1
|
Laurent M, Geoffroy M, Pavani G, Guiraud S. CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments. Cells 2024; 13:800. [PMID: 38786024 PMCID: PMC11119143 DOI: 10.3390/cells13100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) protein have emerged as a revolutionary gene editing tool to treat inherited disorders affecting different organ systems, such as blood and muscles. Both hematological and neuromuscular genetic disorders benefit from genome editing approaches but face different challenges in their clinical translation. The ability of CRISPR/Cas9 technologies to modify hematopoietic stem cells ex vivo has greatly accelerated the development of genetic therapies for blood disorders. In the last decade, many clinical trials were initiated and are now delivering encouraging results. The recent FDA approval of Casgevy, the first CRISPR/Cas9-based drug for severe sickle cell disease and transfusion-dependent β-thalassemia, represents a significant milestone in the field and highlights the great potential of this technology. Similar preclinical efforts are currently expanding CRISPR therapies to other hematologic disorders such as primary immunodeficiencies. In the neuromuscular field, the versatility of CRISPR/Cas9 has been instrumental for the generation of new cellular and animal models of Duchenne muscular dystrophy (DMD), offering innovative platforms to speed up preclinical development of therapeutic solutions. Several corrective interventions have been proposed to genetically restore dystrophin production using the CRISPR toolbox and have demonstrated promising results in different DMD animal models. Although these advances represent a significant step forward to the clinical translation of CRISPR/Cas9 therapies to DMD, there are still many hurdles to overcome, such as in vivo delivery methods associated with high viral vector doses, together with safety and immunological concerns. Collectively, the results obtained in the hematological and neuromuscular fields emphasize the transformative impact of CRISPR/Cas9 for patients affected by these debilitating conditions. As each field suffers from different and specific challenges, the clinical translation of CRISPR therapies may progress differentially depending on the genetic disorder. Ongoing investigations and clinical trials will address risks and limitations of these therapies, including long-term efficacy, potential genotoxicity, and adverse immune reactions. This review provides insights into the diverse applications of CRISPR-based technologies in both preclinical and clinical settings for monogenic blood disorders and muscular dystrophy and compare advances in both fields while highlighting current trends, difficulties, and challenges to overcome.
Collapse
Affiliation(s)
- Marine Laurent
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91190 Evry, France
| | | | - Giulia Pavani
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Simon Guiraud
- SQY Therapeutics, 78180 Montigny-le-Bretonneux, France
| |
Collapse
|
2
|
Mudde ACA, Kuo CY, Kohn DB, Booth C. What a Clinician Needs to Know About Genome Editing: Status and Opportunities for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1139-1149. [PMID: 38246560 DOI: 10.1016/j.jaip.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
During the past 20 years, gene editing has emerged as a novel form of gene therapy. Since the publication of the first potentially therapeutic gene editing platform for genetic disorders, increasingly sophisticated editing technologies have been developed. As with viral vector-mediated gene addition, inborn errors of immunity are excellent candidate diseases for a corrective autologous hematopoietic stem cell gene editing strategy. Research on gene editing for inborn errors of immunity is still entirely preclinical, with no trials yet underway. However, with editing techniques maturing, scientists are investigating this novel form of gene therapy in context of an increasing number of inborn errors of immunity. Here, we present an overview of these studies and the recent progress moving these technologies closer to clinical benefit.
Collapse
Affiliation(s)
- Anne C A Mudde
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Caroline Y Kuo
- Department of Pediatrics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif
| | - Donald B Kohn
- Department of Pediatrics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif; Department of Microbiology, Immunology & Molecular Genetics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
3
|
Singh S, Pugliano CM, Honaker Y, Laird A, DeGottardi MQ, Lopez E, Lachkar S, Stoffers C, Sommer K, Khan IF, Rawlings DJ. Efficient and sustained FOXP3 locus editing in hematopoietic stem cells as a therapeutic approach for IPEX syndrome. Mol Ther Methods Clin Dev 2024; 32:101183. [PMID: 38282895 PMCID: PMC10818254 DOI: 10.1016/j.omtm.2023.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a monogenic disorder caused by mutations in the FOXP3 gene, required for generation of regulatory T (Treg) cells. Loss of Treg cells leads to immune dysregulation characterized by multi-organ autoimmunity and early mortality. Hematopoietic stem cell (HSC) transplantation can be curative, but success is limited by autoimmune complications, donor availability and/or graft-vs.-host disease. Correction of FOXP3 in autologous HSC utilizing a homology-directed repair (HDR)-based platform may provide a safer alternative therapy. Here, we demonstrate efficient editing of FOXP3 utilizing co-delivery of Cas9 ribonucleoprotein complexes and adeno-associated viral vectors to achieve HDR rates of >40% in vitro using mobilized CD34+ cells from multiple donors. Using this approach to deliver either a GFP or a FOXP3 cDNA donor cassette, we demonstrate sustained bone marrow engraftment of approximately 10% of HDR-edited cells in immune-deficient recipient mice at 16 weeks post-transplant. Further, we show targeted integration of FOXP3 cDNA in CD34+ cells from an IPEX patient and expression of the introduced FOXP3 transcript in gene-edited primary T cells from both healthy individuals and IPEX patients. Our combined findings suggest that refinement of this approach is likely to provide future clinical benefit in IPEX.
Collapse
Affiliation(s)
- Swati Singh
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Cole M. Pugliano
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yuchi Honaker
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Aidan Laird
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - M. Quinn DeGottardi
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Ezra Lopez
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Stefan Lachkar
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Claire Stoffers
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Iram F. Khan
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
| |
Collapse
|
4
|
Ghanim HY, Porteus MH. Gene regulation in inborn errors of immunity: Implications for gene therapy design and efficacy. Immunol Rev 2024; 322:157-177. [PMID: 38233996 DOI: 10.1111/imr.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Inborn errors of immunity (IEI) present a unique paradigm in the realm of gene therapy, emphasizing the need for precision in therapeutic design. As gene therapy transitions from broad-spectrum gene addition to careful modification of specific genes, the enduring safety and effectiveness of these therapies in clinical settings have become crucial. This review discusses the significance of IEIs as foundational models for pioneering and refining precision medicine. We explore the capabilities of gene addition and gene correction platforms in modifying the DNA sequence of primary cells tailored for IEIs. The review uses four specific IEIs to highlight key issues in gene therapy strategies: X-linked agammaglobulinemia (XLA), X-linked chronic granulomatous disease (X-CGD), X-linked hyper IgM syndrome (XHIGM), and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX). We detail the regulatory intricacies and therapeutic innovations for each disorder, incorporating insights from relevant clinical trials. For most IEIs, regulated expression is a vital aspect of the underlying biology, and we discuss the importance of endogenous regulation in developing gene therapy strategies.
