1
|
Iyer K, Ivanov J, Tenchov R, Ralhan K, Rodriguez Y, Sasso JM, Scott S, Zhou QA. Emerging Targets and Therapeutics in Immuno-Oncology: Insights from Landscape Analysis. J Med Chem 2024; 67:8519-8544. [PMID: 38787632 PMCID: PMC11181335 DOI: 10.1021/acs.jmedchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In the ever-evolving landscape of cancer research, immuno-oncology stands as a beacon of hope, offering novel avenues for treatment. This study capitalizes on the vast repository of immuno-oncology-related scientific documents within the CAS Content Collection, totaling over 350,000, encompassing journals and patents. Through a pioneering approach melding natural language processing with the CAS indexing system, we unveil over 300 emerging concepts, depicted in a comprehensive "Trend Landscape Map". These concepts, spanning therapeutic targets, biomarkers, and types of cancers among others, are hierarchically organized into eight major categories. Delving deeper, our analysis furnishes detailed quantitative metrics showcasing growth trends over the past three years. Our findings not only provide valuable insights for guiding future research endeavors but also underscore the merit of tapping the vast and unparalleled breadth of existing scientific information to derive profound insights.
Collapse
Affiliation(s)
| | - Julian Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Sabina Scott
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
2
|
Miali ME, Chien W, Moore TL, Felici A, Palange AL, Oneto M, Fedosov D, Decuzzi P. Assessing Differential Particle Deformability under Microfluidic Flow Conditions. ACS Biomater Sci Eng 2023; 9:3690-3698. [PMID: 37194468 PMCID: PMC10265569 DOI: 10.1021/acsbiomaterials.3c00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
Assessing the mechanical behavior of nano- and micron-scale particles with complex shapes is fundamental in drug delivery. Although different techniques are available to quantify the bulk stiffness in static conditions, there is still uncertainty in assessing particle deformability in dynamic conditions. Here, a microfluidic chip is designed, engineered, and validated as a platform to assess the mechanical behavior of fluid-borne particles. Specifically, potassium hydroxide (KOH) wet etching was used to realize a channel incorporating a series of micropillars (filtering modules) with different geometries and openings, acting as microfilters in the direction of the flow. These filtering modules were designed with progressively decreasing openings, ranging in size from about 5 down to 1 μm. Discoidal polymeric nanoconstructs (DPNs), with a diameter of 5.5 μm and a height of 400 nm, were realized with different poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) ratios (PLGA/PEG), namely, 5:1 and 1:0, resulting in soft and rigid particles, respectively. Given the peculiar geometry of DPNs, the channel height was kept to 5 μm to limit particle tumbling or flipping along the flow. After thorough physicochemical and morphological characterization, DPNs were tested within the microfluidic chip to investigate their behavior under flow. As expected, most rigid DPNs were trapped in the first series of pillars, whereas soft DPNs were observed to cross multiple filtering modules and reach the micropillars with the smallest opening (1 μm). This experimental evidence was also supported by computational tools, where DPNs were modeled as a network of springs and beads immersed in a Newtonian fluid using the smoothed particle hydrodynamics (SPH) method. This preliminary study presents a combined experimental-computational framework to quantify, compare, and analyze the characteristics of particles having complex geometrical and mechanical attributes under flow conditions.
Collapse
Affiliation(s)
- Marco E. Miali
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Wei Chien
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- Institute
of Biological Information Processing, Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Thomas Lee Moore
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Alessia Felici
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Anna Lisa Palange
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Michele Oneto
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Dmitry Fedosov
- Institute
of Biological Information Processing, Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Paolo Decuzzi
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
3
|
Mishra S, Bhatt T, Kumar H, Jain R, Shilpi S, Jain V. Nanoconstructs for theranostic application in cancer: Challenges and strategies to enhance the delivery. Front Pharmacol 2023; 14:1101320. [PMID: 37007005 PMCID: PMC10050349 DOI: 10.3389/fphar.2023.1101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Nanoconstructs are made up of nanoparticles and ligands, which can deliver the loaded cargo at the desired site of action. Various nanoparticulate platforms have been utilized for the preparation of nanoconstructs, which may serve both diagnostic as well as therapeutic purposes. Nanoconstructs are mostly used to overcome the limitations of cancer therapies, such as toxicity, nonspecific distribution of the drug, and uncontrolled release rate. The strategies employed during the design of nanoconstructs help improve the efficiency and specificity of loaded theranostic agents and make them a successful approach for cancer therapy. Nanoconstructs are designed with a sole purpose of targeting the requisite site, overcoming the barriers which hinders its right placement for desired benefit. Therefore, instead of classifying modes for delivery of nanoconstructs as actively or passively targeted systems, they are suitably classified as autonomous and nonautonomous types. At large, nanoconstructs offer numerous benefits, however they suffer from multiple challenges, too. Hence, to overcome such challenges computational modelling methods and artificial intelligence/machine learning processes are being explored. The current review provides an overview on attributes and applications offered by nanoconstructs as theranostic agent in cancer.
