1
|
Orecchioni S, Falvo P, Talarico G, Mitola G, Bravetti G, Mancuso P, Nicoli P, Bertolini F. Vinorelbine and Intermittent Cyclophosphamide Sensitize an Aggressive Myc-Driven B-Cell Lymphoma to Anti-PD-1 by an Immunological Memory Effective against Tumor Re-Challenge. J Clin Med 2023; 12:jcm12072535. [PMID: 37048617 PMCID: PMC10095342 DOI: 10.3390/jcm12072535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
We have previously shown in triple-negative breast cancer (TNBC) models that a triple therapy (TT) including intermittent cyclophosphamide (C), vinorelbine (V), and anti-PD-1 activates antigen-presenting cells (APC) and generates stem like-T cells able to control local and metastatic tumor progression. In the present manuscript, we report the generation of a highly aggressive, anti-PD-1 resistant model of a high-grade, Myc-driven B-cell non-Hodgkin’s lymphoma (NHL) that can be controlled in vivo by TT but not by other chemotherapeutic agents, including cytarabine (AraC), platinum (P), and doxorubicin (D). The immunological memory elicited in tumor-bearing mice by TT (but not by other treatments) can effectively control NHL re-challenge even at very high inoculum doses. TT re-shaped the landscape of circulating innate NK cells and adaptive immune cells, including B and T cells, and significantly reduced exhausted CD4+ and CD8+ TIM3+PD-1+ T cells in the spleens of treated mice.
Collapse
Affiliation(s)
- Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, 20141 Milan, Italy
| | - Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, 20141 Milan, Italy
| | - Giovanna Talarico
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, 20141 Milan, Italy
| | - Giulia Mitola
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, 20141 Milan, Italy
| | - Giulia Bravetti
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, 20141 Milan, Italy
| | - Patrizia Mancuso
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, 20141 Milan, Italy
| | - Paola Nicoli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20137 Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, 20141 Milan, Italy
- Correspondence:
| |
Collapse
|
2
|
Ruan H, Qiu S, Beard BC, Black ME. Creation of zebularine-resistant human cytidine deaminase mutants to enhance the chemoprotection of hematopoietic stem cells. Protein Eng Des Sel 2016; 29:573-582. [PMID: 27160178 PMCID: PMC5181380 DOI: 10.1093/protein/gzw012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 11/15/2022] Open
Abstract
Human cytidine deaminase (hCDA) is a biomedically important enzyme able to inactivate cytidine nucleoside analogs such as the antileukemic agent cytosine arabinoside (AraC) and thereby limit antineoplastic efficacy. Potent inhibitors of hCDA have been developed, e.g. zebularine, that when administered in combination with AraC enhance antineoplastic activity. Tandem hematopoietic stem cell (HSC) transplantation and combination chemotherapy (zebularine and AraC) could exhibit robust antineoplastic potency, but AraC-based chemotherapy regimens lead to pronounced myelosuppression due to relatively low hCDA activity in HSCs, and this approach could exacerbate this effect. To circumvent the pronounced myelosuppression of zebularine and AraC combination therapy while maintaining antineoplastic potency, zebularine-resistant hCDA variants could be used to gene-modify HSCs prior to transplantation. To achieve this, our approach was to isolate hCDA variants through random mutagenesis in conjunction with selection for hCDA activity and resistance to zebularine in an Escherichia coli genetic complementation system. Here, we report the identification of nine novel variants from a pool of 1.6 × 106 transformants that conferred significant zebularine resistance relative to wild-type hCDA2. Several variants revealed significantly higher Ki values toward zebularine when compared with wild-type hCDA values and, as such, are candidates for further exploration for gene-modified HSC transplantation approaches.