Collapse
Affiliation(s)
- Hana Y Ghanim
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Porteus
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
5
|
Castiello MC, Brandas C, Ferrari S, Porcellini S, Sacchetti N, Canarutto D, Draghici E, Merelli I, Barcella M, Pelosi G, Vavassori V, Varesi A, Jacob A, Scala S, Basso Ricci L, Paulis M, Strina D, Di Verniere M, Sergi Sergi L, Serafini M, Holland SM, Bergerson JRE, De Ravin SS, Malech HL, Pala F, Bosticardo M, Brombin C, Cugnata F, Calzoni E, Crooks GM, Notarangelo LD, Genovese P, Naldini L, Villa A. Exonic knockout and knockin gene editing in hematopoietic stem and progenitor cells rescues RAG1 immunodeficiency. Sci Transl Med 2024; 16:eadh8162. [PMID: 38324638 PMCID: PMC11149094 DOI: 10.1126/scitranslmed.adh8162] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Chiara Brandas
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Samuele Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Simona Porcellini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Nicolò Sacchetti
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Daniele Canarutto
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Elena Draghici
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ivan Merelli
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Matteo Barcella
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Gabriele Pelosi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luca Basso Ricci
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianna Paulis
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Dario Strina
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Martina Di Verniere
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Lucia Sergi Sergi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marta Serafini
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza (MI) 20900, Italy
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Enrica Calzoni
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Pietro Genovese
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| | - Luigi Naldini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| |
Collapse
|
6
|
Uchiyama T, Kawai T, Nakabayashi K, Nakazawa Y, Goto F, Okamura K, Nishimura T, Kato K, Watanabe N, Miura A, Yasuda T, Ando Y, Minegishi T, Edasawa K, Shimura M, Akiba Y, Sato-Otsubo A, Mizukami T, Kato M, Akashi K, Nunoi H, Onodera M. Myelodysplasia after clonal hematopoiesis with APOBEC3-mediated CYBB inactivation in retroviral gene therapy for X-CGD. Mol Ther 2023; 31:3424-3440. [PMID: 37705244 PMCID: PMC10727956 DOI: 10.1016/j.ymthe.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Stem cell gene therapy using the MFGS-gp91phox retroviral vector was performed on a 27-year-old patient with X-linked chronic granulomatous disease (X-CGD) in 2014. The patient's refractory infections were resolved, whereas the oxidase-positive neutrophils disappeared within 6 months. Thirty-two months after gene therapy, the patient developed myelodysplastic syndrome (MDS), and vector integration into the MECOM locus was identified in blast cells. The vector integration into MECOM was detectable in most myeloid cells at 12 months after gene therapy. However, the patient exhibited normal hematopoiesis until the onset of MDS, suggesting that MECOM transactivation contributed to clonal hematopoiesis, and the blast transformation likely arose after the acquisition of additional genetic lesions. In whole-genome sequencing, the biallelic loss of the WT1 tumor suppressor gene, which occurred immediately before tumorigenesis, was identified as a potential candidate genetic alteration. The provirus CYBB cDNA in the blasts contained 108 G-to-A mutations exclusively in the coding strand, suggesting the occurrence of APOBEC3-mediated hypermutations during the transduction of CD34-positive cells. A hypermutation-mediated loss of oxidase activity may have facilitated the survival and proliferation of the clone with MECOM transactivation. Our data provide valuable insights into the complex mechanisms underlying the development of leukemia in X-CGD gene therapy.
Collapse
Affiliation(s)
- Toru Uchiyama
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan.
| | - Toshinao Kawai
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Yumiko Nakazawa
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Fumihiro Goto
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Center for Child Health and Development, Tokyo, Japan
| | - Toyoki Nishimura
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Nobuyuki Watanabe
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Akane Miura
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Toru Yasuda
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Yukiko Ando
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Tomoko Minegishi
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Kaori Edasawa
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Marika Shimura
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Yumi Akiba
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Pediatric Hematology and Oncology, National Center for Child Health and Development, Tokyo, Japan
| | - Tomoyuki Mizukami
- Department of Pediatrics, NHO Kumamoto Medical Center, Kumamoto, Japan
| | - Motohiro Kato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Pediatric Hematology and Oncology, National Center for Child Health and Development, Tokyo, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Hiroyuki Nunoi
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
7
|
Vavassori V, Ferrari S, Beretta S, Asperti C, Albano L, Annoni A, Gaddoni C, Varesi A, Soldi M, Cuomo A, Bonaldi T, Radrizzani M, Merelli I, Naldini L. Lipid nanoparticles allow efficient and harmless ex vivo gene editing of human hematopoietic cells. Blood 2023; 142:812-826. [PMID: 37294917 PMCID: PMC10644071 DOI: 10.1182/blood.2022019333] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/11/2023] Open
Abstract
Ex vivo gene editing in T cells and hematopoietic stem/progenitor cells (HSPCs) holds promise for treating diseases. Gene editing encompasses the delivery of a programmable editor RNA or ribonucleoprotein, often achieved ex vivo via electroporation, and when aiming for homology-driven correction of a DNA template, often provided by viral vectors together with a nuclease editor. Although HSPCs activate a robust p53-dependent DNA damage response upon nuclease-based editing, the responses triggered in T cells remain poorly characterized. Here, we performed comprehensive multiomics analyses and found that electroporation is the main culprit of cytotoxicity in T cells, causing death and cell cycle delay, perturbing metabolism, and inducing an inflammatory response. Nuclease RNA delivery using lipid nanoparticles (LNPs) nearly abolished cell death and ameliorated cell growth, improving tolerance to the procedure and yielding a higher number of edited cells compared with using electroporation. Transient transcriptomic changes upon LNP treatment were mostly caused by cellular loading with exogenous cholesterol, whose potentially detrimental impact could be overcome by limiting exposure. Notably, LNP-based HSPC editing dampened p53 pathway induction and supported higher clonogenic activity and similar or higher reconstitution by long-term repopulating HSPCs compared with electroporation, reaching comparable editing efficiencies. Overall, LNPs may allow efficient and harmless ex vivo gene editing in hematopoietic cells for the treatment of human diseases.
Collapse
Affiliation(s)
- Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Asperti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gaddoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Soldi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Cuomo
- Department of Molecular Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Molecular Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| | - Marina Radrizzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
8
|
Wong RL, Sackey S, Brown D, Senadheera S, Masiuk K, Quintos JP, Colindres N, Riggan L, Morgan RA, Malech HL, Hollis RP, Kohn DB. Lentiviral gene therapy for X-linked chronic granulomatous disease recapitulates endogenous CYBB regulation and expression. Blood 2023; 141:1007-1022. [PMID: 36332160 PMCID: PMC10163279 DOI: 10.1182/blood.2022016074] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
X-linked chronic granulomatous disease (X-CGD) is a primary immunodeficiency caused by mutations in the CYBB gene, resulting in the inability of phagocytic cells to eliminate infections. To design a lentiviral vector (LV) capable of recapitulating the endogenous regulation and expression of CYBB, a bioinformatics-guided approach was used to elucidate the cognate enhancer elements regulating the native CYBB gene. Using this approach, we analyzed a 600-kilobase topologically associated domain of the CYBB gene and identified endogenous enhancer elements to supplement the CYBB promoter to develop MyeloVec, a physiologically regulated LV for the treatment of X-CGD. When compared with an LV currently in clinical trials for X-CGD, MyeloVec showed improved expression, superior gene transfer to hematopoietic stem and progenitor cells (HSPCs), corrected an X-CGD mouse model leading to complete protection against Burkholderia cepacia infection, and restored healthy donor levels of antimicrobial oxidase activity in neutrophils derived from HSPCs from patients with X-CGD. Our findings validate the bioinformatics-guided design approach and have yielded a novel LV with clinical promise for the treatment of X-CGD.
