1
|
Anwar S, Roshmi RR, Woo S, Haque US, Arthur Lee JJ, Duddy WJ, Bigot A, Maruyama R, Yokota T. Antisense oligonucleotide-mediated exon 27 skipping restores dysferlin function in dysferlinopathy patient-derived muscle cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102443. [PMID: 39967852 PMCID: PMC11834094 DOI: 10.1016/j.omtn.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
Dysferlinopathies are debilitating autosomal recessive muscular dystrophies caused by mutations in the DYSF gene, encoding dysferlin, a protein crucial for sarcolemmal homeostasis and membrane resealing. Currently, no therapies exist for dysferlinopathies. Dysferlin features a modular structure with multiple calcium-dependent C2 lipid-binding domains. Clinical reports of mild, late-onset phenotypes suggest partial retention of functionality despite missing C2 domains, supporting exon-skipping therapies using antisense oligonucleotides (ASOs). In this study, we identified a patient-derived muscle cell line with a splice site mutation in DYSF intron 26, causing exon 26 exclusion, an out-of-frame transcript, and no detectable dysferlin protein. We hypothesized that skipping DYSF exon 27 could restore the reading frame and membrane repair function. Using an in-house in silico tool, we designed ASOs targeting exon 27. Treatment resulted in 65%-92% exon 27 skipping in myoblasts and myotubes, leading to a 39%-51% rescue of normal dysferlin expression, demonstrating robust efficacy of our designed ASOs. Two-photon laser-based assays indicated functional membrane repair. Additionally, we observed improved myotube fusion, cell vitality, and reduced apoptosis levels post-treatment. These findings provide proof of concept that DYSF exon 27 skipping restores functional dysferlin in patient-derived cells, paving the way for future in vivo and clinical studies.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Rohini Roy Roshmi
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Stanley Woo
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Umme Sabrina Haque
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Joshua James Arthur Lee
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - William John Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, BT47 6SB Derry-Londonderry, UK
| | - Anne Bigot
- Centre de Recherche en Myologie, Institut de Myologie, Sorbonne Université–L’Institut National de la Santé et de la Recherche Médicale (INSERM), 75651 Paris Cedex, France
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada Endowed Research Chair and the Henri M. Toupin Chair in Neurological Science, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
2
|
Hasegawa J, Nagata T, Ihara K, Tanihata J, Ebihara S, Yoshida-Tanaka K, Yanagidaira M, Ohara M, Sasaki A, Nakayama M, Yamamoto S, Ishii T, Iwata-Hara R, Naito M, Miyata K, Sakaue F, Yokota T. Heteroduplex oligonucleotide technology boosts oligonucleotide splice switching activity of morpholino oligomers in a Duchenne muscular dystrophy mouse model. Nat Commun 2024; 15:7530. [PMID: 39327422 PMCID: PMC11427662 DOI: 10.1038/s41467-024-48204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2024] [Indexed: 09/28/2024] Open
Abstract
The approval of splice-switching oligonucleotides with phosphorodiamidate morpholino oligomers (PMOs) for treating Duchenne muscular dystrophy (DMD) has advanced the field of oligonucleotide therapy. Despite this progress, PMOs encounter challenges such as poor tissue uptake, particularly in the heart, diaphragm, and central nervous system (CNS), thereby affecting patient's prognosis and quality of life. To address these limitations, we have developed a PMOs-based heteroduplex oligonucleotide (HDO) technology. This innovation involves a lipid-ligand-conjugated complementary strand hybridized with PMOs, significantly enhancing delivery to key tissues in mdx mice, normalizing motor functions, muscle pathology, and serum creatine kinase by restoring internal deleted dystrophin expression. Additionally, PMOs-based HDOs normalized cardiac and CNS abnormalities without adverse effects. Our technology increases serum albumin binding to PMOs and improves blood retention and cellular uptake. Here we show that PMOs-based HDOs address the limitations in oligonucleotide therapy for DMD and offer a promising approach for diseases amenable to exon-skipping therapy.
Collapse
Affiliation(s)
- Juri Hasegawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan.
- NucleoTIDE and PepTIDE Drug Discovery Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan.
| | - Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Jun Tanihata
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, 105-8461, Minato-ku, Tokyo, Japan
| | - Satoe Ebihara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Mitsugu Yanagidaira
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Masahiro Ohara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Asuka Sasaki
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Miyu Nakayama
- COE for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, 2-26-1, Fujisawa, Kanagawa, 251-8555, Japan
| | - Syunsuke Yamamoto
- COE for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, 2-26-1, Fujisawa, Kanagawa, 251-8555, Japan
| | - Takashi Ishii
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Rintaro Iwata-Hara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Fumika Sakaue
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan.
