 DOI: 10.1038/mt.2009.141] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is upregulated in psoriatic skin and represents a prominent target in psoriasis treatment. The level of TNF-alpha-encoding mRNA, however, is not increased in psoriatic skin, and it remains unclear whether intervention strategies based on RNA interference (RNAi) are therapeutically relevant. To test this hypothesis the present study describes first the in vitro functional screening of a panel of short hairpin RNAs (shRNAs) targeting human TNF-alpha mRNA and, next, the transfer of the most potent TNF-alpha shRNA variant, as assessed in vitro, to human skin in the psoriasis xenograft transplantation model by the use of lentiviral vectors. TNF-alpha shRNA treatment leads to amelioration of the psoriasis phentotype in the model, as documented by reduced epidermal thickness, normalization of the skin morphology, and reduced levels of TNF-alpha mRNA as detected in skin biopsies 3 weeks after a single vector injection of lentiviral vectors encoding TNF-alpha shRNA. Our data show efficient lentiviral gene delivery to psoriatic skin and therapeutic applicability of anti-TNF-alpha shRNAs in human skin. These findings validate TNF-alpha mRNA as a target molecule for a potential persistent RNA-based treatment of psoriasis and establish the use of small RNA effectors as a novel platform for target validation in psoriasis and other skin disorders.
Collapse
Affiliation(s)
- Maria Jakobsen
- Department of Human Genetics, University of Aarhus, Aarhus DK-8000, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Scheidemann F, Löser M, Niedermeier A, Kromminga A, Therrien JP, Vogel J, Pfützner W. The skin as a biofactory for systemic secretion of erythropoietin: potential of genetically modified keratinocytes and fibroblasts. Exp Dermatol 2008; 17:481-8. [DOI: 10.1111/j.1600-0625.2007.00680.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Tian J, Lei P, Laychock SG, Andreadis ST. Regulated Insulin Delivery From Human Epidermal Cells Reverses Hyperglycemia. Mol Ther 2008; 16:1146-53. [DOI: 10.1038/mt.2008.79] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
12
|
Segura J, Fillat C, Andreu D, Llop J, Millan O, de la Torre BG, Nikolovski Z, Gomez V, Andreu N, Pinyot A, Castelo R, Gispert JD, Pascual JA. Monitoring gene therapy by external imaging of mRNA: pilot study on murine erythropoietin. Ther Drug Monit 2007; 29:612-8. [PMID: 17898652 DOI: 10.1097/ftd.0b013e31811f3af6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gene therapy is anticipated as being an important medical development. Essential to its effectiveness is the appropriate activity (protein expression) in the expected target cells. A noninvasive diagnostic procedure of successful gene expression will be of paramount importance to validate its use or its misuse (eg, sports gene doping). Externally detectable labeled oligonucleotide hybridizing with the messenger RNA generated by the transferred gene has been proposed as a possibility to monitor successful gene therapy. The authors selected the erythropoietin gene (Epo) for a pilot study on erythropoietin protein expression in mouse muscle. Oligonucleotides of peptide nucleic acid (PNA) type capable of antisense binding to unique murine Epo-mRNA sequences were synthesized by solid phase methods, and elongated at the N-terminus with the HIV Tat (48-60) cell penetrating peptide. They were labeled with fluorescence and radioactive tags to verify penetration and longer half-life properties in Epo gene transfected C2C12 mouse muscle cells as compared with corresponding wild-type cells. Downregulation of newly expressed erythropoietin protein in such cells additionally confirmed the penetration and hybridizing properties of the selected labeled oligonucleotide. I-labeled Tat-PNAs were intravenously injected into mice that had previously received the Epo gene into the right tibialis muscle by DNA electrotransfer. Preferential accumulation of radioactivity in the transferred limb as compared with the contralateral limb was ascertained, especially for I-Tat-CTA CGT AGA CCA CT (labeled Tat-PNA 1). This study provides experimental data to support the potential use of external noninvasive image detection to monitor gene therapy. The extension of the approach to more sensitive methods for whole-body external detection such as positron emission tomography appears feasible.