Collapse
Affiliation(s)
- Ryan L. Wong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- ImmunoVec, Los Angeles, CA
| | - Sarah Sackey
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Devin Brown
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Shantha Senadheera
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Katelyn Masiuk
- ImmunoVec, Los Angeles, CA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Jason P. Quintos
- ImmunoVec, Los Angeles, CA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | | | | | - Richard A. Morgan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Department of Ophthalmology, Duke University Eye Center, Durham, NC
| | - Harry L. Malech
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Roger P. Hollis
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Donald B. Kohn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
9
|
Mohammadian Gol T, Ureña-Bailén G, Hou Y, Sinn R, Antony JS, Handgretinger R, Mezger M. CRISPR medicine for blood disorders: Progress and challenges in delivery. Front Genome Ed 2023; 4:1037290. [PMID: 36687779 PMCID: PMC9853164 DOI: 10.3389/fgeed.2022.1037290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Blood disorders are a group of diseases including hematological neoplasms, clotting disorders and orphan immune deficiency diseases that affects human health. Current improvements in genome editing based therapeutics demonstrated preclinical and clinical proof to treat different blood disorders. Genome editing components such as Cas nucleases, guide RNAs and base editors are supplied in the form of either a plasmid, an mRNA, or a ribonucleoprotein complex. The most common delivery vehicles for such components include viral vectors (e.g., AAVs and RV), non-viral vectors (e.g., LNPs and polymers) and physical delivery methods (e.g., electroporation and microinjection). Each of the delivery vehicles specified above has its own advantages and disadvantages and the development of a safe transferring method for ex vivo and in vivo application of genome editing components is still a big challenge. Moreover, the delivery of genome editing payload to the target blood cells possess key challenges to provide a possible cure for patients with inherited monogenic blood diseases and hematological neoplastic tumors. Here, we critically review and summarize the progress and challenges related to the delivery of genome editing elements to relevant blood cells in an ex vivo or in vivo setting. In addition, we have attempted to provide a future clinical perspective of genome editing to treat blood disorders with possible clinical grade improvements in delivery methods.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Yujuan Hou
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Ralph Sinn
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Justin S. Antony
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany,Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Markus Mezger
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany,*Correspondence: Markus Mezger,
| |
Collapse
|
10
|
Gene Editing in Human Haematopoietic Stem Cells for the Treatment of Primary Immunodeficiencies. Mol Diagn Ther 2023; 27:15-28. [PMID: 36239917 DOI: 10.1007/s40291-022-00618-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 02/04/2023]
Abstract
In recent years, gene-editing technologies have revolutionised precision medicine, and human trials of this technology have been reported in cell-based cancer therapies and other genetic disorders. The same techniques have the potential to reverse mutations in monogenic primary immunodeficiencies (PIDs), and transplantation of edited haematopoietic stem cells may provide a functional cure for these diseases. In this review, we discuss the methods of gene editing being explored and describe progress made so far with several PIDs. We also detail the remaining challenges, how to confidently detect off-target effects and chromosomal abnormalities in a timely manner, how to obtain long-term benefits, and how to achieve physiological levels of expression of the therapeutic gene. With advances in gene editing, we envisage a robust clinical translation of this technology in the coming decade.
Collapse
|
11
|
Nikolouli E, Reichstein J, Hansen G, Lachmann N. In vitro systems to study inborn errors of immunity using human induced pluripotent stem cells. Front Immunol 2022; 13:1024935. [DOI: 10.3389/fimmu.2022.1024935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
In the last two decades, the exponential progress in the field of genetics could reveal the genetic impact on the onset and progression of several diseases affecting the immune system. This knowledge has led to the discovery of more than 400 monogenic germline mutations, also known as “inborn errors of immunity (IEI)”. Given the rarity of various IEI and the clinical diversity as well as the limited available patients’ material, the continuous development of novel cell-based in vitro models to elucidate the cellular and molecular mechanisms involved in the pathogenesis of these diseases is imperative. Focusing on stem cell technologies, this review aims to provide an overview of the current available in vitro models used to study IEI and which could lay the foundation for new therapeutic approaches. We elaborate in particular on the use of induced pluripotent stem cell-based systems and their broad application in studying IEI by establishing also novel infection culture models. The review will critically discuss the current limitations or gaps in the field of stem cell technology as well as the future perspectives from the use of these cell culture systems.
Collapse
|
12
|
Fox TA, Houghton BC, Petersone L, Waters E, Edner NM, McKenna A, Preham O, Hinze C, Williams C, de Albuquerque AS, Kennedy A, Pesenacker AM, Genovese P, Walker LSK, Burns SO, Sansom DM, Booth C, Morris EC. Therapeutic gene editing of T cells to correct CTLA-4 insufficiency. Sci Transl Med 2022; 14:eabn5811. [PMID: 36288278 DOI: 10.1126/scitranslmed.abn5811] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Heterozygous mutations in CTLA-4 result in an inborn error of immunity with an autoimmune and frequently severe clinical phenotype. Autologous T cell gene therapy may offer a cure without the immunological complications of allogeneic hematopoietic stem cell transplantation. Here, we designed a homology-directed repair (HDR) gene editing strategy that inserts the CTLA-4 cDNA into the first intron of the CTLA-4 genomic locus in primary human T cells. This resulted in regulated expression of CTLA-4 in CD4+ T cells, and functional studies demonstrated CD80 and CD86 transendocytosis. Gene editing of T cells isolated from three patients with CTLA-4 insufficiency also restored CTLA-4 protein expression and rescued transendocytosis of CD80 and CD86 in vitro. Last, gene-corrected T cells from CTLA-4-/- mice engrafted and prevented lymphoproliferation in an in vivo murine model of CTLA-4 insufficiency. These results demonstrate the feasibility of a therapeutic approach using T cell gene therapy for CTLA-4 insufficiency.
Collapse
Affiliation(s)
- Thomas Andrew Fox
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- Department of Haematology, University College London NHS Foundation Trust, London, NW1 2BU UK
- UCL Great Ormond Street Institute of Child Health, UCL, London WC1N 1EH, UK
| | | | - Lina Petersone
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Erin Waters
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Natalie Mona Edner
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Alex McKenna
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Olivier Preham
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Claudia Hinze
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Cayman Williams
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Adriana Silva de Albuquerque
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- University College London Hospital, National Institute for Health and Care Research Biomedical Research Centre, London W1T 7DN, UK
| | - Alan Kennedy
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Anne Maria Pesenacker
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Pietro Genovese
- Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA 02115, USA
| | - Lucy Sarah Kate Walker
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Siobhan Oisin Burns
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, NW3 2QG, UK
| | - David Michael Sansom
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, UCL, London WC1N 1EH, UK
- Department of Paediatric Immunology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Emma Catherine Morris
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- Department of Haematology, University College London NHS Foundation Trust, London, NW1 2BU UK
- University College London Hospital, National Institute for Health and Care Research Biomedical Research Centre, London W1T 7DN, UK
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, NW3 2QG, UK
| |
Collapse
|
13
|
Long JD, Trope EC, Yang J, Rector K, Kuo CY. Genes as Medicine: The Development of Gene Therapies for Inborn Errors of Immunity. Hematol Oncol Clin North Am 2022; 36:829-851. [PMID: 35778331 DOI: 10.1016/j.hoc.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The field of gene therapy has experienced tremendous growth in the last decade ranging from improvements in the design of viral vectors for gene addition of therapeutic gene cassettes to the discovery of site-specific nucleases targeting transgenes to desired locations in the genome. Such advancements have not only enabled the development of disease models but also created opportunities for the development of tailored therapeutic approaches. There are 3 main methods of gene modification that can be used for the prevention or treatment of disease. This includes viral vector-mediated gene therapy to supply or bypass a missing/defective gene, gene editing enabled by programmable nucleases to create sequence-specific alterations in the genome, and gene silencing to reduce the expression of a gene or genes. These gene-modification platforms can be delivered either in vivo, for which the therapy is injected directed into a patient's body, or ex vivo, in which cells are harvested from a patient and modified in a laboratory setting, and then returned to the patient.