- NucleoTIDE and PepTIDE Drug Discovery Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan.
| |
Collapse
|
3
|
Escobar-Huertas JF, Vaca-González JJ, Guevara JM, Ramirez-Martinez AM, Trabelsi O, Garzón-Alvarado DA. Duchenne and Becker muscular dystrophy: Cellular mechanisms, image analysis, and computational models: A review. Cytoskeleton (Hoboken) 2024; 81:269-286. [PMID: 38224155 DOI: 10.1002/cm.21826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The muscle is the principal tissue that is capable to transform potential energy into kinetic energy. This process is due to the transformation of chemical energy into mechanical energy to enhance the movements and all the daily activities. However, muscular tissues can be affected by some pathologies associated with genetic alterations that affect the expression of proteins. As the muscle is a highly organized structure in which most of the signaling pathways and proteins are related to one another, pathologies may overlap. Duchenne muscular dystrophy (DMD) is one of the most severe muscle pathologies triggering degeneration and muscle necrosis. Several mathematical models have been developed to predict muscle response to different scenarios and pathologies. The aim of this review is to describe DMD and Becker muscular dystrophy in terms of cellular behavior and molecular disorders and to present an overview of the computational models implemented to understand muscle behavior with the aim of improving regenerative therapy.
Collapse
Affiliation(s)
- J F Escobar-Huertas
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne Cedex, France
| | - Juan Jairo Vaca-González
- Escuela de pregrado, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede la Paz, Cesar, Colombia
| | - Johana María Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Olfa Trabelsi
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne Cedex, France
| | - D A Garzón-Alvarado
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Wilton-Clark H, Yokota T. Recent Trends in Antisense Therapies for Duchenne Muscular Dystrophy. Pharmaceutics 2023; 15:778. [PMID: 36986639 PMCID: PMC10054484 DOI: 10.3390/pharmaceutics15030778] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating and fatal genetic disease affecting 1/5000 boys globally, characterized by progressive muscle breakdown and eventual death, with an average lifespan in the mid-late twenties. While no cure yet exists for DMD, gene and antisense therapies have been heavily explored in recent years to better treat this disease. Four antisense therapies have received conditional FDA approval, and many more exist in varying stages of clinical trials. These upcoming therapies often utilize novel drug chemistries to address limitations of existing therapies, and their development could herald the next generation of antisense therapy. This review article aims to summarize the current state of development for antisense-based therapies for the treatment of Duchenne muscular dystrophy, exploring candidates designed for both exon skipping and gene knockdown.
Collapse
Affiliation(s)
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
5
|
Shah MNA, Yokota T. Restoring Dystrophin Expression by Skipping Exons 6 and 8 in Neonatal Dystrophic Dogs. Methods Mol Biol 2023; 2587:107-124. [PMID: 36401026 DOI: 10.1007/978-1-0716-2772-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the mutations in the DMD gene resulting in no dystrophin production. Skipping DMD exons using phosphorodiamidate morpholino oligomers (PMOs) is an emerging treatment strategy that can restore the reading frame of the mutated gene and produce truncated but functional dystrophin protein. To date, four PMOs, including eteplirsen, casimersen, viltolarsen, and golodirsen, have been conditionally approved by the FDA for the treatment of DMD. Since degeneration of muscle fibers and irreversible fibrosis occur from childhood, the earlier treatment is preferred. The canine X-linked muscular dystrophy in Japan (CXMDj), a dog model of DMD, produces no dystrophin and exhibits a severe phenotype similar to human patients from early childhood. As such, CXMDj, which harbors a splice site mutation in intron 6, is a useful model for examining the long-term effects of early PMO treatment. In this chapter, we describe the systemic delivery of a cocktail of four PMOs that can successfully induce multiple exon skipping (exons 6-9) in neonatal dystrophic dogs. We also describe the procedures to evaluate the efficacy and toxicity, including clinical grading of dystrophic dogs, ELISA-based quantification of PMOs, histology, RT-PCR, and western blotting.
Collapse
Affiliation(s)
- Md Nur Ahad Shah
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Muscular Dystrophy Canada Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Abstract
Viltolarsen is a phosphorodiamidate morpholino antisense oligonucleotide (PMO) designed to skip exon 53 of the DMD gene for the treatment of Duchenne muscular dystrophy (DMD), one of the most common lethal genetic disorders characterized by progressive degeneration of skeletal muscles and cardiomyopathy. It was developed by Nippon Shinyaku in collaboration with the National Center of Neurology and Psychiatry (NCNP) in Japan based on the preclinical studies conducted in the DMD dog model at the NCNP. After showing hopeful results in pre-clinical trials and several clinical trials across North America and Japan, it received US Food and Drug Administration (FDA) approval for DMD in 2020. Viltolarsen restores the reading frame of the DMD gene by skipping exon 53 and produces a truncated but functional form of dystrophin. It can treat approximately 8-10% of the DMD patient population. This paper aims to summarize the development of viltolarsen from preclinical trials to clinical trials to, finally, FDA approval, and discusses the challenges that come with fighting DMD using antisense therapy.