Collapse
Affiliation(s)
- Shivani Mishra
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Satish Shilpi
- Department of Pharmaceutics, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
- *Correspondence: Vikas Jain,
| |
Collapse
|
4
|
Waheed S, Li Z, Zhang F, Chiarini A, Armato U, Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J Nanobiotechnology 2022; 20:395. [PMID: 36045386 PMCID: PMC9428887 DOI: 10.1186/s12951-022-01605-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
The rapid advancement of nanomedicine and nanoparticle (NP) materials presents novel solutions potentially capable of revolutionizing health care by improving efficacy, bioavailability, drug targeting, and safety. NPs are intriguing when considering medical applications because of their essential and unique qualities, including a significantly higher surface to mass ratio, quantum properties, and the potential to adsorb and transport drugs and other compounds. However, NPs must overcome or navigate several biological barriers of the human body to successfully deliver drugs at precise locations. Engineering the drug carrier biointerface can help overcome the main biological barriers and optimize the drug delivery in a more personalized manner. This review discusses the significant heterogeneous biological delivery barriers and how biointerface engineering can promote drug carriers to prevail over hurdles and navigate in a more personalized manner, thus ushering in the era of Precision Medicine. We also summarize the nanomedicines' current advantages and disadvantages in drug administration, from natural/synthetic sources to clinical applications. Additionally, we explore the innovative NP designs used in both non-personalized and customized applications as well as how they can attain a precise therapeutic strategy.
Collapse
Affiliation(s)
- Saquib Waheed
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Zhibin Li
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Fangyingnan Zhang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy
| | - Ubaldo Armato
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy.
| |
Collapse
|
5
|
Moore TL, Cook AB, Bellotti E, Palomba R, Manghnani P, Spanò R, Brahmachari S, Di Francesco M, Palange AL, Di Mascolo D, Decuzzi P. Shape-specific microfabricated particles for biomedical applications: a review. Drug Deliv Transl Res 2022; 12:2019-2037. [PMID: 35284984 PMCID: PMC9242933 DOI: 10.1007/s13346-022-01143-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The storied history of controlled the release systems has evolved over time; from degradable drug-loaded sutures to monolithic zero-ordered release devices and nano-sized drug delivery formulations. Scientists have tuned the physico-chemical properties of these drug carriers to optimize their performance in biomedical/pharmaceutical applications. In particular, particle drug delivery systems at the micron size regime have been used since the 1980s. Recent advances in micro and nanofabrication techniques have enabled precise control of particle size and geometry-here we review the utility of microplates and discoidal polymeric particles for a range of pharmaceutical applications. Microplates are defined as micrometer scale polymeric local depot devices in cuboid form, while discoidal polymeric nanoconstructs are disk-shaped polymeric particles having a cross-sectional diameter in the micrometer range and a thickness in the hundreds of nanometer range. These versatile particles can be used to treat several pathologies such as cancer, inflammatory diseases and vascular diseases, by leveraging their size, shape, physical properties (e.g., stiffness), and component materials, to tune their functionality. This review highlights design and fabrication strategies for these particles, discusses their applications, and elaborates on emerging trends for their use in formulations.