Collapse
Affiliation(s)
- Joseph D Long
- Division of Allergy & Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte, MDCC 12-430, Los Angeles, CA 90095, USA
| | - Edward C Trope
- Division of Allergy & Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte, MDCC 12-430, Los Angeles, CA 90095, USA
| | - Jennifer Yang
- Department of Psychology, University of California, Los Angeles, 1285 Psychology Building, Box 951563, Los Angeles, CA 90095, USA
| | | | - Caroline Y Kuo
- Division of Allergy & Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte, MDCC 12-430, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Worthington AK, Forsberg EC. A CRISPR view of hematopoietic stem cells: Moving innovative bioengineering into the clinic. Am J Hematol 2022; 97:1226-1235. [PMID: 35560111 PMCID: PMC9378712 DOI: 10.1002/ajh.26588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas genome engineering has emerged as a powerful tool to modify precise genomic sequences with unparalleled accuracy and efficiency. Major advances in CRISPR technologies over the last 5 years have fueled the development of novel techniques in hematopoiesis research to interrogate the complexities of hematopoietic stem cell (HSC) biology. In particular, high throughput CRISPR based screens using various "flavors" of Cas coupled with sequencing and/or functional outputs are becoming increasingly efficient and accessible. In this review, we discuss recent achievements in CRISPR-mediated genomic engineering and how these new tools have advanced the understanding of HSC heterogeneity and function throughout life. Additionally, we highlight how these techniques can be used to answer previously inaccessible questions and the challenges to implement them. Finally, we focus on their translational potential to both model and treat hematological diseases in the clinic.
Collapse
Affiliation(s)
- Atesh K. Worthington
- Institute for the Biology of Stem Cells University of California‐Santa Cruz Santa Cruz California USA
- Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology University of California‐Santa Cruz Santa Cruz California USA
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells University of California‐Santa Cruz Santa Cruz California USA
- Biomolecular Engineering University of California‐Santa Cruz Santa Cruz California USA
| |
Collapse
|
15
|
Zbinden A, Canté-Barrett K, Pike-Overzet K, Staal FJT. Stem Cell-Based Disease Models for Inborn Errors of Immunity. Cells 2021; 11:cells11010108. [PMID: 35011669 PMCID: PMC8750661 DOI: 10.3390/cells11010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The intrinsic capacity of human hematopoietic stem cells (hHSCs) to reconstitute myeloid and lymphoid lineages combined with their self-renewal capacity hold enormous promises for gene therapy as a viable treatment option for a number of immune-mediated diseases, most prominently for inborn errors of immunity (IEI). The current development of such therapies relies on disease models, both in vitro and in vivo, which allow the study of human pathophysiology in great detail. Here, we discuss the current challenges with regards to developmental origin, heterogeneity and the subsequent implications for disease modeling. We review models based on induced pluripotent stem cell technology and those relaying on use of adult hHSCs. We critically review the advantages and limitations of current models for IEI both in vitro and in vivo. We conclude that existing and future stem cell-based models are necessary tools for developing next generation therapies for IEI.
Collapse
|
16
|
Brault J, Liu T, Bello E, Liu S, Sweeney CL, Meis RJ, Koontz S, Corsino C, Choi U, Vayssiere G, Bosticardo M, Dowdell K, Lazzarotto CR, Clark AB, Notarangelo LD, Ravell JC, Lenardo MJ, Kleinstiver BP, Tsai SQ, Wu X, Dahl GA, Malech HL, De Ravin SS. CRISPR-targeted MAGT1 insertion restores XMEN patient hematopoietic stem cells and lymphocytes. Blood 2021; 138:2768-2780. [PMID: 34086870 PMCID: PMC8718624 DOI: 10.1182/blood.2021011192] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/25/2021] [Indexed: 01/01/2023] Open
Abstract
XMEN disease, defined as "X-linked MAGT1 deficiency with increased susceptibility to Epstein-Barr virus infection and N-linked glycosylation defect," is a recently described primary immunodeficiency marked by defective T cells and natural killer (NK) cells. Unfortunately, a potentially curative hematopoietic stem cell transplantation is associated with high mortality rates. We sought to develop an ex vivo targeted gene therapy approach for patients with XMEN using a CRISPR/Cas9 adeno-associated vector (AAV) to insert a therapeutic MAGT1 gene at the constitutive locus under the regulation of the endogenous promoter. Clinical translation of CRISPR/Cas9 AAV-targeted gene editing (GE) is hampered by low engraftable gene-edited hematopoietic stem and progenitor cells (HSPCs). Here, we optimized GE conditions by transient enhancement of homology-directed repair while suppressing AAV-associated DNA damage response to achieve highly efficient (>60%) genetic correction in engrafting XMEN HSPCs in transplanted mice. Restored MAGT1 glycosylation function in human NK and CD8+ T cells restored NK group 2 member D (NKG2D) expression and function in XMEN lymphocytes for potential treatment of infections, and it corrected HSPCs for long-term gene therapy, thus offering 2 efficient therapeutic options for XMEN poised for clinical translation.
Collapse
Affiliation(s)
- Julie Brault
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Taylor Liu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Ezekiel Bello
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Siyuan Liu
- Cancer Research Technology Program, Leidos Biomedical Research, Frederick, MD
| | - Colin L Sweeney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | - Sherry Koontz
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Guillaume Vayssiere
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | | | | | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Juan C Ravell
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Michael J Lenardo
- Laboratory of Immune System Biology, and Clinical Genomics Program, NIAID, NIH, Bethesda, MD
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA; and
- Department of Pathology, Harvard Medical School, Boston, MA
| | - Shengdar Q Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Frederick, MD
| | | | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
17
|
Ferrari S, Vavassori V, Canarutto D, Jacob A, Castiello MC, Javed AO, Genovese P. Gene Editing of Hematopoietic Stem Cells: Hopes and Hurdles Toward Clinical Translation. Front Genome Ed 2021; 3:618378. [PMID: 34713250 PMCID: PMC8525369 DOI: 10.3389/fgeed.2021.618378] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
In the field of hematology, gene therapies based on integrating vectors have reached outstanding results for a number of human diseases. With the advent of novel programmable nucleases, such as CRISPR/Cas9, it has been possible to expand the applications of gene therapy beyond semi-random gene addition to site-specific modification of the genome, holding the promise for safer genetic manipulation. Here we review the state of the art of ex vivo gene editing with programmable nucleases in human hematopoietic stem and progenitor cells (HSPCs). We highlight the potential advantages and the current challenges toward safe and effective clinical translation of gene editing for the treatment of hematological diseases.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Aurelien Jacob
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD Program in Translational and Molecular Medicine (DIMET), Milano-Bicocca University, Monza, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Institute of Genetic and Biomedical Research Milan Unit, National Research Council, Milan, Italy
| | - Attya Omer Javed
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Genovese
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Pavani G, Amendola M. Targeted Gene Delivery: Where to Land. Front Genome Ed 2021; 2:609650. [PMID: 34713234 PMCID: PMC8525409 DOI: 10.3389/fgeed.2020.609650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-editing technologies have the potential to correct most genetic defects involved in blood disorders. In contrast to mutation-specific editing, targeted gene insertion can correct most of the mutations affecting the same gene with a single therapeutic strategy (gene replacement) or provide novel functions to edited cells (gene addition). Targeting a selected genomic harbor can reduce insertional mutagenesis risk, while enabling the exploitation of endogenous promoters, or selected chromatin contexts, to achieve specific transgene expression levels/patterns and the modulation of disease-modifier genes. In this review, we will discuss targeted gene insertion and the advantages and limitations of different genomic harbors currently under investigation for various gene therapy applications.