Collapse
Affiliation(s)
- Rohini Roy Roshmi
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, Canada.
| |
Collapse
|
7
|
Stirm M, Fonteyne LM, Shashikadze B, Stöckl JB, Kurome M, Keßler B, Zakhartchenko V, Kemter E, Blum H, Arnold GJ, Matiasek K, Wanke R, Wurst W, Nagashima H, Knieling F, Walter MC, Kupatt C, Fröhlich T, Klymiuk N, Blutke A, Wolf E. Pig models for Duchenne muscular dystrophy – from disease mechanisms to validation of new diagnostic and therapeutic concepts. Neuromuscul Disord 2022; 32:543-556. [DOI: 10.1016/j.nmd.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
|
8
|
Development of DG9 peptide-conjugated single- and multi-exon skipping therapies for the treatment of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2022; 119:2112546119. [PMID: 35193974 PMCID: PMC8892351 DOI: 10.1073/pnas.2112546119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal disorder of progressive body-wide muscle weakness, considered the most common muscular dystrophy worldwide. Most patients have out-of-frame deletions in the DMD gene, leading to dystrophin absence in muscle. There is no cure for DMD, but exon skipping is emerging as a potential therapy that uses antisense oligonucleotides to convert out-of-frame to in-frame mutations, enabling the production of truncated, partially functional dystrophin. Currently approved exon skipping therapies, however, have limited applicability and efficacy. Here, we developed a more economical approach to skip DMD exons 45 to 55 (a strategy that could treat nearly half of all DMD patients) and identified DG9 peptide conjugation as a powerful way to improve exon skipping efficiencies in vivo. Duchenne muscular dystrophy (DMD) is primarily caused by out-of-frame deletions in the dystrophin gene. Exon skipping using phosphorodiamidate morpholino oligomers (PMOs) converts out-of-frame to in-frame mutations, producing partially functional dystrophin. Four single-exon skipping PMOs are approved for DMD but treat only 8 to 14% of patients each, and some exhibit poor efficacy. Alternatively, exons 45 to 55 skipping could treat 40 to 47% of all patients and is associated with improved clinical outcomes. Here, we report the development of peptide-conjugated PMOs for exons 45 to 55 skipping. Experiments with immortalized patient myotubes revealed that exons 45 to 55 could be skipped by targeting as few as five exons. We also found that conjugating DG9, a cell-penetrating peptide, to PMOs improved single-exon 51 skipping, dystrophin restoration, and muscle function in hDMDdel52;mdx mice. Local administration of a minimized exons 45 to 55–skipping DG9-PMO mixture restored dystrophin production. This study provides proof of concept toward the development of a more economical and effective exons 45 to 55–skipping DMD therapy.
Collapse
|
9
|
Sheikh O, Yokota T. Pharmacology and toxicology of eteplirsen and SRP-5051 for DMD exon 51 skipping: an update. Arch Toxicol 2021; 96:1-9. [PMID: 34797383 DOI: 10.1007/s00204-021-03184-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/25/2021] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) afflicts 1 in 5000 newborn males, leading to progressive muscle weakening and the loss of ambulation between the ages of 8 and 12. Typically, DMD patients pass away from heart failure or respiratory failure. Currently, there is no cure, though exon-skipping therapy including eteplirsen (brand name Exondys 51), a synthetic antisense oligonucleotide designed to skip exon 51 of the dystrophin gene, is considered especially promising. Applicable to approximately 14% of DMD patients, a phosphorodiamidate morpholino oligomer (PMO) antisense oligonucleotide eteplirsen received accelerated approval by the US Food and Drug Administration (FDA) in 2016. Throughout clinical trials, eteplirsen has been well tolerated by patients with no serious drug-related adverse events. The most common events observed are balance disorder, vomiting, and skin rash. Despite its safety and promise of functional benefits, eteplirsen remains controversial due to its low production of dystrophin. In addition, unmodified PMOs have limited efficacy in the heart. To address these concerns of efficacy, eteplirsen has been conjugated to a proprietary cell-penetrating peptide; the conjugate is called SRP-5051. Compared to eteplirsen, SRP-5051 aims to better prompt exon-skipping and dystrophin production but may have greater toxicity concerns. This paper reviews and discusses the available information on the efficacy, safety, and tolerability data of eteplirsen and SRP-5051 from preclinical and clinical trials. Issues faced by eteplirsen and SRP-5051, including efficacy and safety, are identified. Lastly, the current state of eteplirsen and exon-skipping therapy in general as a strategy for the treatment of DMD are discussed.