Collapse
Affiliation(s)
- Thomas L Moore
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy.
| | - Alexander B Cook
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Elena Bellotti
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Purnima Manghnani
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| |
Collapse
|
6
|
Micro-particle entrapment dynamics in microfluidic pulmonary capillary networks. J Biomech 2022; 137:111082. [PMID: 35489235 DOI: 10.1016/j.jbiomech.2022.111082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 12/29/2022]
Abstract
The journey of vascular targeted carriers (VTC) in the circulatory system is highly intricate and includes navigation through different vessel structures, such as the vast pulmonary capillary network (PCN) in the lungs where particles can get entrapped and lead to blockage. Here, we leverage microfluidic PCN models to explore, for the first time, micro-particle capillary entrapment, in a well-controlled biophysical environment mimicking human physiological hemodynamics at true scale. This in vitro strategy mimics the challenges of vascular carrier transport during their journey in the smallest capillaries of the body (∼5 µm). Specifically, we explore in the PCN model entrapment dynamics of spherical micro-particles of different diameters (i.e. 3, 4 and 4.5 µm) at different concentrations, comparing their motion in cell-free buffer to that in the presence of red blood cells (RBCs). Notably, while 3 µm particles exhibit undisturbed transport in all of the examined concentrations, both in cell-free buffer and in the presence of RBCs, particles of 4 and 4.5 µm exhibit a concentration-dependent transport where the presence of RBCs leads in fact to reduced entrapment. Our experiments suggest that collisions of micro-particles with RBCs can facilitate their navigability, allowing for carrier transport that would lead otherwise to rapid entrapment in a cell-free environment. Altogether, the proposed preclinical in vitro assays offer rapid screening opportunities for design optimization of VTC transport in capillary networks.
Collapse
|
7
|
Felici A, Schlich M, Di Mascolo D, Goldoni L, Lisa Palange A, Decuzzi P. Boosting the Therapeutic Efficacy of Discoidal Nanoconstructs against Glioblastoma with Rationally Designed PEG-Docetaxel Conjugates. Eur J Pharm Biopharm 2022; 174:90-100. [DOI: 10.1016/j.ejpb.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
|
8
|
Manghnani PN, Di Francesco V, Panella La Capria C, Schlich M, Miali ME, Moore TL, Zunino A, Duocastella M, Decuzzi P. Preparation of anisotropic multiscale micro-hydrogels via two-photon continuous flow lithography. J Colloid Interface Sci 2022; 608:622-633. [PMID: 34626997 DOI: 10.1016/j.jcis.2021.09.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
HYPOTHESIS Polymeric anisotropic soft microparticles show interesting behavior in biological environments and hold promise for drug delivery and biomedical applications. However, self-assembly and substrate-based lithographic techniques are limited by low resolution, batch operation or specific particle geometry and deformability. Two-photon polymerization in microfluidic channels may offer the required resolution to continuously fabricate anisotropic micro-hydrogels in sub-10 µm size-range. EXPERIMENTS Here, a pulsed laser source is used to perform two-photon polymerization under microfluidic flow of a poly(ethylene glycol) diacrylate (PEGDA) solution with the objective of realizing anisotropic micro-hydrogels carrying payloads of various nature, including small molecules and nanoparticles. The fabrication process is described via a reactive-convective-diffusion system of equations, whose solution under proper auxiliary conditions is used to corroborate the experimental observations and sample the configuration space. FINDINGS By tuning the flow velocity, exposure time and pre-polymer composition, anisotropic PEGDA micro-hydrogels are obtained in the 1-10 μm size-range and exhibit an aspect ratio varying from 1 to 5. Furthermore, 200 nm curcumin-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles and 100 nm ssRNA-encapsulating lipid nanoparticles were entrapped within square PEGDA micro-hydrogels. The proposed approach could support the fabrication of micro-hydrogels of well-defined morphology, stiffness, and surface properties for the sustained release of therapeutic agents.