Collapse
Affiliation(s)
- Giulia Pavani
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Univ Paris-Saclay, Evry, France
| | - Mario Amendola
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Univ Paris-Saclay, Evry, France
| |
Collapse
|
19
|
Pavani G, Amendola M. Corrigendum: Targeted Gene Delivery: Where to Land. Front Genome Ed 2021; 3:682171. [PMID: 34714297 PMCID: PMC8525382 DOI: 10.3389/fgeed.2021.682171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Giulia Pavani
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Univ Paris-Saclay, Evry, France
| | - Mario Amendola
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Univ Paris-Saclay, Evry, France
| |
Collapse
|
20
|
Koniali L, Lederer CW, Kleanthous M. Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells 2021; 10:1492. [PMID: 34198536 PMCID: PMC8231983 DOI: 10.3390/cells10061492] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Accessibility of hematopoietic stem cells (HSCs) for the manipulation and repopulation of the blood and immune systems has placed them at the forefront of cell and gene therapy development. Recent advances in genome-editing tools, in particular for clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) and CRISPR/Cas-derived editing systems, have transformed the gene therapy landscape. Their versatility and the ability to edit genomic sequences and facilitate gene disruption, correction or insertion, have broadened the spectrum of potential gene therapy targets and accelerated the development of potential curative therapies for many rare diseases treatable by transplantation or modification of HSCs. Ongoing developments seek to address efficiency and precision of HSC modification, tolerability of treatment and the distribution and affordability of corresponding therapies. Here, we give an overview of recent progress in the field of HSC genome editing as treatment for inherited disorders and summarize the most significant findings from corresponding preclinical and clinical studies. With emphasis on HSC-based therapies, we also discuss technical hurdles that need to be overcome en route to clinical translation of genome editing and indicate advances that may facilitate routine application beyond the most common disorders.
Collapse
Affiliation(s)
- Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
21
|
Sweeney CL, Pavel-Dinu M, Choi U, Brault J, Liu T, Koontz S, Li L, Theobald N, Lee J, Bello EA, Wu X, Meis RJ, Dahl GA, Porteus MH, Malech HL, De Ravin SS. Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair. Gene Ther 2021; 28:373-390. [PMID: 33712802 PMCID: PMC8232036 DOI: 10.1038/s41434-021-00251-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023]
Abstract
X-linked chronic granulomatous disease is an immunodeficiency characterized by defective production of microbicidal reactive oxygen species (ROS) by phagocytes. Causative mutations occur throughout the 13 exons and splice sites of the CYBB gene, resulting in loss of gp91phox protein. Here we report gene correction by homology-directed repair in patient hematopoietic stem/progenitor cells (HSPCs) using CRISPR/Cas9 for targeted insertion of CYBB exon 1-13 or 2-13 cDNAs from adeno-associated virus donors at endogenous CYBB exon 1 or exon 2 sites. Targeted insertion of exon 1-13 cDNA did not restore physiologic gp91phox levels, consistent with a requirement for intron 1 in CYBB expression. However, insertion of exon 2-13 cDNA fully restored gp91phox and ROS production upon phagocyte differentiation. Addition of a woodchuck hepatitis virus post-transcriptional regulatory element did not further enhance gp91phox expression in exon 2-13 corrected cells, indicating that retention of intron 1 was sufficient for optimal CYBB expression. Targeted correction was increased ~1.5-fold using i53 mRNA to transiently inhibit nonhomologous end joining. Following engraftment in NSG mice, corrected HSPCs generated phagocytes with restored gp91phox and ROS production. Our findings demonstrate the utility of tailoring donor design and targeting strategies to retain regulatory elements needed for optimal expression of the target gene.
Collapse
Affiliation(s)
- Colin L Sweeney
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Uimook Choi
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie Brault
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Taylor Liu
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sherry Koontz
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Narda Theobald
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Janet Lee
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ezekiel A Bello
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick, MD, USA
| | | | | | - Matthew H Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Harry L Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suk See De Ravin
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Gardner CL, Pavel-Dinu M, Dobbs K, Bosticardo M, Reardon PK, Lack J, DeRavin SS, Le K, Bello E, Pala F, Delmonte OM, Malech H, Montel-Hagan A, Crooks G, Acuto O, Porteus MH, Notarangelo LD. Gene Editing Rescues In vitro T Cell Development of RAG2-Deficient Induced Pluripotent Stem Cells in an Artificial Thymic Organoid System. J Clin Immunol 2021; 41:852-862. [PMID: 33650026 DOI: 10.1007/s10875-021-00989-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Severe combined immune deficiency (SCID) caused by RAG1 or RAG2 deficiency is a genetically determined immune deficiency characterized by the virtual absence of T and B lymphocytes. Unless treated with hematopoietic stem cell transplantation (HSCT), patients with RAG deficiency succumb to severe infections early in life. However, HSCT carries the risk of graft-versus-host disease. Moreover, a high rate of graft failure and poor immune reconstitution have been reported after unconditioned HSCT. Expression of the RAG genes is tightly regulated, and preclinical attempts of gene therapy with heterologous promoters have led to controversial results. Using patient-derived induced pluripotent stem cells (iPSCs) and an in vitro artificial thymic organoid system as a model, here we demonstrate that gene editing rescues the progressive T cell differentiation potential of RAG2-deficient cells to normal levels, with generation of a diversified T cell repertoire. These results suggest that targeted gene editing may represent a novel therapeutic option for correction of this immunodeficiency.
Collapse
Affiliation(s)
- Cameron L Gardner
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA.,Sir William Dunn School of Pathology, University of Oxford, Oxford, OX14RE, UK
| | - Mara Pavel-Dinu
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Kerry Dobbs
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Paul K Reardon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX14RE, UK
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, MD, USA.,Advanced Biomedical Computational Science (ABCS), Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Suk See DeRavin
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Kent Le
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Ezekiel Bello
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Ottavia M Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Harry Malech
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA
| | - Amelie Montel-Hagan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gay Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX14RE, UK.
| | - Matthew H Porteus
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
| | - Luigi D Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, 10 Center Drive, Bldg. 10 CRC, Room 5-3950, Bethesda, MD, 20892-1456, USA.
| |
Collapse
|
23
|
Karapurkar JK, Antao AM, Kim KS, Ramakrishna S. CRISPR-Cas9 based genome editing for defective gene correction in humans and other mammals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:185-229. [PMID: 34127194 DOI: 10.1016/bs.pmbts.2021.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR/Cas9), derived from bacterial and archean immune systems, has received much attention from the scientific community as a powerful, targeted gene editing tool. The CRISPR/Cas9 system enables a simple, relatively effortless and highly specific gene targeting strategy through temporary or permanent genome regulation or editing. This endonuclease has enabled gene correction by taking advantage of the endogenous homology directed repair (HDR) pathway to successfully target and correct disease-causing gene mutations. Numerous studies using CRISPR support the promise of efficient and simple genome manipulation, and the technique has been validated in in vivo and in vitro experiments, indicating its potential for efficient gene correction at any genomic loci. In this chapter, we detailed various strategies related to gene editing using the CRISPR/Cas9 system. We also outlined strategies to improve the efficiency of gene correction via the HDR pathway and to improve viral and non-viral mediated gene delivery methods, with an emphasis on their therapeutic potential for correcting genetic disorder in humans and other mammals.
Collapse
Affiliation(s)
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
24
|
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency of phagocyte function due to defective NADPH oxidase (phox). Compared with the common types of CYBB/gp91phox, NCF1/p47phox, and CYBA/p22phox deficiency, NCF4/p40phox deficiency is a mild and atypical form of CGD without invasive bacterial or fungal infections. It can be diagnosed using serum-opsonized E.coli as a stimulus in dihydrorhodamine (DHR) assay. Patients with CYBC1/Eros deficiency, a new and rare form of CGD, present as loss of respiratory burst and gp91phox expression in phagocytes. Neutrophils from patients with CGD are deficient in neutrophil extracellular traps (NETosis), autophagy, and apoptosis. The hyper-activation of NF-ĸB and inflammasome in CGD phagocytes also lead to long-lasting production of pro-inflammatory cytokines and inflammatory manifestations, such as granuloma formation and inflammatory bowel disease-like colitis. Patients with CGD and X-linked female carriers also have a higher incidence of autoimmune diseases. The implementation of antimicrobial, anti-fungal, and interferon-γ prophylaxis has greatly improved overall survival. Residual NADPH oxidase activity is significantly associated with disease severity and the chance of survival of the patient. New therapeutic approaches using immunomodulators for CGD-related inflammatory manifestations are under investigation, including pioglitazone, tamoxifen, and rapamycin. Hematopoietic stem cell transplantation (HSCT) is the curative treatment. Outcomes of HSCT have improved substantially over the last decade with overall survival more than 84-90%, but there are debates about designing optimal conditioning protocols using myeloablative or reduced-intensity regimens. The gene therapy for X-linked CGD using hematopoietic stem and progenitor cells transduced ex vivo by lentiviral vector encoding the human gp91phox gene demonstrated persistence of adequate oxidase-positive neutrophils in a small number of patients. Gene therapy using genome-editing technology such as CRISPR/Cas9 nucleases is a promising approach for patients with CGD in the future.