Collapse
Affiliation(s)
- J Segura
- Institut Municipal d'Investigació Mèdica IMIM-Hospital del Mar, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Baoutina A, Alexander IE, Rasko JEJ, Emslie KR. Potential Use of Gene Transfer in Athletic Performance Enhancement. Mol Ther 2007; 15:1751-66. [PMID: 17680029 DOI: 10.1038/sj.mt.6300278] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After only a short history of three decades from concept to practice, gene therapy has recently been shown to have potential to treat serious human diseases. Despite this success, gene therapy remains in the realm of experimental medicine, and much additional preclinical and clinical study will be necessary for proving the efficacy and safety of this approach in the treatment of diseases in humans. However, a potential complicating factor is that advances in gene transfer technology could be misused to enhance athletic performance in sports, in a practice termed "gene doping". Moreover, gene doping could be a precursor to a broader controversial agenda of human "genetic enhancement" with the potential for a significant long-term impact on society. This review addresses the possible ways in which knowledge and experience gained in gene therapy in animals and humans may be abused for enhancing sporting prowess. We provide an overview of recent progress in gene therapy, with potential application to gene doping and with the major focus on candidate performance-enhancement genes. We also discuss the current status of preclinical studies and of clinical trials that use these genes for therapeutic purposes. Current knowledge about the association between the natural "genetic make-up" of humans and their physical characteristics and performance potential is also presented. We address issues associated with the safety of gene transfer technologies in humans, especially when used outside a strictly controlled clinical setting, and the obstacles to translating gene transfer strategies from animal studies to humans. We also address the need for development and implementation of measures to prevent abuse of gene transfer technologies, and to pursue research on strategies for its detection in order to discourage this malpractice among athletes.
Collapse
Affiliation(s)
- Anna Baoutina
- National Measurement Institute, Pymble, New South Wales, Australia.
| | | | | | | |
Collapse
|
14
|
Hirsch T, von Peter S, Dubin G, Mittler D, Jacobsen F, Lehnhardt M, Eriksson E, Steinau HU, Steinstraesser L. Adenoviral gene delivery to primary human cutaneous cells and burn wounds. Mol Med 2007; 12:199-207. [PMID: 17225867 PMCID: PMC1770006 DOI: 10.2119/2006-00031.hirsch] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 07/25/2006] [Indexed: 11/06/2022] Open
Abstract
The adenoviral transfer of therapeutic genes into epidermal and dermal cells is an interesting approach to treat skin diseases and to promote wound healing. The aim of this study was to assess the in vitro and in vivo transfection efficacy in skin and burn wounds after adenoviral gene delivery. Primary keratinocytes (HKC), fibroblasts (HFB), and HaCaT cells were transfected using different concentrations of an adenoviral construct (eGFP). Transfection efficiency and cytotoxicity was determined up to 30 days. Expression was quantified by FACS analysis and fluorimeter. Cytotoxicity was measured using the trypan blue exclusion method. 45 male Sprague Dawley rats received 2x10(8) pfu of Ad5-CMV-LacZ or carrier control intradermally into either superficial partial thickness scald burn or unburned skin. Animals were euthanized after 48 h, 7 or 14 days posttreatment. Transgene expression was assessed using immunohistochemistry and bioluminescent assays. The highest transfection rate was observed 48 h posttransfection: 79% for HKC, 70% for HFB, and 48% for HaCaT. The eGFP expression was detectable in all groups over 30 days (P>0.05). Cytotoxic effects of the adenoviral vector were observed for HFB after 10 days and HaCaT after 30 days. Reporter gene expression in vivo was significantly higher in burned skin compared with unburned skin (P=0,004). Gene expression decreases from 2 to 7 days with no significant expression after 14 days. This study demonstrates that effective adenoviral-mediated gene transfer of epidermal primary cells and cell-lines is feasible. Ex vivo gene transfer in epithelial cells might have promise for the use in severely burned patients who receive autologous keratinocyte sheets. Transient cutaneous gene delivery in burn wounds using adenoviral vectors causes significant concentrations in the wound tissue for at least 1 week. Based on these findings, we hypothesize that transient cutaneous adenoviral gene delivery of wound healing promoting factors has potential for clinical application.
Collapse
Affiliation(s)
- Tobias Hirsch
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Sebastian von Peter
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Grzegorz Dubin
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
- Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dominik Mittler
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Frank Jacobsen
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Markus Lehnhardt
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Hans-Ulrich Steinau
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
| | - Lars Steinstraesser
- Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany
- Address correspondence and reprint requests to Lars Steinstraesser, Department for Plastic Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la Camp Platz 1, 44789 Bochum/Germany. Phone: + 49 (0) 234/302-3442; fax: + 49 (0) 234/307-6379; e-mail:
| |
Collapse
|
15
|
Abstract
Wound repair involves the sequential interaction of various cell types, extracellular matrix molecules, and soluble mediators. During the past 10 years, much new information on signals controlling wound cell behavior has emerged. This knowledge has led to a number of novel therapeutic strategies. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trails indicates that a crucial aspect of the growth factor wound healing strategy is the effective delivery of these polypeptides to the wound site. A molecular approach in which genetically modified cells synthesize and deliver the desired growth factor in regulated fashion has been used to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. We have summarized the molecular and cellular basis of repair mechanisms and their failure, and we give an overview of techniques and studies applied to gene transfer in tissue repair.