Collapse
Affiliation(s)
- Purnima N Manghnani
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Valentina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Carlo Panella La Capria
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Michele Schlich
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marco Elvino Miali
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Thomas Lee Moore
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Alessandro Zunino
- Nanoscopy, CHT Erzelli, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
| | - Marti Duocastella
- Nanoscopy, CHT Erzelli, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy; Department of Applied Physics, Universitat de Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| |
Collapse
|
9
|
Cook AB, Schlich M, Manghnani PN, Moore TL, Decuzzi P, Palange AL. Size effects of discoidal
PLGA
nanoconstructs in Pickering emulsion stabilization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alexander B. Cook
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Genoa Italy
| | - Michele Schlich
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Genoa Italy
| | - Purnima N. Manghnani
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Genoa Italy
| | - Thomas L. Moore
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Genoa Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Genoa Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Genoa Italy
| |
Collapse
|
10
|
Chugh V, Vijaya Krishna K, Pandit A. Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS NANO 2021; 15:17080-17123. [PMID: 34699181 PMCID: PMC8613911 DOI: 10.1021/acsnano.1c03800] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/13/2021] [Indexed: 05/04/2023]
Abstract
Cell membrane-coated (CMC) mimics are micro/nanosystems that combine an isolated cell membrane and a template of choice to mimic the functions of a cell. The design exploits its physicochemical and biological properties for therapeutic applications. The mimics demonstrate excellent biological compatibility, enhanced biointerfacing capabilities, physical, chemical, and biological tunability, ability to retain cellular properties, immune escape, prolonged circulation time, and protect the encapsulated drug from degradation and active targeting. These properties and the ease of adapting them for personalized clinical medicine have generated a significant research interest over the past decade. This review presents a detailed overview of the recent advances in the development of cell membrane-coated (CMC) mimics. The primary focus is to collate and discuss components, fabrication methodologies, and the significance of physiochemical and biological characterization techniques for validating a CMC mimic. We present a critical analysis of the two main components of CMC mimics: the template and the cell membrane and mapped their use in therapeutic scenarios. In addition, we have emphasized on the challenges associated with CMC mimics in their clinical translation. Overall, this review is an up to date toolbox that researchers can benefit from while designing and characterizing CMC mimics.
Collapse
Affiliation(s)
| | | | - Abhay Pandit
- CÚRAM, SFI Research
Centre for Medical Devices, National University
of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
11
|
Stater EP, Sonay AY, Hart C, Grimm J. The ancillary effects of nanoparticles and their implications for nanomedicine. NATURE NANOTECHNOLOGY 2021; 16:1180-1194. [PMID: 34759355 PMCID: PMC9031277 DOI: 10.1038/s41565-021-01017-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/22/2021] [Indexed: 05/12/2023]
Abstract
Nanoparticles are often engineered as a scaffolding system to combine targeting, imaging and/or therapeutic moieties into a unitary agent. However, mostly overlooked, the nanomaterial itself interacts with biological systems exclusive of application-specific particle functionalization. This nanoparticle biointerface has been found to elicit specific biological effects, which we term 'ancillary effects'. In this Review, we describe the current state of knowledge of nanobiology gleaned from existing studies of ancillary effects with the objectives to describe the potential of nanoparticles to modulate biological effects independently of any engineered function; evaluate how these effects might be relevant for nanomedicine design and functional considerations, particularly how they might be useful to inform clinical decision-making; identify potential clinical harm that arises from adverse nanoparticle interactions with biology; and, finally, highlight the current lack of knowledge in this area as both a barrier and an incentive to the further development of nanomedicine.
Collapse
Affiliation(s)
- Evan P Stater
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Ali Y Sonay
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cassidy Hart
- Department of General Surgery, Lankenau Medical Center, Wynnewood, PA, USA
| | - Jan Grimm
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
12
|
Cook AB, Clemons TD. Bottom‐Up versus Top‐Down Strategies for Morphology Control in Polymer‐Based Biomedical Materials. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Alexander B. Cook
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy
| | - Tristan D. Clemons
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg MS 39406 USA
| |
Collapse
|
13
|
Abstract
Despite cancer nanomedicine celebrates already thirty years since its introduction, together with the achievements and progress in cancer treatment area, it still undergoes serious disadvantages that must be addressed. Since the first observation that macromolecules tend to accumulate in tumor tissue due to fenestrated endothelial of vasculature, considered as the “royal gate” in drug delivery field, more than dozens of nanoformulations have been approved and introduced into the practice for cancer treatment. Lipid, polymeric, and hybrid nanocarriers are biocompatible nano-drug delivery systems (NDDs) having suitable physicochemical properties and modulate payload release in response to specific chemical or physical stimuli. Biopharmaceutical properties of NDDs and their efficacy in animal models and humans can significantly affect their impact and perspective in nanomedicine. One of the future directions could be focusing on personalized cancer treatment, considering the heterogeneity and complexity of each patient tumor tissue and the designing of multifunctional targeted NDDs combining synthetic nanomaterials and biological components, like cellular membranes, circulating proteins, RNAi/DNAi, which enforce the efficacy of NDDs and boost their therapeutic effect.