Collapse
Affiliation(s)
- Hsin-Hui Yu
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
25
|
Wrona D, Pastukhov O, Pritchard RS, Raimondi F, Tchinda J, Jinek M, Siler U, Reichenbach J. CRISPR-Directed Therapeutic Correction at the NCF1 Locus Is Challenged by Frequent Incidence of Chromosomal Deletions. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:936-943. [PMID: 32420407 PMCID: PMC7217921 DOI: 10.1016/j.omtm.2020.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Resurrection of non-processed pseudogenes may increase the efficacy of therapeutic gene editing, upon simultaneous targeting of a mutated gene and its highly homologous pseudogenes. To investigate the potency of this approach for clinical gene therapy of human diseases, we corrected a pseudogene-associated disorder, the immunodeficiency p47phox-deficient chronic granulomatous disease (p47phox CGD), using clustered regularly interspaced short palindromic repeats-associated nuclease Cas9 (CRISPR-Cas9) to target mutated neutrophil cytosolic factor 1 (NCF1). Being separated by less than two million base pairs, NCF1 and two pseudogenes are closely co-localized on chromosome 7. In healthy people, a two-nucleotide GT deletion (ΔGT) is present in the NCF1B and NCF1C pseudogenes only. In the majority of patients with p47phox CGD, the NCF1 gene is inactivated due to a ΔGT transfer from one of the two non-processed pseudogenes. Here we demonstrate that concurrent targeting and correction of mutated NCF1 and its pseudogenes results in therapeutic CGD phenotype correction, but also causes potentially harmful chromosomal deletions between the targeted loci in a p47phox-deficient CGD cell line model. Therefore, development of genome-editing-based treatment of pseudogene-related disorders mandates thorough safety examination, as well as technological advances, limiting concurrent induction of multiple double-strand breaks on a single chromosome.
Collapse
Affiliation(s)
- Dominik Wrona
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Oleksandr Pastukhov
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | | | - Federica Raimondi
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Joëlle Tchinda
- Department of Oncology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Ulrich Siler
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Janine Reichenbach
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren-Zurich, Switzerland
- Department of Somatic Gene Therapy, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Corresponding author: Janine Reichenbach, Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren-Zurich, Switzerland.
| |
Collapse
|
26
|
Variable Presentation of the CYBB Mutation in One Family, Approach to Management, and a Review of the Literature. Case Rep Med 2020; 2020:2546190. [PMID: 32089701 PMCID: PMC7026706 DOI: 10.1155/2020/2546190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/03/2020] [Indexed: 11/17/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency disorder marked by abnormal phagocytic function. CGD affects primarily neutrophils and manifests as an early predisposition to severe life-threatening infections. Additionally, patients with CGD are predisposed to unique autoimmune manifestations. While generally spared from infectious complications, heterozygous carriers of the abnormal genes implicated in CGD pathogenesis can still present with autoimmune disorders. A mutation in the CYBB gene is the only X-linked variant of this disease. This article describes a family with the CYBB mutation, its heterogenous presentation, and reviews the literature discussing disease management.
Collapse
|
27
|
Klatt D, Cheng E, Philipp F, Selich A, Dahlke J, Schmidt RE, Schott JW, Büning H, Hoffmann D, Thrasher AJ, Schambach A. Targeted Repair of p47-CGD in iPSCs by CRISPR/Cas9: Functional Correction without Cleavage in the Highly Homologous Pseudogenes. Stem Cell Reports 2019; 13:590-598. [PMID: 31543470 PMCID: PMC6829751 DOI: 10.1016/j.stemcr.2019.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 10/26/2022] Open
Abstract
Mutations in the NADPH oxidase, which is crucial for the respiratory burst in phagocytes, result in chronic granulomatous disease (CGD). The only curative treatment option for CGD patients, who suffer from severe infections, is allogeneic bone marrow transplantation. Over 90% of patients with mutations in the p47phox subunit of the oxidase complex carry the deletion c.75_76delGT (ΔGT). This frequent mutation most likely originates via gene conversion from one of the two pseudogenes NCF1B or NCF1C, which are highly homologous to NCF1 (encodes p47phox) but carry the ΔGT mutation. We applied CRISPR/Cas9 to generate patient-like p47-ΔGT iPSCs for disease modeling. To avoid unpredictable chromosomal rearrangements by CRISPR/Cas9-mediated cleavage in the pseudogenes, we developed a gene-correction approach to specifically target NCF1 but leave the pseudogenes intact. Functional assays revealed restored NADPH oxidase activity and killing of bacteria in corrected phagocytes as well as the specificity of this approach.
Collapse
Affiliation(s)
- Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Erica Cheng
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Friederike Philipp
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Julia Dahlke
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Reinhold E Schmidt
- Department of Immunology and Rheumatology, Hannover Medical School, 30625 Hannover, Germany
| | - Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; Great Ormond Street Hospital NHS Foundation Trust, London WC1N 1EH, UK
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Advances in site-specific gene editing for primary immune deficiencies. Curr Opin Allergy Clin Immunol 2019; 18:453-458. [PMID: 30299399 DOI: 10.1097/aci.0000000000000483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Conventional gene therapy has been a successful, curative treatment modality for many primary immune deficiencies with significant improvements in the last decade. However, the risk of leukemic transformation with viral-mediated gene addition still remains, and unregulated gene addition is not an option for certain diseases in which the target gene is closely controlled. The recent bloom in genome modification platforms has created the opportunity to site-specifically correct mutated DNA base pairs or insert a corrective cDNA minigene while maintaining gene expression under control of endogenous regulatory elements. RECENT FINDINGS There is an abundance of ongoing research utilizing programmable nucleases to facilitate site-specific gene correction of many primary immune deficiencies including X-linked severe combined immune deficiency, X-linked chronic granulomatous disease, Wiskott-Aldrich syndrome, X-linked hyper-IgM syndrome, X-linked agammaglobulinemia, and immune dysregulation, polyendocrinopathy, enteropathy, X-linked. In all, these studies have demonstrated the ability to integrate corrective DNA sequences at a precise location in the genome at rates likely to either cure or ameliorate disease. SUMMARY Gene editing for primary immune deficiency (PID) has advanced to the point to that translation to clinical trials is likely to occur in the next several years. At the current pace of research in DNA repair mechanisms, stem cell biology, and genome-editing technology, targeted genome modification represents the next chapter of gene therapy for PID.
Collapse
|
29
|
Georgomanoli M, Papapetrou EP. Modeling blood diseases with human induced pluripotent stem cells. Dis Model Mech 2019; 12:12/6/dmm039321. [PMID: 31171568 PMCID: PMC6602313 DOI: 10.1242/dmm.039321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are derived from somatic cells through a reprogramming process, which converts them to a pluripotent state, akin to that of embryonic stem cells. Over the past decade, iPSC models have found increasing applications in the study of human diseases, with blood disorders featuring prominently. Here, we discuss methodological aspects pertaining to iPSC generation, hematopoietic differentiation and gene editing, and provide an overview of uses of iPSCs in modeling the cell and gene therapy of inherited genetic blood disorders, as well as their more recent use as models of myeloid malignancies. We also discuss the strengths and limitations of iPSCs compared to model organisms and other cellular systems commonly used in hematology research.