Collapse
Affiliation(s)
- Hongmei Ruan
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164-7520, USA
| | - Songbo Qiu
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164-7520, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian C Beard
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Margaret E Black
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164-7520, USA
| |
Collapse
|
3
|
Brennig S, Lachmann N, Buchegger T, Hetzel M, Schambach A, Moritz T. Chemoprotection of murine hematopoietic cells by combined gene transfer of cytidine deaminase (CDD) and multidrug resistance 1 gene (MDR1). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:148. [PMID: 26651614 PMCID: PMC4676838 DOI: 10.1186/s13046-015-0260-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/16/2015] [Indexed: 01/23/2023]
Abstract
Background Hematologic toxicity represents a major side effect of cytotoxic chemotherapy frequently preventing adequately dosed chemotherapy application and impeding therapeutic success. Transgenic (over)expression of chemotherapy resistance (CTX-R) genes in hematopoietic stem- and progenitor cells represents a potential strategy to overcome this problem. To apply this concept in the context of acute myeloid leukemia and myelodysplasia, we have investigated the overexpression of the multidrug resistance 1 (MDR1) and the cytidine deaminase (CDD) gene conferring resistance to anthracyclines and cytarabine (Ara-C), the two most important drugs in the treatment of these diseases. Methods State-of-the-art, third generation, self-inactivating (SIN) lentiviral vectors were utilized to overexpress a human CDD-cDNA and a codon-optimized human MDR1-cDNA corrected for cryptic splice sites from a spleen focus forming virus derived internal promoter. Studies were performed in myeloid 32D cells as well as primary lineage marker negative (lin−) murine bone marrow cells and flow cytometric analysis of suspension cultures and clonogenic analysis of vector transduced cells following cytotoxic drug challenge were utilized as read outs. Results Efficient chemoprotection of CDD and MDR1 transduced hematopoietic 32D as well as primary lin− cells was proven in the context of Ara-C and anthracycline application. Both, CTX-R transduced 32D as well as primary hematopoietic cells displayed marked resistance at concentrations 5–20 times the LD50 of non-transduced control cells. Moreover, simultaneous CDD/MDR1 gene transfer resulted in similar protection levels even when combined Ara-C anthracycline treatment was applied. Furthermore, significant enrichment of transduced cells was observed upon cytotoxic drug administration. Conclusions Our data demonstrate efficient chemoprotection as well as enrichment of transduced cells in hematopoietic cell lines as well as primary murine hematopoietic progenitor cells following Ara-C and/or anthracycline application, arguing for the efficacy as well as feasibility of our approach and warranting further evaluation of this concept. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0260-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Brennig
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster-of Excellence, Hannover Medical School, Hannover, Germany
| | - Theresa Buchegger
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Miriam Hetzel
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Thomas Moritz
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany. .,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Hyland KA, Olson ER, McIvor RS. Sleeping Beauty-Mediated Drug Resistance Gene Transfer in Human Hematopoietic Progenitor Cells. Hum Gene Ther 2015; 26:657-63. [PMID: 26176276 DOI: 10.1089/hum.2015.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Sleeping Beauty (SB) transposon system can insert sequences into mammalian chromosomes, supporting long-term expression of both reporter and therapeutic genes. Hematopoietic progenitor cells (HPCs) are an ideal therapeutic gene transfer target as they are used in therapy for a variety of hematologic and metabolic conditions. As successful SB-mediated gene transfer into human CD34(+) HPCs has been reported by several laboratories, we sought to extend these studies to the introduction of a therapeutic gene conferring resistance to methotrexate (MTX), potentially providing a chemoprotective effect after engraftment. SB-mediated transposition of hematopoietic progenitors, using a transposon encoding an L22Y variant dihydrofolate reductase fused to green fluorescent protein, conferred resistance to methotrexate and dipyridamole, a nucleoside transport inhibitor that tightens MTX selection conditions, as assessed by in vitro hematopoietic colony formation. Transposition of individual transgenes was confirmed by sequence analysis of transposon-chromosome junctions recovered by linear amplification-mediated PCR. These studies demonstrate the potential of SB-mediated transposition of HPCs for expression of drug resistance genes for selective and chemoprotective applications.
Collapse
Affiliation(s)
| | - Erik R Olson
- 1 Discovery Genomics, Inc. , Minneapolis, Minnesota
| | - R Scott McIvor
- 1 Discovery Genomics, Inc. , Minneapolis, Minnesota.,2 Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
5
|
Myeloprotection by cytidine deaminase gene transfer in antileukemic therapy. Neoplasia 2013; 15:239-48. [PMID: 23479503 DOI: 10.1593/neo.121954] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/22/2022] Open
Abstract
Gene transfer of drug resistance (CTX-R) genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O(6)-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C), gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD) represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine) in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.