Collapse
|
14
|
Barbato MG, Pereira RC, Mollica H, Palange A, Ferreira M, Decuzzi P. A permeable on-chip microvasculature for assessing the transport of macromolecules and polymeric nanoconstructs. J Colloid Interface Sci 2021; 594:409-423. [PMID: 33774397 DOI: 10.1016/j.jcis.2021.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 01/19/2023]
Abstract
HYPOTHESIS The selective permeation of molecules and nanomedicines across the diseased vasculature dictates the success of a therapeutic intervention. Yet, in vitro assays cannot recapitulate relevant differences between the physiological and pathological microvasculature. Here, a double-channel microfluidic device was engineered to comprise vascular and extravascular compartments connected through a micropillar membrane with tunable permeability. EXPERIMENTS The vascular compartment was coated by endothelial cells to achieve permeability values ranging from ~0.1 μm/sec, following a cyclic adenosine monophosphate (cAMP) pre-treatment (25 μg/mL), up to ~2 μm/sec, upon exposure to Mannitol, Lexiscan or in the absence of cells. Fluorescent microscopy was used to monitor the vascular behavior of 250 kDa Dextran molecules, 200 nm polystyrene nanoparticles (PB), and 1,000 × 400 nm discoidal polymeric nanoconstructs (DPN), under different permeability and flow conditions. FINDINGS In the proposed on-chip microvasculature, it was confirmed that permeation enhancers could favor the perivascular accumulation of ~200 nm, in a dose and time dependent fashion, while have no effect on larger particles. Moreover, the microfluidic device was used to interrogate the role of particle deformability in vascular dynamics. In the presence of a continuous endothelium, soft DPN attached to the vasculature more avidly at sub-physiological flows (100 μm/sec) than rigid DPN, whose deposition was larger at higher flow rates (1 mm/sec). The proposed double-channel microfluidic device can be efficiently used to systematically analyze the vascular behavior of drug delivery systems to enhance their tissue specific accumulation.
Collapse
Affiliation(s)
- Maria Grazia Barbato
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Via Dodecaneso 25, 16146 Genoa, Italy
| | - Rui C Pereira
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Hilaria Mollica
- I.R.C.C.S. Istituto Giannina Gaslini, Via Gerolamo Gaslini 3, 16147 Genoa, Italy
| | - AnnaLisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Miguel Ferreira
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| |
Collapse
|
15
|
Radnia F, Mohajeri N, Hashemi F, Imani M, Zarghami N. Design and development of folate-chitosan/CD nanogel: An efficient fluorescent platform for Cancer-specific delivery of AntimiR-21. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Cook A, Decuzzi P. Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS NANO 2021; 15:2068-2098. [PMID: 33555171 PMCID: PMC7905878 DOI: 10.1021/acsnano.0c09115] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/02/2021] [Indexed: 05/04/2023]
Abstract
Materials that respond to endogenous stimuli are being leveraged to enhance spatiotemporal control in a range of biomedical applications from drug delivery to diagnostic tools. The design of materials that undergo morphological or chemical changes in response to specific biological cues or pathologies will be an important area of research for improving efficacies of existing therapies and imaging agents, while also being promising for developing personalized theranostic systems. Internal stimuli-responsive systems can be engineered across length scales from nanometers to macroscopic and can respond to endogenous signals such as enzymes, pH, glucose, ATP, hypoxia, redox signals, and nucleic acids by incorporating synthetic bio-inspired moieties or natural building blocks. This Review will summarize response mechanisms and fabrication strategies used in internal stimuli-responsive materials with a focus on drug delivery and imaging for a broad range of pathologies, including cancer, diabetes, vascular disorders, inflammation, and microbial infections. We will also discuss observed challenges, future research directions, and clinical translation aspects of these responsive materials.
Collapse
Affiliation(s)
- Alexander
B. Cook
- Laboratory of Nanotechnology
for Precision Medicine, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology
for Precision Medicine, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| |
Collapse
|
17
|
Zhang J, Lu N, Weng L, Feng Z, Tao J, Su X, Yu R, Shi W, Qiu Q, Teng Z, Wang L. General and facile syntheses of hybridized deformable hollow mesoporous organosilica nanocapsules for drug delivery. J Colloid Interface Sci 2021; 583:714-721. [DOI: 10.1016/j.jcis.2020.09.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/07/2023]
|
18
|
Conventional Nanosized Drug Delivery Systems for Cancer Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:3-27. [PMID: 33543453 DOI: 10.1007/978-3-030-58174-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical responses and tolerability of conventional nanocarriers (NCs) are sometimes different from those expected in anticancer therapy. Thus, new smart drug delivery systems (DDSs) with stimuli-responsive properties and novel materials have been developed. Several clinical trials demonstrated that these DDSs have better clinical therapeutic efficacy in the treatment of many cancers than free drugs. Composition of DDSs and their surface properties increase the specific targeting of therapeutics versus cancer cells, without affecting healthy tissues, and thus limiting their toxicity versus unspecific tissues. Herein, an extensive revision of literature on NCs used as DDSs for cancer applications has been performed using the available bibliographic databases.