Collapse
Affiliation(s)
- Omar Sheikh
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, T6G 2R3, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, T6G 2R3, Canada.
| |
Collapse
|
10
|
Himič V, Davies KE. Evaluating the potential of novel genetic approaches for the treatment of Duchenne muscular dystrophy. Eur J Hum Genet 2021; 29:1369-1376. [PMID: 33564172 PMCID: PMC8440545 DOI: 10.1038/s41431-021-00811-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle-wasting disorder that is caused by a lack of functional dystrophin, a cytoplasmic protein necessary for the structural integrity of muscle. As variants in the dystrophin gene lead to a disruption of the reading frame, pharmacological treatments have only limited efficacy; there is currently no effective therapy and consequently, a significant unmet clinical need for DMD. Recently, novel genetic approaches have shown real promise in treating DMD, with advancements in the efficacy and tropism of exon skipping and surrogate gene therapy. CRISPR-Cas9 has the potential to be a 'one-hit' curative treatment in the coming decade. The current limitations of gene editing, such as off-target effects and immunogenicity, are in fact partly constraints of the delivery method itself, and thus research focus has shifted to improving the viral vector. In order to halt the loss of ambulation, early diagnosis and treatment will be pivotal. In an era where genetic sequencing is increasingly utilised in the clinic, genetic therapies will play a progressively central role in DMD therapy. This review delineates the relative merits of cutting-edge genetic approaches, as well as the challenges that still need to be overcome before they become clinically viable.
Collapse
Affiliation(s)
- Vratko Himič
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Kuraoka M, Aoki Y, Takeda S. Development of outcome measures according to dystrophic phenotypes in canine X-linked muscular dystrophy in Japan. Exp Anim 2021; 70:419-430. [PMID: 34135266 PMCID: PMC8614006 DOI: 10.1538/expanim.21-0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.
Collapse
Affiliation(s)
- Mutsuki Kuraoka
- Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Shin'ichi Takeda
- National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|
12
|
Restoring Protein Expression in Neuromuscular Conditions: A Review Assessing the Current State of Exon Skipping/Inclusion and Gene Therapies for Duchenne Muscular Dystrophy and Spinal Muscular Atrophy. BioDrugs 2021; 35:389-399. [PMID: 34097287 DOI: 10.1007/s40259-021-00486-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The debilitating neuromuscular disorders Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which harm 1 in 5000 newborn males and 1 in 11,000 newborns, respectively, are marked by progressive muscle wasting among other complications. While DMD causes generalized muscle weakness due to the absence of the dystrophin protein, SMA patients generally face motor neuron degeneration because of the lack of the survival motor neuron (SMN) protein. Many of the most promising therapies for both conditions restore the absent proteins dystrophin and SMN. Antisense oligonucleotide-mediated exon skipping and inclusion therapies are advancing clinically with the approved DMD therapies casimersen, eteplirsen, golodirsen, and viltolarsen, and the SMA therapy nusinersen. Existing antisense therapies focus on skeletal muscle for DMD and motor neurons for SMA, respectively. Through innovative techniques, such as peptide conjugation and multi-exon skipping, these therapies could be optimized for efficacy and applicability. By contrast, gene replacement therapy is administered only once to patients during treatment. Currently, only onasemnogene abeparvovec for SMA has been approved. Safety shortcomings remain a major challenge for gene therapy. Nevertheless, gene therapy for DMD has strong potential to restore dystrophin expression in patients. In light of promising functional improvements, antisense and gene therapies stand poised to elevate the lives of patients with DMD and SMA.