Collapse
|
6
|
Gori JL, Beard BC, Ironside C, Karponi G, Kiem HP. In vivo selection of autologous MGMT gene-modified cells following reduced-intensity conditioning with BCNU and temozolomide in the dog model. Cancer Gene Ther 2012; 19:523-9. [PMID: 22627392 PMCID: PMC3466091 DOI: 10.1038/cgt.2012.25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chemotherapy with 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) and temozolomide (TMZ) is commonly used for the treatment of glioblastoma multiforme (GBM) and other cancers. In preparation for a clinical gene therapy study in patients with glioblastoma, we wished to study whether these reagents could be used as a reduced-intensity conditioning regimen for autologous transplantation of gene-modified cells. We used an MGMT(P140K)-expressing lentivirus vector to modify dog CD34(+) cells and tested in four dogs whether these autologous cells engraft and provide chemoprotection after transplantation. Treatment with O(6)-benzylguanine (O6BG)/TMZ after transplantation resulted in gene marking levels up to 75%, without significant hematopoietic cytopenia, which is consistent with hematopoietic chemoprotection. Retrovirus integration analysis showed that multiple clones contribute to hematopoiesis. These studies demonstrate the ability to achieve stable engraftment of MGMT(P140K)-modified autologous hematopoietic stem cells (HSCs) after a novel reduced-intensity conditioning protocol using a combination of BCNU and TMZ. Furthermore, we show that MGMT(P140K)-HSC engraftment provides chemoprotection during TMZ dose escalation. Clinically, chemoconditioning with BCNU and TMZ should facilitate engraftment of MGMT(P140K)-modified cells while providing antitumor activity for patients with poor prognosis glioblastoma or alkylating agent-sensitive tumors, thereby supporting dose-intensified chemotherapy regimens.
Collapse
Affiliation(s)
- J L Gori
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
7
|
Dasgupta A, Shields JE, Spencer HT. Treatment of a solid tumor using engineered drug-resistant immunocompetent cells and cytotoxic chemotherapy. Hum Gene Ther 2012; 23:711-21. [PMID: 22397715 DOI: 10.1089/hum.2011.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Multimodal therapy approaches, such as combining chemotherapy agents with cellular immunotherapy, suffers from potential drug-mediated toxicity to immune effector cells. Overcoming such toxic effects of anticancer cellular products is a potential critical barrier to the development of combined therapeutic approaches. We are evaluating an anticancer strategy that focuses on overcoming such a barrier by genetically engineering drug-resistant variants of immunocompetent cells, thereby allowing for the coadministration of cellular therapy with cytotoxic chemotherapy, a method we refer to as drug-resistant immunotherapy (DRI). The strategy relies on the use of cDNA sequences that confer drug resistance and recombinant lentiviral vectors to transfer nucleic acid sequences into immunocompetent cells. In the present study, we evaluated a DRI-based strategy that incorporates the immunocompetent cell line NK-92, which has intrinsic antitumor properties, genetically engineered to be resistant to both temozolomide and trimetrexate. These immune effector cells efficiently lysed neuroblastoma cell lines, which we show are also sensitive to both chemotherapy agents. The antitumor efficacy of the DRI strategy was demonstrated in vivo, whereby neuroblastoma-bearing NOD/SCID/γ-chain knockout (NSG) mice treated with dual drug-resistant NK-92 cell therapy followed by dual cytotoxic chemotherapy showed tumor regression and significantly enhanced survival compared with animals receiving either nonengineered cell-based therapy and chemotherapy, immunotherapy alone, or chemotherapy alone. These data show there is a benefit to using drug-resistant cellular therapy when combined with cytotoxic chemotherapy approaches.
Collapse
Affiliation(s)
- Anindya Dasgupta
- Aflac Cancer Center and Blood Disorders Service, Division of Hematology/Oncology and Bone Marrow Transplantation, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
8
|
Bertino JR. Cancer research: from folate antagonism to molecular targets. Best Pract Res Clin Haematol 2010; 22:577-82. [PMID: 19959110 DOI: 10.1016/j.beha.2009.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The antifolates aminopterin and methotrexate have two firsts in the treatment of malignancy. Aminopterin was the first drug reported to cause remissions in children with acute lymphocytic leukaemia, and methotrexate (MTX), the antifolate that has supplemented aminopterin in the clinic, was the first drug that was shown to be curative for patients with a solid tumour, choriocarcinoma. More than 50 years after its introduction in the clinic, MTX is still being used and studied. The role of dihydrofolate reductase (DHFR), the principal target of aminopterin, has been studied extensively, and DHFR gene amplification and mutations have been implicated in drug resistance. Recent research focusses on studies of the translational regulation of DHFR and transfer of mutant DHFR and other drug resistance genes by viral vectors to protect haematopoietic cells. Based upon the detailed understanding of the mechanism of action of antifolates, both as inhibitors of DHFR and thymidylate syntase (TS), new agents have been developed that show effectiveness in the treatment of human malignancies. MTX remains a potent and widely used agent.