Collapse
|
19
|
Di Francesco M, Primavera R, Summa M, Pannuzzo M, Di Francesco V, Di Mascolo D, Bertorelli R, Decuzzi P. Engineering shape-defined PLGA microPlates for the sustained release of anti-inflammatory molecules. J Control Release 2020; 319:201-212. [DOI: 10.1016/j.jconrel.2019.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
|
20
|
Ferreira M, Rizzuti IF, Palange AL, Barbato MG, Di Francesco V, Di Francesco M, Decuzzi P. Optimizing the Pharmacological Properties of Discoidal Polymeric Nanoconstructs Against Triple-Negative Breast Cancer Cells. Front Bioeng Biotechnol 2020; 8:5. [PMID: 32140459 PMCID: PMC7042398 DOI: 10.3389/fbioe.2020.00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/06/2020] [Indexed: 01/05/2023] Open
Abstract
Fine-tuning loading and release of therapeutic and imaging agents associated with polymeric matrices is a fundamental step in the preclinical development of novel nanomedicines. Here, 1,000 × 400 nm Discoidal Polymeric Nanoconstructs (DPNs) were realized via a top-down, template-based fabrication approach, mixing together poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol)-diacrylate (PEG-DA) chains in a single polymer paste. Two different loading strategies were tested, namely the "direct loading" and the "absorption loading." In the first case, the agent was directly mixed with the polymeric paste to realize DPNs whereas, in the second case, DPNs were first lyophilized and then rehydrated upon exposure to a concentrated aqueous solution of the agent. Under these two loading conditions, the encapsulation efficiencies and release profiles of different agents were systematically assessed. Specifically, six agents were realized by conjugating lipid chains (DSPE) or polymeric chains (PEG) to the near-infrared imaging molecule Cy5 (DSPE-Cy5 A and DSPE-Cy5 B); the chemotherapeutic molecules methotrexate (DSPE-MTX and PEG-MTX) and doxorubicin (LA-DOX and DSPE-DOX). Moderately hydrophobic compounds with low molecular weights (MW) returned encapsulation efficiencies as high as 80% for the absorption loading. In general, direct loading was associated with encapsulation efficiencies lower than 1%. The agent hydrophobicity and MW were shown to be critical also in tailoring the release profiles from DPNs. On triple-negative breast cancer cells (MDA-MB-231), absorption loaded DOX-DPNs showed cytotoxic activities comparable to free DOX but slightly delayed in time. Preliminary in vivo studies demonstrated the high stability of Cy5-DPNs. Collectively, these results demonstrate that the pharmacological properties of DPNs can be finely optimized by changing the loading strategies (direct vs. absorption) and compound attributes (hydrophobicity and molecular weight).
Collapse
Affiliation(s)
- Miguel Ferreira
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Ilaria Francesca Rizzuti
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Maria Grazia Barbato
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
| | - Valentina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
| | - Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
21
|
Allen SD, Bobbala S, Karabin NB, Modak M, Scott EA. Benchmarking Bicontinuous Nanospheres against Polymersomes for in Vivo Biodistribution and Dual Intracellular Delivery of Lipophilic and Water-Soluble Payloads. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33857-33866. [PMID: 30213189 DOI: 10.1021/acsami.8b09906] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bicontinuous nanospheres (BCNs) are polymeric analogs to lipid cubosomes, possessing cubic liquid crystalline phases with high internal surface area, aqueous channels for loading hydrophilic molecules, and high hydrophobic volume for lipophilic payloads. Primarily due to difficulties in scalable and consistent fabrication, neither controlled delivery of payloads via BCNs nor their organ or cellular biodistributions following in vivo administration have been demonstrated or characterized. We have recently validated flash nanoprecipitation as a rapid method of assembling uniform monodisperse 200-300 nm diameter BCNs from poly(ethylene glycol) -b-poly(propylene sulfide) (PEG -b-PPS) co-polymers. Here, we compare these BCNs both in vitro and in vivo to 100 nm PEG -b-PPS polymersomes (PSs), which have been well characterized as nanocarriers for controlled delivery applications. Using a small molecule fluorophore and a fluorescently tagged protein as respective lipophilic and water-soluble model cargos, we demonstrate that BCNs can achieve significantly higher encapsulation efficiencies for both payloads on a per unit mass basis. At time points of 4 and 24 h after intravenous administration to mice, we found significant differences in organ-level uptake between BCNs and PSs, with BCNs showing reduced accumulation in the liver and increased uptake in the spleen. Despite these organ-level differences, BCNs and PSs displayed strikingly similar uptake profiles by immune cell populations in vitro and in the liver, spleen, and blood, as assayed by flow cytometry. In conclusion, we have found PEG -b-PPS BCNs to be well suited for dual loading and delivery of molecular payloads, with a favorable organ biodistribution and high cell uptake by therapeutically relevant immune cell populations.