Collapse
|
13
|
Maruyama R, Yokota T. Antisense Oligonucleotide Treatment in a Humanized Mouse Model of Duchenne Muscular Dystrophy and Highly Sensitive Detection of Dystrophin Using Western Blotting. Methods Mol Biol 2021; 2224:203-214. [PMID: 33606217 DOI: 10.1007/978-1-0716-1008-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disorder affecting many children. The disease is caused by the lack of dystrophin production and characterized by muscle wasting. The most common causes of death are respiratory failure and heart failure. Antisense oligonucleotide-mediated exon skipping using a phosphorodiamidate morpholino oligomer (PMO) is a promising therapeutic approach for the treatment of DMD. In preclinical studies, dystrophic mouse models are commonly used for the development of therapeutic oligos. We employ a humanized model carrying the full-length human DMD transgene along with the complete knockout of the mouse Dmd gene. In this model, the effects of human-targeting AOs can be tested without cross-reaction between mouse sequences and human sequences (note that mdx, a conventional dystrophic mouse model, carries a nonsense point mutation in exon 23 and express the full-length mouse Dmd mRNA, which is a significant complicating factor). To determine if dystrophin expression is restored, the Western blotting analysis is commonly performed; however, due to the extremely large protein size of dystrophin (427 kDa), detection and accurate quantification of full-length dystrophin can be a challenge. Here, we present methodologies to systemically inject PMOs into humanized DMD model mice and determine levels of dystrophin restoration via Western blotting. Using a tris-acetate gradient SDS gel and semi-dry transfer with three buffers, including the Concentrated Anode Buffer, Anode Buffer, and Cathode Buffer, less than 1% normal levels of dystrophin expression are easily detectable. This method is fast, easy, and sensitive enough for the detection of dystrophin from both cultured muscle cells and muscle biopsy samples.
Collapse
Affiliation(s)
- Rika Maruyama
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
14
|
Lim KRQ, Nguyen Q, Yokota T. Detection of Locked Nucleic Acid Gapmers from Mouse Muscle Samples Using ELISA. Methods Mol Biol 2021; 2176:233-239. [PMID: 32865795 DOI: 10.1007/978-1-0716-0771-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antisense oligonucleotide (ASO)-mediated therapy is promising for the treatment of a variety of genetic disorders, such as Duchenne muscular dystrophy. As more ASOs advance in therapeutic development and enter clinical trials, it becomes necessary to have a means of quantifying their amounts in biological samples post-treatment. This information will be valuable for evaluating the safety and pharmacokinetic profiles of ASOs, and in deciding how the efficacy of these drugs can be improved. Gapmers are a class of ASOs characterized by having a central DNA portion that is surrounded by chemically modified nucleotides on both ends. While relatively simple and accessible methods to quantify other ASOs such as phosphorodiamidate morpholino oligomers (PMOs) using enzyme-linked immunosorbent assay (ELISA)-based techniques are available and have been used for in vivo studies, no such method is available for gapmers to our knowledge. Here, we describe a sensitive ELISA protocol that can be used to quantify the levels of locked nucleic acid (LNA) gapmers in mouse muscle tissue.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
15
|
Lim KRQ, Yokota T. Genetic Approaches for the Treatment of Facioscapulohumeral Muscular Dystrophy. Front Pharmacol 2021; 12:642858. [PMID: 33776777 PMCID: PMC7996372 DOI: 10.3389/fphar.2021.642858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive, asymmetric muscle weakness at the face, shoulders, and upper limbs, which spreads to the lower body with age. It is the third most common inherited muscular disorder worldwide. Around 20% of patients are wheelchair-bound, and some present with extramuscular manifestations. FSHD is caused by aberrant expression of the double homeobox protein 4 (DUX4) gene in muscle. DUX4 codes for a transcription factor which, in skeletal muscle, dysregulates numerous signaling activities that culminate in cytotoxicity. Potential treatments for FSHD therefore aim to reduce the expression of DUX4 or the activity of its toxic protein product. In this article, we review how genetic approaches such as those based on oligonucleotide and genome editing technologies have been developed to achieve these goals. We also outline the challenges these therapies are facing on the road to translation, and discuss possible solutions and future directions.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
16
|
A Genotype-Phenotype Correlation Study of Exon Skip-Equivalent In-Frame Deletions and Exon Skip-Amenable Out-of-Frame Deletions across the DMD Gene to Simulate the Effects of Exon-Skipping Therapies: A Meta-Analysis. J Pers Med 2021; 11:jpm11010046. [PMID: 33466756 PMCID: PMC7830903 DOI: 10.3390/jpm11010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023] Open
Abstract
Dystrophinopathies are caused by mutations in the DMD gene. Out-of-frame deletions represent most mutational events in severe Duchenne muscular dystrophy (DMD), while in-frame deletions typically lead to milder Becker muscular dystrophy (BMD). Antisense oligonucleotide-mediated exon skipping converts an out-of-frame transcript to an in-frame one, inducing a truncated but partially functional dystrophin protein. The reading frame rule, however, has many exceptions. We thus sought to simulate clinical outcomes of exon-skipping therapies for DMD exons from clinical data of exon skip-equivalent in-frame deletions, in which the expressed quasi-dystrophins are comparable to those resulting from exon-skipping therapies. We identified a total of 1298 unique patients with exon skip-equivalent mutations in patient registries and the existing literature. We classified them into skip-equivalent deletions of each exon and statistically compared the ratio of DMD/BMD and asymptomatic individuals across the DMD gene. Our analysis identified that five exons are associated with significantly milder phenotypes than all other exons when corresponding exon skip-equivalent in-frame deletion mutations occur. Most exon skip-equivalent in-frame deletions were associated with a significantly milder phenotype compared to corresponding exon skip-amenable out-of-frame mutations. This study indicates the importance of genotype-phenotype correlation studies in the rational design of exon-skipping therapies.