Collapse
Affiliation(s)
- Joseph R Bertino
- Department of Molecular Therapeutics, The Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
9
|
Gori JL, Tian X, Swanson D, Gunther R, Shultz LD, McIvor RS, Kaufman DS. In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase. Gene Ther 2009; 17:238-49. [PMID: 19829316 PMCID: PMC2820606 DOI: 10.1038/gt.2009.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human embryonic stem cells (hESCs) provide a novel source of hematopoietic and other cell populations suitable for gene therapy applications. Preclinical studies to evaluate engraftment of hESC-derived hematopoietic cells transplanted into immunodeficient mice demonstrate only limited repopulation. Expression of a drug resistance gene, such as Tyr22-dihydrofolate reductase (Tyr22-DHFR), coupled to methotrexate (MTX) chemotherapy has the potential to selectively increase engraftment of gene-modified hESC-derived cells in mouse xenografts. Here, we describe the generation of Tyr22-DHFR – GFP expressing hESCs that maintain pluripotency, produce teratomas and can differentiate into MTXr-hemato-endothelial cells. We demonstrate that MTX administered to nonobese diabetic/severe combined immunodeficient/IL-2Rγcnull (NSG) mice after injection of Tyr22-DHFR-derived cells significantly increases human CD34+ and CD45+ cell engraftment in the bone marrow (BM) and peripheral blood of transplanted MTX-treated mice. These results demonstrate that MTX treatment supports selective, long-term engraftment of Tyr22-DHFR-cells in vivo, and provides a novel approach for combined human cell and gene therapy.
Collapse
Affiliation(s)
- J L Gori
- Gene Therapy Program, Department of Genetics, Cell Biology and Development, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Development of gene therapy in association with clinically used cytotoxic deoxynucleoside analogues. Cancer Gene Ther 2009; 16:541-50. [PMID: 19343063 DOI: 10.1038/cgt.2009.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinical use of cytotoxic deoxynucleoside analogues is often limited by resistance mechanisms due to enzymatic deficiency, or high toxicity in nontumor tissues. To improve the use of these drugs, gene therapy approaches have been proposed and studied, associating clinically used deoxynucleoside analogues such as araC and gemcitabine and suicide genes or myeloprotective genes. In this review, we provide an update of recent results in this area, with particular emphasis on human deoxycytidine kinase, the deoxyribonucleoside kinase from Drosophila melanogaster, purine nucleoside phosphorylase from Escherichia coli, and human cytidine deaminase. Data from literature clearly show the feasibility of these systems, and clinical trials are warranted to conclude on their use in the treatment of cancer patients.
Collapse
|
11
|
Bertino JR. Transfer of drug resistance genes into hematopoietic stem cells for marrow protection. Oncologist 2009; 13:1036-42. [PMID: 18952565 DOI: 10.1634/theoncologist.2008-0173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Joseph R Bertino
- The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry, New Brunswick, New Jersey, USA.
| |
Collapse
|
12
|
Abstract
Dose-limiting toxicity of chemotherapeutic agents, i.e., myelosuppression, can limit their effectiveness. The transfer and expression of drug-resistance genes might decrease the risks associated with acute hematopoietic toxicity. Protection of hematopoietic stem/progenitor cells by transfer of drug-resistance genes provides the possibility of intensification or escalation of antitumor drug doses and consequently an improved therapeutic index. This chapter reviews drug-resistance gene transfer strategies for either myeloprotection or therapeutic gene selection. Selecting candidate drug-resistance gene(s), gene transfer methodology, evaluating the safety and the efficiency of the treatment strategy, relevant in vivo models, and oncoretroviral transduction of human hematopoietic stem/progenitor cells under clinically applicable conditions are described.