Collapse
|
22
|
Interaction of engineered nanomaterials with the immune system: Health-related safety and possible benefits. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Di Francesco M, Primavera R, Romanelli D, Palomba R, Pereira RC, Catelani T, Celia C, Di Marzio L, Fresta M, Di Mascolo D, Decuzzi P. Hierarchical Microplates as Drug Depots with Controlled Geometry, Rigidity, and Therapeutic Efficacy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9280-9289. [PMID: 29481038 DOI: 10.1021/acsami.7b19136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A variety of microparticles have been proposed for the sustained and localized delivery of drugs with the objective of increasing therapeutic indexes by circumventing filtering organs and biological barriers. Yet, the geometrical, mechanical, and therapeutic properties of such microparticles cannot be simultaneously and independently tailored during the fabrication process to optimize their performance. In this work, a top-down approach is employed to realize micron-sized polymeric particles, called microplates (μPLs), for the sustained release of therapeutic agents. μPLs are square hydrogel particles, with an edge length of 20 μm and a height of 5 μm, made out of poly(lactic- co-glycolic acid) (PLGA). During the synthesis process, the μPL Young's modulus can be varied from 0.6 to 5 MPa by changing the PLGA amounts from 1 to 7.5 mg, without affecting the μPL geometry while matching the properties of the surrounding tissue. Within the porous μPL matrix, different classes of therapeutic payloads can be incorporated including molecular agents, such as anti-inflammatory dexamethasone (DEX), and nanoparticles containing imaging and therapeutic molecules themselves, thus originating a truly hierarchical platform. As a proof of principle, μPLs are loaded with free DEX and 200 nm spherical polymeric nanoparticles, carrying DEX molecules (DEX-SPNs). Electron and fluorescent confocal microscopy analyses document the uniform distribution and stability of molecular and nanoagents within the μPL matrix. This multiscale, hierarchical microparticle releases DEX for at least 10 days. The inclusion of DEX-SPNs serves to minimize the initial burst release and modulate the diffusion of DEX molecules out of the μPL matrix. The biopharmacological and therapeutic properties together with the fine tuning of geometry and mechanical stiffness make μPLs a unique polymeric depot for the potential treatment of cancer, cardiovascular, and chronic, inflammatory diseases.
Collapse
Affiliation(s)
- Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Rosita Primavera
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Davide Romanelli
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Rui C Pereira
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Tiziano Catelani
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Christian Celia
- Department of Pharmacy , University of Chieti-Pescara "G. D'Annunzio" , Via dei Vestini , Campus Universitario , 66100 Chieti , Italy
| | - Luisa Di Marzio
- Department of Pharmacy , University of Chieti-Pescara "G. D'Annunzio" , Via dei Vestini , Campus Universitario , 66100 Chieti , Italy
| | - Massimo Fresta
- Department of Health Sciences , University of Catanzaro "Magna Graecia" , Viale Europa , 88100 Catanzaro , Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| |
Collapse
|
25
|
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 2017; 34:33-51. [DOI: 10.1016/j.smim.2017.08.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
|
26
|
Moghimi SM, Wagner E. Nanoparticle Technology: Having Impact, but Needing Further Optimization. Mol Ther 2017. [PMID: 28625572 DOI: 10.1016/j.ymthe.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- S Moein Moghimi
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, UK.
| | - Ernst Wagner
- Department of Pharmacy, Ludwig-Maximillians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany.
| |
Collapse
|