Collapse
|
17
|
Sheikh O, Yokota T. Developing DMD therapeutics: a review of the effectiveness of small molecules, stop-codon readthrough, dystrophin gene replacement, and exon-skipping therapies. Expert Opin Investig Drugs 2021; 30:167-176. [PMID: 33393390 DOI: 10.1080/13543784.2021.1868434] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the dystrophin (DMD) gene. Most patients die from respiratory failure or cardiomyopathy. There are significant unmet needs for treatments for DMD as the standard of care is principally limited to symptom relief through treatments including steroids. AREAS COVERED This review summarizes safety and efficacy in promising areas of DMD therapeutics - small molecules, stop codon readthrough, gene replacement, and exon skipping - under clinical examination from 2015-2020 as demonstrated in the NIH Clinical Trials and PubMed search engines. EXPERT OPINION Currently, steroids persist as the most accessible medicine for DMD. Stop-codon readthrough, gene replacement, and exon-skipping therapies all aim to restore dystrophin expression. Of these strategies, gene replacement therapy has recently gained momentum while exon-skipping retains great traction. The FDA approval of three exon-skipping antisense oligonucleotides illustrate this regulatory momentum, though the effectiveness and sequence design of eteplirsen remain controversial. Cell-penetrating peptides promise to more efficaciously treat DMD-related cardiomyopathy.The recent success of antisense therapies, however, poses major regulatory challenges. To fully realize the benefits of exon-skipping, including cocktail oligonucleotide-mediated multiple exon-skipping and oligonucleotide drugs for very rare mutations, regulatory challenges need to be addressed in coordination with scientific advances.
Collapse
Affiliation(s)
- Omar Sheikh
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| |
Collapse
|
18
|
Solberg MH, Shariatzadeh M, Wilson SL. Gene modification strategies using AO‐mediated exon skipping and CRISPR/Cas9 as potential therapies for Duchenne muscular dystrophy patients. ENGINEERING BIOLOGY 2020; 4:37-42. [PMID: 36968157 PMCID: PMC9996716 DOI: 10.1049/enb.2020.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disease affecting 1 in 5000 young males worldwide annually. Patients experience muscle weakness and loss of ambulation at an early age, with ∼75% reduced life expectancy. Recently developed genetic editing strategies aim to convert severe DMD phenotypes to a milder disease course. Among these, the antisense oligonucleotide (AO)-mediated exon skipping and the adeno-associated viral-delivered clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9 (adeno-associated viral (AAV)-delivered CRISPR/Cas9) gene editing have shown promising results in restoring dystrophin protein expression and functionality in skeletal and heart muscle in both animals and human cells in vivo and in vitro. However, therapeutic benefits currently remain unclear. The aim of this review is to compare the potential therapeutic benefits, efficacy, safety, and clinical progress of AO-mediated exon skipping and CRISPR/Cas9 gene-editing strategies. Both techniques have demonstrated therapeutic benefit and long-term efficacy in clinical trials. AAV-delivery of CRISPR/Cas9 may potentially correct disease-causing mutations following a single treatment compared to the required continuous AO/PMO-delivery of exon skipping drugs. The latter has the potential to increase the dystrophin expression in skeletal/heart muscle with sustained effects. However, therapeutic challenges including the need for optimised delivery must be overcome in to advance current clinical data.
Collapse
Affiliation(s)
- Marthe Helene Solberg
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences Loughborough University Epinal Way, Loughborough Leicestershire LE11 3TU UK
| | - Maryam Shariatzadeh
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering Loughborough University Epinal Way, Loughborough Leicestershire LE11 3TU UK
| | - Samantha L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering Loughborough University Epinal Way, Loughborough Leicestershire LE11 3TU UK
| |
Collapse
|
19
|
Sheikh O, Yokota T. Advances in Genetic Characterization and Genotype-Phenotype Correlation of Duchenne and Becker Muscular Dystrophy in the Personalized Medicine Era. J Pers Med 2020; 10:E111. [PMID: 32899151 PMCID: PMC7565713 DOI: 10.3390/jpm10030111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, Duchenne muscular dystrophy (DMD) and the related condition Becker muscular dystrophy (BMD) can be usually diagnosed using physical examination and genetic testing. While BMD features partially functional dystrophin protein due to in-frame mutations, DMD largely features no dystrophin production because of out-of-frame mutations. However, BMD can feature a range of phenotypes from mild to borderline DMD, indicating a complex genotype-phenotype relationship. Despite two mutational hot spots in dystrophin, mutations can arise across the gene. The use of multiplex ligation amplification (MLPA) can easily assess the copy number of all exons, while next-generation sequencing (NGS) can uncover novel or confirm hard-to-detect mutations. Exon-skipping therapy, which targets specific regions of the dystrophin gene based on a patient's mutation, is an especially prominent example of personalized medicine for DMD. To maximize the benefit of exon-skipping therapies, accurate genetic diagnosis and characterization including genotype-phenotype correlation studies are becoming increasingly important. In this article, we present the recent progress in the collection of mutational data and optimization of exon-skipping therapy for DMD/BMD.