Collapse
Affiliation(s)
- Sabine A Eming
- Department of Dermatology, University of Cologne, D-50937 Cologne, Germany
| | | | | |
Collapse
|
16
|
Abstract
The capacity to induce neoplasia in human tissue in the laboratory has recently provided a new platform for cancer research. Malignant conversion can be achieved in vivo by expressing genes of interest in human tissue that has been regenerated on immune-deficient mice. Induction of cancer in regenerated human skin recapitulates the three-dimensional architecture, tissue polarity, basement membrane structure, extracellular matrix, oncogene signalling and therapeutic target proteins found in intact human skin in vivo. Human-tissue cancer models therefore provide an opportunity to elucidate fundamental cancer mechanisms, to assess the oncogenic potency of mutations associated with specific human cancers and to develop new cancer therapies.
Collapse
Affiliation(s)
- Paul A Khavari
- Veterans Affairs, Palo Alto Healthcare System, Palo Alto, California 94304, USA.
| |
Collapse
|
17
|
Lewin AS, Glazer PM, Milstone LM. Gene therapy for autosomal dominant disorders of keratin. J Investig Dermatol Symp Proc 2005; 10:47-61. [PMID: 16250209 DOI: 10.1111/j.1087-0024.2005.10207.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dominant mutations that interfere with the assembly of keratin filaments cause painful and disfiguring epidermal diseases like pachyonychia congenita and epidermolysis bullosa simplex. Genetic therapies for such diseases must either suppress the production of the toxic proteins or correct the genetic defect in the chromosome. Because epidermal skin cells may be genetically modified in tissue culture or in situ, gene correction is a legitimate goal for keratin diseases. In addition, recent innovations, such as RNA interference in animals, make an RNA knockdown approach plausible in the near future. Although agents of RNA reduction (small interfering RNA, ribozymes, triplex oligonucleotides, or antisense DNA) can be delivered as nucleotides, the impermeability of the skin to large charged molecules presents a serious impediment. Using viral vectors to deliver genes for selective inhibitors of gene expression presents an attractive alternative for long-term treatment of genetic disease in the skin.
Collapse
MESH Headings
- Animals
- Darier Disease/genetics
- Darier Disease/therapy
- Dependovirus/genetics
- Ectodermal Dysplasia/genetics
- Ectodermal Dysplasia/therapy
- Epidermolysis Bullosa Simplex/genetics
- Epidermolysis Bullosa Simplex/therapy
- Gene Silencing
- Gene Targeting
- Genes, Dominant
- Genetic Therapy
- Genetic Vectors
- Humans
- Keratins/genetics
- Keratoderma, Palmoplantar/genetics
- Keratoderma, Palmoplantar/therapy
- Mice
- Mutation
- Nails, Malformed/genetics
- Nails, Malformed/therapy
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/therapeutic use
- RNA Interference
- RNA, Catalytic/genetics
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
Collapse
Affiliation(s)
- Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610-0266, USA.
| | | | | |
Collapse
|
18
|
Brill-Almon E, Stern B, Afik D, Kaye J, Langer N, Bellomo S, Shavit M, Pearlman A, Lippin Y, Panet A, Shani N. Ex vivo transduction of human dermal tissue structures for autologous implantation production and delivery of therapeutic proteins. Mol Ther 2005; 12:274-82. [PMID: 16043098 DOI: 10.1016/j.ymthe.2005.03.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/17/2005] [Accepted: 03/24/2005] [Indexed: 11/21/2022] Open
Abstract
Systemic delivery of therapeutic proteins through gene transfer approaches has been carried out mostly by ex vivo transduction of single cells or by direct in vivo injection of an expression vector. In this work an intact miniature biopsy of human dermis (microdermis) is harvested and transduced ex vivo by a viral vector encoding a gene for the therapeutic protein. The microdermis preserves its three-dimensional structure and viability during the ex vivo manipulations. Furthermore, upon transduction with adenoviral and adeno-associated viral vectors the microdermis secretes recombinant human erythropoietin (hEPO). Biochemical analysis of the secreted hEPO showed similarity to the clinically approved recombinant hEPO. Subcutaneous implantation of microdermal hEPO into SCID mice exhibited hEPO secretion in the blood circulation and preserved elevated hematocrit for several months, demonstrating the technology's potential for sustained delivery of protein therapeutics.