Collapse
Affiliation(s)
- Maria Georgomanoli
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
30
|
CRISPR/Cas9 applications in gene therapy for primary immunodeficiency diseases. Emerg Top Life Sci 2019; 3:277-287. [PMID: 33523134 DOI: 10.1042/etls20180157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Primary immunodeficiency diseases (PIDs) encompass a range of diseases due to mutations in genes that are critical for immunity. Haploinsufficiency and gain-of-function mutations are more complex than simple loss-of-function mutations; in addition to increased susceptibility to infections, immune dysregulations like autoimmunity and hyperinflammation are common presentations. Hematopoietic stem cell (HSC) gene therapy, using integrating vectors, provides potential cure of disease, but genome-wide transgene insertions and the lack of physiological endogenous gene regulation may yet present problems, and not applicable in PIDs where immune regulation is paramount. Targeted genome editing addresses these concerns; we discuss some approaches of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas system applicable for gene therapy in PIDs. Preclinical repair of gene mutations and insertion of complementary DNA restore endogenous gene regulation and they have shown very promising data for clinical application. However, ongoing studies to characterize off-target genotoxicity, careful donor designs to ensure physiological expression, and maneuvers to optimize engraftment potential are critical to ensure successful application of this next-gen targeted HSC gene therapy.
Collapse
|
31
|
Castelli A, Susani L, Menale C, Muggeo S, Caldana E, Strina D, Cassani B, Recordati C, Scanziani E, Ficara F, Villa A, Vezzoni P, Paulis M. Chromosome Transplantation: Correction of the Chronic Granulomatous Disease Defect in Mouse Induced Pluripotent Stem Cells. Stem Cells 2019; 37:876-887. [PMID: 30895693 DOI: 10.1002/stem.3006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/12/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
In spite of the progress in gene editing achieved in recent years, a subset of genetic diseases involving structural chromosome abnormalities, including aneuploidies, large deletions and complex rearrangements, cannot be treated with conventional gene therapy approaches. We have previously devised a strategy, dubbed chromosome transplantation (CT), to replace an endogenous mutated chromosome with an exogenous normal one. To establish a proof of principle for our approach, we chose as disease model the chronic granulomatous disease (CGD), an X-linked severe immunodeficiency due to abnormalities in CYBB (GP91) gene, including large genomic deletions. We corrected the gene defect by CT in induced pluripotent stem cells (iPSCs) from a CGD male mouse model. The Hprt gene of the endogenous X chromosome was inactivated by CRISPR/Cas9 technology thus allowing the exploitation of the hypoxanthine-aminopterin-thymidine selection system to introduce a normal donor X chromosome by microcell-mediated chromosome transfer. X-transplanted clones were obtained, and diploid XY clones which spontaneously lost the endogenous X chromosome were isolated. These cells were differentiated toward the myeloid lineage, and functional granulocytes producing GP91 protein were obtained. We propose the CT approach to correct iPSCs from patients affected by other X-linked diseases with large deletions, whose treatment is still unsatisfactory. Stem Cells 2019;37:876-887.
Collapse
Affiliation(s)
- Alessandra Castelli
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Lucia Susani
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Ciro Menale
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Sharon Muggeo
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Elena Caldana
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Dario Strina
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Barbara Cassani
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Camilla Recordati
- Department of Veterinary Sciences and Public Health, University of Milan, Milan, Italy
| | - Eugenio Scanziani
- Department of Veterinary Sciences and Public Health, University of Milan, Milan, Italy
| | - Francesca Ficara
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Anna Villa
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Vezzoni
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Marianna Paulis
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
32
|
CRISPR/Cas9-modified hematopoietic stem cells-present and future perspectives for stem cell transplantation. Bone Marrow Transplant 2019; 54:1940-1950. [PMID: 30903024 DOI: 10.1038/s41409-019-0510-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 12/23/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a standard therapeutic intervention for hematological malignancies and several monogenic diseases. However, this approach has limitations related to lack of a suitable donor, graft-versus-host disease and infectious complications due to immune suppression. On the contrary, autologous HSCT diminishes the negative effects of allogeneic HSCT. Despite the good efficacy, earlier gene therapy trials with autologous HSCs and viral vectors have raised serious safety concerns. However, the CRISPR/Cas9-edited autologous HSCs have been proposed to be an alternative option with a high safety profile. In this review, we summarized the possibility of CRISPR/Cas9-mediated autologous HSCT as a potential treatment option for various diseases supported by preclinical gene-editing studies. Furthermore, we discussed future clinical perspectives and possible clinical grade improvements of CRISPR/cas9-mediated autologous HSCT.
Collapse
|
33
|
Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov 2019; 18:447-462. [DOI: 10.1038/s41573-019-0020-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Sweeney CL, Merling RK, De Ravin SS, Choi U, Malech HL. Gene Editing in Chronic Granulomatous Disease. Methods Mol Biol 2019; 1982:623-665. [PMID: 31172498 DOI: 10.1007/978-1-4939-9424-3_36] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic granulomatous disease (CGD) is an immune deficiency characterized by defects in the production of microbicidal reactive oxygen species (ROS) by the phagocytic oxidase (phox) enzyme complex in neutrophils. We have previously described targeted gene editing strategies using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), or clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nucleases for gene targeting with homology-directed repair in CGD patient stem cells to achieve functional restoration of expression of phox genes and NADPH oxidase activity in differentiated neutrophils. In this chapter, we describe detailed protocols for targeted gene editing in human-induced pluripotent stem cells and hematopoietic stem cells and for subsequent differentiation of these stem cells into mature neutrophils, as well as assays to characterize neutrophil identity and function including flow cytometry analysis of neutrophil surface markers, intracellular staining for phox proteins, and analysis of ROS generation.
Collapse
Affiliation(s)
- Colin L Sweeney
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Randall K Merling
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Advances and highlights in primary immunodeficiencies in 2017. J Allergy Clin Immunol 2018; 142:1041-1051. [PMID: 30170128 DOI: 10.1016/j.jaci.2018.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
This manuscript reviews selected topics in primary immunodeficiency diseases (PIDDs) published in 2017. These include (1) the role of follicular T cells in the differentiation of B cells and development of optimal antibody responses; (2) impaired nuclear factor κB subunit 1 signaling in the pathogenesis of common variable immunodeficiency, revealing an association between impaired B-cell maturation and development of inflammatory conditions; (3) autoimmune and inflammatory manifestations in patients with PIDDs in T- and B-cell deficiencies, as well as in neutrophil disorders; (4) newly described gene defects causing PIDDs, including exostosin-like 3 (EXTL3), TNF-α-induced protein 3 (TNFAIP3 [A20]), actin-related protein 2/3 complex-subunit 1B (ARPC1B), v-Rel avian reticuloendotheliosis viral oncogene homolog A (RELA), hypoxia upregulated 1 (HYOU1), BTB domain and CNC homolog 2 (BACH2), CD70, and CD55; (5) use of rapamycin and the phosphoinositide 3-kinase inhibitor leniolisib to reduce autoimmunity and regulate B-cell function in the activated phosphoinositide 3-kinase δ syndrome; (6) improved outcomes in hematopoietic stem cell transplantation for severe combined immunodeficiency (SCID) in the last decade, with an overall 2-year survival of 90% in part caused by early diagnosis through implementation of universal newborn screening; (7) demonstration of the efficacy of lentiviral vector-mediated gene therapy for patients with adenosine deaminase-deficient SCID; (8) the promise of gene editing for PIDDs using CRISPR/Cas9 and zinc finger nuclease technology for SCID and chronic granulomatous disease; and (9) the efficacy of thymus transplantation in Europe, although associated with an unexpected high incidence of autoimmunity. The remarkable progress in the understanding and management of PIDDs reflects the current interest in this area and continues to improve the care of immunodeficient patients.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Chronic granulomatous disease (CGD) is a primary immunodeficiency, with a defect of phagocytes in killing specific pathogens. CGD is characterized by severe recurrent bacterial and fungal infections and dysregulated inflammatory response. Since its first description as fatal disease about 60 years ago, a significant improvement in outcome has been achieved in the last 20 years. The purpose of this review is to framework recent advances in CGD immunopathogenesis, management of disease manifestation and cure of CGD patients. RECENT FINDINGS For years, CGD is a known cause of life-threatening infections and excessive inflammation. The cause and the management of inflammatory reactions, however, have not been clarified, and the range of clinical presentation is growing with corresponding novel therapeutic interventions. Recent work focuses on the best outcome of hematopoietic stem cell transplantation (HSCT) and gene therapy for the cure of CGD patients, more specifically, those with X-linked and p47 mutations. SUMMARY The genetics and phenotype of CGD is well characterized; however, the underlying mechanisms, the treatment of its inflammatory manifestations and the cure of CGD is under further investigation.