Collapse
Affiliation(s)
- Omar Sheikh
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB T6G 2H7, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB T6G 2H7, Canada;
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
20
|
Demonbreun AR, Wyatt EJ, Fallon KS, Oosterbaan CC, Page PG, Hadhazy M, Quattrocelli M, Barefield DY, McNally EM. A gene-edited mouse model of limb-girdle muscular dystrophy 2C for testing exon skipping. Dis Model Mech 2019; 13:dmm040832. [PMID: 31582396 PMCID: PMC6906631 DOI: 10.1242/dmm.040832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the γ-sarcoglycan (SGCG) gene. The most common SGCG mutation is a single nucleotide deletion from a stretch of five thymine residues in SGCG exon 6 (521ΔT). This founder mutation disrupts the transcript reading frame, abolishing protein expression. An antisense oligonucleotide exon-skipping method to reframe the human 521ΔT transcript requires skipping four exons to generate a functional, internally truncated protein. In vivo evaluation of this multi-exon skipping, antisense-mediated therapy requires a genetically appropriate mouse model. The human and mouse γ-sarcoglycan genes are highly homologous in sequence and gene structure, including the exon 6 region harboring the founder mutation. Herein, we describe a new mouse model of this form of limb-girdle muscular dystrophy generated using CRISPR/Cas9-mediated gene editing to introduce a single thymine deletion in murine exon 6, recreating the 521ΔT point mutation in Sgcg These mice express the 521ΔT transcript, lack γ-sarcoglycan protein and exhibit a severe dystrophic phenotype. Phenotypic characterization demonstrated reduced muscle mass, increased sarcolemmal leak and fragility, and decreased muscle function, consistent with the human pathological findings. Furthermore, we showed that intramuscular administration of a murine-specific multiple exon-directed antisense oligonucleotide cocktail effectively corrected the 521ΔT reading frame. These data demonstrate a molecularly and pathologically suitable model for in vivo testing of a multi-exon skipping strategy to advance preclinical development of this genetic correction approach.
Collapse
Affiliation(s)
- Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katherine S Fallon
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Claire C Oosterbaan
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick G Page
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mattia Quattrocelli
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Echigoya Y, Lim KRQ, Melo D, Bao B, Trieu N, Mizobe Y, Maruyama R, Mamchaoui K, Tanihata J, Aoki Y, Takeda S, Mouly V, Duddy W, Yokota T. Exons 45-55 Skipping Using Mutation-Tailored Cocktails of Antisense Morpholinos in the DMD Gene. Mol Ther 2019; 27:2005-2017. [PMID: 31416775 DOI: 10.1016/j.ymthe.2019.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
Mutations in the dystrophin (DMD) gene and consequent loss of dystrophin cause Duchenne muscular dystrophy (DMD). A promising therapy for DMD, single-exon skipping using antisense phosphorodiamidate morpholino oligomers (PMOs), currently confronts major issues in that an antisense drug induces the production of functionally undefined dystrophin and may not be similarly efficacious among patients with different mutations. Accordingly, the applicability of this approach is limited to out-of-frame mutations. Here, using an exon-skipping efficiency predictive tool, we designed three different PMO cocktail sets for exons 45-55 skipping aiming to produce a dystrophin variant with preserved functionality as seen in milder or asymptomatic individuals with an in-frame exons 45-55 deletion. Of them, the most effective set was composed of select PMOs that each efficiently skips an assigned exon in cell-based screening. These combinational PMOs fitted to different deletions of immortalized DMD patient muscle cells significantly induced exons 45-55 skipping with removing 3, 8, or 10 exons and dystrophin restoration as represented by western blotting. In vivo skipping of the maximum 11 human DMD exons was confirmed in humanized mice. The finding indicates that our PMO set can be used to create mutation-tailored cocktails for exons 45-55 skipping and treat over 65% of DMD patients carrying out-of-frame or in-frame deletions.