Collapse
Affiliation(s)
- Einat Brill-Almon
- Medgenics, Inc., Biogenics Ltd., Teradion Business Park, Misgav, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Creusot RJ, Fathman CG, Müller-Ladner U, Tarner IH. Targeted gene therapy of autoimmune diseases: advances and prospects. Expert Rev Clin Immunol 2005; 1:385-404. [PMID: 20476990 DOI: 10.1586/1744666x.1.3.385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Idealized gene therapy of autoimmune diseases would mean getting the right drug to the right place at the right time to affect the right mechanism of action. In other words, a specific gene therapy strategy needs to have functional, spatial and temporal specificity. Functional specificity implies targeting the cellular, molecular and/or genetic mechanisms relevant to the disease, without affecting nondiseased organs or tissues through mechanisms that cause adverse effects. Spatial specificity means the delivery of the therapeutic agent exclusively to sites and cells that are relevant to the disease. Temporal specificity is, in principle, synonymous with controlled on-demand expression of the therapeutic gene and thus represents a major safety feature. This article reviews recent advances in strategies to use gene therapy in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Rémi J Creusot
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, CCSR Building, Room 2240, 269 Campus Drive, Stanford, CA 94305-5166, USA.
| | | | | | | |
Collapse
|
20
|
Eming SA, Krieg T, Davidson JM. Gene transfer in tissue repair: status, challenges and future directions. Expert Opin Biol Ther 2005; 4:1373-86. [PMID: 15335305 DOI: 10.1517/14712598.4.9.1373] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Wound repair involves a complex interaction of various cell types, extracellular matrix molecules and soluble mediators. Details on signals controlling wound cell activities are beginning to emerge. In recent years this knowledge has been applied to a number of therapeutic strategies in soft tissue repair. Key challenges include re-adjusting the adult repair process in order to augment diseased healing processes, and providing the basis for a regenerative rather than a reparative wound environment. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trials indicates that an important aspect of the growth factor wound-healing paradigm is the effective delivery of these polypeptides to the wound site. A molecular genetic approach in which genetically modified cells synthesise and deliver the desired growth factor in a time-regulated manner is a powerful means to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. This article summarises repair mechanisms and their failure, and gives an overview of techniques and studies applied to gene transfer in tissue repair. It also provides perspectives on potential targets for gene transfer technology.
Collapse
Affiliation(s)
- Sabine A Eming
- University of Cologne, Department of Dermatology, Cologne, Joseph-Stelzmann Str. 9, 50931 Köln, Germany.
| | | | | |
Collapse
|
21
|
Del Rio M, Gache Y, Jorcano JL, Meneguzzi G, Larcher F. Current approaches and perspectives in human keratinocyte-based gene therapies. Gene Ther 2004; 11 Suppl 1:S57-63. [PMID: 15454958 DOI: 10.1038/sj.gt.3302370] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inherited and acquired disorders are liable to treatment with somatic gene therapy. The skin, and in particular epidermal cells, are particularly suited to genetic manipulation and follow-up of therapeutic effects. Cutaneous gene therapy may be effective for skin defects and systemic abnormalities. The robust basic and preclinical data available today would support the application of keratinocyte-based gene therapy to patients.
Collapse
Affiliation(s)
- M Del Rio
- Epithelial Damage, Repair and Tissue Engineering Project. CIEMAT. Avenida Complutense 22, Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Suzuki I, Im S, Tada A, Scott C, Akcali C, Davis MB, Barsh G, Hearing V, Abdel-Malek Z. Participation of the melanocortin-1 receptor in the UV control of pigmentation. J Investig Dermatol Symp Proc 1999; 4:29-34. [PMID: 10537004 DOI: 10.1038/sj.jidsp.5640177] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cloning of the melanocortin-1 receptor (MC1R) gene from human melanocytes and the demonstration that these cells respond to the melanocortins alpha-melanocyte stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH) with increased proliferation and melanogenesis have renewed the interest in investigation the physiological role of these hormones in regulating human pigmentation. Alpha-melanocyte stimulating hormone and ACTH are both synthesized in the human epidermis, and their synthesis is upregulated by exposure to ultraviolet radiation (UVR). Activation of the MC1R by ligand binding results in stimulation of cAMP formation, which is a principal mechanism for inducing melanogenesis. The increase in cAMP is required for the pigmentary response of human melanocytes to UVR, and for allowing them to overcome the UVR-induced G1 arrest. Treatment of human melanocytes with alpha-MSH increases eumelanin synthesis, an effect that is expected to enhance photoprotection of the skin. Population studies have revealed more than 20 allelic variants of the MC1R gene. Some of these variants are overexpressed in individuals with skin type I or II, red hair, and poor tanning ability. Future studies will aim at further exploration of the role of these variants in MC1R function, and in determining constitutive human pigmentation, the response to sun exposure, and possibly the susceptibility to skin cancer.
Collapse
Affiliation(s)
- I Suzuki
- Department of Dermatology, University of Cincinnati, Ohio 45267-0592, USA
| | | | | | | | | | | | | | | | | |
Collapse
|