Collapse
Affiliation(s)
- Tulin Budak-Alpdogan
- Department of Medicine, The Cancer Institute of New Jersey, Robert Wood Johson Medical School, University of Medicine & Dentistry of New Jersey, New Brunswick, NJ, USA
| | | |
Collapse
|
13
|
Gori JL, Podetz-Pedersen K, Swanson D, Karlen AD, Gunther R, Somia NV, McIvor RS. Protection of mice from methotrexate toxicity by ex vivo transduction using lentivirus vectors expressing drug-resistant dihydrofolate reductase. J Pharmacol Exp Ther 2007; 322:989-97. [PMID: 17586722 DOI: 10.1124/jpet.107.123414] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methotrexate (MTX) dose-escalation studies were conducted in C57BL/6 mice to determine the chemoprotective effect of transplantation using bone marrow transduced with lentivirus vectors expressing a drug-resistant variant of murine dihydrofolate reductase (DHFR). Methotrexate-resistant dihydrofolate reductase [tyrosine-22 (Tyr22)DHFR] and enhanced green fluorescent protein (GFP) coding sequences were inserted into self-inactivating lentiviral vectors as part of a genetic fusion or within the context of a bicistronic expression cassette. MTX-treated animals that received Tyr22DHFR-transduced marrow recovered to normal hematocrit levels by 3 weeks post-transplant and exhibited significant GFP marking in myeloid and lymphoid lineage-derived peripheral blood mononuclear cells (PBMCs). In contrast, MTX-treated animals transplanted with control GFP-transduced marrow exhibited extremely reduced hematocrits with severe marrow hypoplasia and did not survive MTX dose escalation. To minimize cell manipulation, we treated unfractionated marrow in an overnight exposure. Transduction at a multiplicity of infection of 10 resulted in up to 11% vector-modified PBMCs in primary recipients and successful repopulation of secondary recipients with vector-marked cells. Experimental cohorts exhibited sustained proviral expression with stable GFP fluorescence intensity. These results demonstrate the effectiveness of lentivirus vectors for chemoprotection in a well developed animal model, with the potential for further preclinical development toward human application.
Collapse
Affiliation(s)
- Jennifer L Gori
- Institute of Human Genetics, Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Rattmann I, Kleff V, Sorg UR, Bardenheuer W, Brueckner A, Hilger RA, Opalka B, Seeber S, Flasshove M, Moritz T. Gene transfer of cytidine deaminase protects myelopoiesis from cytidine analogs in an in vivo murine transplant model. Blood 2006; 108:2965-71. [PMID: 16835384 DOI: 10.1182/blood-2006-03-011734] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHematopoietic stem cell gene transfer of the drug-resistance gene cytidine deaminase (CDD) protecting cells from the cytotoxic cytidine analogs cytarabine and gemcitabine was investigated in a murine transplant model. Following transplantation of CDD-transduced cells and cytarabine application (500 mg/kg; days 1-4; intraperitoneally) significant myeloprotection was demonstrated with nadir counts of peripheral blood granulocytes and thrombocytes of 2.9 ± 0.6/nL versus 0.7 ± 0.1/nL (P < .001) and 509 ± 147/nL versus 80 ± 9/nL (P = .008), respectively (CDD versus control). Protection also was observed from otherwise lethal gemcitabine treatment (250 mg/kg; days 1-3). Stable levels of gene-marked cells in primary and secondary recipients were demonstrated for up to 9 months, and whereas CDD overexpression clearly reduced B- and T-lymphocyte numbers, no major toxicity was observed in the myeloid compartment. Despite the profound myeloprotective properties, however, CDD overexpression did not allow for pharmacologic enrichment of transduced hematopoiesis in our model. Thus, in summary, our data establish CDD as a drug-resistance gene highly suitable for myeloprotective purposes, which, given the lack of selection observed in our hands, might best be used in combination with selectable drugresistance genes such as MGMT (P140K) or MDR1.