Collapse
|
37
|
Razzouk S. CRISPR-Cas9: A cornerstone for the evolution of precision medicine. Ann Hum Genet 2018; 82:331-357. [PMID: 30014471 DOI: 10.1111/ahg.12271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Modern genetic therapy incorporates genomic testing and genome editing. It is the finest approach for precision medicine. Genome editing is a state-of-the-art technology to manipulate gene expression thus generating a particular genotype. It encompasses multiple programmable nuclease-based approaches leading to genetic changes. Not surprisingly, this method triggered internationally a wide array of controversies in the scientific community and in the public since it transforms the human genome. Given its importance, the pace of this technology is exceptionally fast. In this report, we introduce one aspect of genome editing, the CRISPR/Cas9 system, highlight its potential to correct genetic mutations and explore its utility in clinical setting. Our goal is to enlighten health care providers about genome editing and incite them to take part of this vital debate.
Collapse
Affiliation(s)
- Sleiman Razzouk
- Adjunct Faculty, Department of Periodontology and Implant Dentistry, New York University College of Dentistry, New York.,Private Practice, Beirut, Lebanon
| |
Collapse
|
38
|
Keller MD, Notarangelo LD, Malech HL. Future of Care for Patients With Chronic Granulomatous Disease: Gene Therapy and Targeted Molecular Medicine. J Pediatric Infect Dis Soc 2018; 7:S40-S44. [PMID: 29746676 PMCID: PMC5985732 DOI: 10.1093/jpids/piy011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Chronic granulomatous disease is a rare and potentially fatal disorder of neutrophil function. Beyond current medical management and hematopoietic stem cell transplantation, new methods of gene therapy that use lentiviral vectors or gene editing might extend curative therapies to patients who lack a suitable transplantation donor while eliminating the risk of graft-versus-host disease. Furthermore, new therapies focused on altering the biology of phagolysosomes might offer novel targeted treatments for inflammatory complications in patients with chronic granulomatous disease.
Collapse
Affiliation(s)
- Michael D Keller
- Division of Allergy and Immunology, Children’s National Medical Center, Washington, DC,Correspondence: M. D. Keller 111 Michigan Ave NW, M7729 Washington, DC 20010 ()
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, Bethesda, Maryland
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, Bethesda, Maryland
| |
Collapse
|
39
|
Bak RO, Dever DP, Reinisch A, Cruz Hernandez D, Majeti R, Porteus MH. Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. eLife 2017; 6:e27873. [PMID: 28956530 PMCID: PMC5656432 DOI: 10.7554/elife.27873] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
Precise and efficient manipulation of genes is crucial for understanding the molecular mechanisms that govern human hematopoiesis and for developing novel therapies for diseases of the blood and immune system. Current methods do not enable precise engineering of complex genotypes that can be easily tracked in a mixed population of cells. We describe a method to multiplex homologous recombination (HR) in human hematopoietic stem and progenitor cells and primary human T cells by combining rAAV6 donor delivery and the CRISPR/Cas9 system delivered as ribonucleoproteins (RNPs). In addition, the use of reporter genes allows FACS-purification and tracking of cells that have had multiple alleles or loci modified by HR. We believe this method will enable broad applications not only to the study of human hematopoietic gene function and networks, but also to perform sophisticated synthetic biology to develop innovative engineered stem cell-based therapeutics.
Collapse
Affiliation(s)
- Rasmus O Bak
- Department of PediatricsStanford UniversityStanfordUnited States
| | - Daniel P Dever
- Department of PediatricsStanford UniversityStanfordUnited States
| | - Andreas Reinisch
- Department of Medicine, Division of HematologyStanford UniversityStanfordUnited States
- Department of Medicine, Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordUnited States
- Department of Medicine, Cancer InstituteStanford UniversityStanfordUnited States
| | - David Cruz Hernandez
- Department of Medicine, Division of HematologyStanford UniversityStanfordUnited States
- Department of Medicine, Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordUnited States
- Department of Medicine, Cancer InstituteStanford UniversityStanfordUnited States
| | - Ravindra Majeti
- Department of Medicine, Division of HematologyStanford UniversityStanfordUnited States
- Department of Medicine, Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordUnited States
- Department of Medicine, Cancer InstituteStanford UniversityStanfordUnited States
| | | |
Collapse
|
40
|
Abstract
A number of recent advances have been made in the epidemiology and treatment of chronic granulomatous disease. Several reports from developing regions describe the presentations and progress of local populations, highlighting complications due to Bacillus Calmette-Guérin vaccination. A number of new reports describe complications of chronic granulomatous disease in adult patients, as more survivors reach adulthood. The complications experienced by X-linked carriers are particularly highlighted in three new reports, confirming that infection and inflammatory or autoimmune conditions are more common and severe than previously recognised. Finally, definitive treatment with haematopoietic stem cell transplantation and gene therapy is reviewed.
Collapse
Affiliation(s)
- Andrew Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, UK.,Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
41
|
Bassett AR. Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mamm Genome 2017; 28:348-364. [PMID: 28303292 PMCID: PMC5569153 DOI: 10.1007/s00335-017-9684-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
The advent of human-induced pluripotent stem cell (hiPSC) technology has provided a unique opportunity to establish cellular models of disease from individual patients, and to study the effects of the underlying genetic aberrations upon multiple different cell types, many of which would not normally be accessible. Combining this with recent advances in genome editing techniques such as the clustered regularly interspaced short palindromic repeat (CRISPR) system has provided an ability to repair putative causative alleles in patient lines, or introduce disease alleles into a healthy “WT” cell line. This has enabled analysis of isogenic cell pairs that differ in a single genetic change, which allows a thorough assessment of the molecular and cellular phenotypes that result from this abnormality. Importantly, this establishes the true causative lesion, which is often impossible to ascertain from human genetic studies alone. These isogenic cell lines can be used not only to understand the cellular consequences of disease mutations, but also to perform high throughput genetic and pharmacological screens to both understand the underlying pathological mechanisms and to develop novel therapeutic agents to prevent or treat such diseases. In the future, optimising and developing such genetic manipulation technologies may facilitate the provision of cellular or molecular gene therapies, to intervene and ultimately cure many debilitating genetic disorders.
Collapse
Affiliation(s)
- Andrew R Bassett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
42
|
Santilli G, Thrasher AJ. A New Chapter on Targeted Gene Insertion for X-CGD: Do Not Skip the Intro(n). Mol Ther 2017; 25:307-309. [PMID: 28109956 DOI: 10.1016/j.ymthe.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Giorgia Santilli
- Molecular Immunology Unit, Centre for Immunodeficiency, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Adrian J Thrasher
- Molecular Immunology Unit, Centre for Immunodeficiency, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|