Collapse
Affiliation(s)
- Ina Rattmann
- Department of Internal Medicine (Cancer Research), West German Cancer Center, University of Duisburg-Essen Medical School, Hufelandstr 55, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Budak-Alpdogan T, Przybylowski M, Gonen M, Sadelain M, Bertino J, Rivière I. Functional assessment of the engraftment potential of gammaretrovirus-modified CD34+ cells, using a short serum-free transduction protocol. Hum Gene Ther 2006; 17:780-94. [PMID: 16839276 DOI: 10.1089/hum.2006.17.780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The successful transduction and engraftment of human mobilized peripheral blood (MBP) CD34(+) cells are determined to a large extent by the ex vivo cell-processing conditions. In preparation for upcoming clinical trials, we investigated essential culture parameters and devised a short and efficient gammaretroviral transduction protocol entailing minimal manipulation of MBP CD34(+) cells. The engraftment potential and in vivo transgene expression in the progeny of repopulating CD34(+) cells were measured to assess the functionality of CD34(+) cells transduced under these conditions. Using a competitive in vivo repopulation assay in nonobese diabetic/severe combined immunodeficient mice, we demonstrate equivalent engraftment of CD34(+) cells transduced under serum-free conditions as compared with CD34(+) cells cultured with serum. We also took advantage of this in vivo model to demonstrate that ex vivo manipulation of CD34(+) cells can be shortened to 60 hr, using 36 hr of prestimulation and two cycles of transduction 12 hr apart. These minimally manipulated CD34(+) cells engraft in a manner similar to cells transduced under longer protocols and the vector-encoded transgene is expressed at the same frequency in cells derived from repopulating CD34(+) cells in vivo. We have thus developed a short and efficient human MBP CD34(+) transduction protocol under serum-free conditions that is suitable and broadly applicable for phase I clinical trials.
Collapse
Affiliation(s)
- Tulin Budak-Alpdogan
- Department of Medicine, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, 08903, USA
| | | | | | | | | | | |
Collapse
|
16
|
Budak-Alpdogan T, Przybylowski M, Gonen M, Sadelain M, Bertino J, Riviere I. Functional Assessment of the Engraftment Potential of Gammaretrovirus-Modified CD34+ Cells, Using a Short Serum-Free Transduction Protocol. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Bardenheuer W, Lehmberg K, Rattmann I, Brueckner A, Schneider A, Sorg UR, Seeber S, Moritz T, Flasshove M. Resistance to cytarabine and gemcitabine and in vitro selection of transduced cells after retroviral expression of cytidine deaminase in human hematopoietic progenitor cells. Leukemia 2006; 19:2281-8. [PMID: 16304576 DOI: 10.1038/sj.leu.2403977] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of the detoxifying enzyme cytidine deaminase (CDD) renders normal and leukemic hematopoietic cells resistant to cytarabine (1-beta-D-arabinofuranosylcytosine), and studies on murine cells have suggested transgenic CDD overexpression as a way to reduce the substantial myelotoxicity induced by the deoxycytidine analogs cytarabine and gemcitabine (2',2'-difluorodeoxycytidine). We now have investigated CDD (over-)expression in the human hematopoietic system. Retroviral gene transfer significantly increased the resistance of CDD-transduced cord blood and peripheral blood-derived progenitor cells for doses ranging from 20-100 nM cytarabine and 8-10 nM gemcitabine. Protection was observed for progenitors of erythroid as well as myeloid differentiation, though the degree of protection varied for individual drugs. In addition, significant selection of CDD-transduced cells was obtained after a 4-day culture in 30-100 nM cytarabine. Thus, our data demonstrate that overexpression of CDD cDNA results in significant protection of human progenitors from cytarabine- as well as gemcitabine-induced toxicity, and allows in vitro selection of transduced cells. This strongly argues for a potential therapeutic role of CDD gene transfer in conjunction with dose-intensive cytarabine- or gemcitabine-containing chemotherapy regimen.
Collapse
Affiliation(s)
- W Bardenheuer
- Department of Internal Medicine (Cancer Research), West German Cancer Center, University of Duisburg-Essen Medical School, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Budak-Alpdogan T, Banerjee D, Bertino JR. Hematopoietic stem cell gene therapy with drug resistance genes: an update. Cancer Gene Ther 2005; 12:849-63. [PMID: 16037821 DOI: 10.1038/sj.cgt.7700866] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transfer of drug resistance genes into hematopoietic stem cells (HSCs) has promise for the treatment of a variety of inherited, that is, X-linked severe combined immune deficiency, adenosine deaminase deficiency, thalassemia, and acquired disorders, that is, breast cancer, lymphomas, brain tumors, and testicular cancer. Drug resistance genes are transferred into HSCs either for providing myeloprotection against chemotherapy-induced myelosuppression or for selecting HSCs that are concomitantly transduced with another gene for correction of an inherited disorder. In this review, we describe ongoing experimental approaches, observations from clinical trials, and safety concerns related to the drug resistance gene transfer.
Collapse
Affiliation(s)
- Tulin Budak-Alpdogan
- Department of Medicine, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08903, USA
| | | | | |
Collapse
|