Collapse
Affiliation(s)
- Yusuke Echigoya
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Dyanna Melo
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Bo Bao
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Nhu Trieu
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Yoshitaka Mizobe
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kamel Mamchaoui
- UPMC-Sorbonne Universités-University Paris 6, UPMC/INSERM UMRS974, CNRS FRE 3617, Myology Centre for Research, Paris Cedex 13 75651, France
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan; Department of Cell Physiology, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Vincent Mouly
- UPMC-Sorbonne Universités-University Paris 6, UPMC/INSERM UMRS974, CNRS FRE 3617, Myology Centre for Research, Paris Cedex 13 75651, France
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry BT47 6SB, UK
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Muscular Dystrophy Canada Research Chair, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
22
|
Tsoumpra MK, Fukumoto S, Matsumoto T, Takeda S, Wood MJA, Aoki Y. Peptide-conjugate antisense based splice-correction for Duchenne muscular dystrophy and other neuromuscular diseases. EBioMedicine 2019; 45:630-645. [PMID: 31257147 PMCID: PMC6642283 DOI: 10.1016/j.ebiom.2019.06.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle degeneration, caused by the absence of dystrophin. Exon skipping by antisense oligonucleotides (ASOs) has recently gained recognition as therapeutic approach in DMD. Conjugation of a peptide to the phosphorodiamidate morpholino backbone (PMO) of ASOs generated the peptide-conjugated PMOs (PPMOs) that exhibit a dramatically improved pharmacokinetic profile. When tested in animal models, PPMOs demonstrate effective exon skipping in target muscles and prolonged duration of dystrophin restoration after a treatment regime. Herein we summarize the main pathophysiological features of DMD and the emergence of PPMOs as promising exon skipping agents aiming to rescue defective gene expression in DMD and other neuromuscular diseases. The listed PPMO laboratory findings correspond to latest trends in the field and highlight the obstacles that must be overcome prior to translating the animal-based research into clinical trials tailored to the needs of patients suffering from neuromuscular diseases.
Collapse
Key Words
- aso, antisense oligonucleotides
- cns, central nervous system
- cpp, cell penetrating peptide
- dgc, dystrophin glyco-protein complex
- dmd, duchenne muscular dystrophy
- fda, us food and drug administration
- pmo, phosphorodiamidate morpholino
- ppmo, peptide-conjugated pmos
- ps, phosphorothioate
- sma, spinal muscular atrophy
- 2ʹ-ome, 2ʹ-o-methyl
- 2ʹ-moe, 2ʹ-o-methoxyethyl
- 6mwt, 6-minute walk test
Collapse
Affiliation(s)
- Maria K Tsoumpra
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan.
| |
Collapse
|
23
|
Dourado Alcorte M, Sogayar MC, Demasi MA. Patent landscape of molecular and cellular targeted therapies for recessive dystrophic epidermolysis bullosa. Expert Opin Ther Pat 2019; 29:327-337. [PMID: 31017019 DOI: 10.1080/13543776.2019.1608181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a monogenetic inherited genodermatosis associated with deleterious mutations in the gene encoding type VII collagen (COL7A1). COL7A1 is essential for promoting attachment of the epidermis to the dermis, and its dysfunction may lead to generalized mucosal and cutaneous blistering associated to severe deformities. Currently, management of RDEB patients is limited to supportive care, being aimed at treating and preventing common complications associated with this condition. There is a great demand to develop targeted therapies for this devastating disease and RDEB research advances are currently being translated into clinical trials. AREAS COVERED Based on the literature and patent search, the authors have grouped the RDEB targeted therapies into five categories: a) cell-based therapies; b) gene therapy; c) protein replacement therapy; d) molecular therapy based on exon skipping; and e) drug-mediated premature termination codon read-through. The patent searching strategy involved inquiring Google and USPTO patent databases to reveal companies and institutions that are active in the area of RDEB targeted therapies. EXPERT OPINION The patent landscape related to targeted therapies for RDEB is quite heterogeneous, with each targeted therapeutic approach being associated with its own challenges in achieving robust patent protection and identifying opportunities for future development.
Collapse
Affiliation(s)
| | - Mari Cleide Sogayar
- a NUCEL - School of Medicine , University of Sao Paulo , São Paulo , SP , Brazil
| | - Marcos Angelo Demasi
- a NUCEL - School of Medicine , University of Sao Paulo , São Paulo , SP , Brazil
| |
Collapse
|
24
|
Multiple Exon Skipping in the Duchenne Muscular Dystrophy Hot Spots: Prospects and Challenges. J Pers Med 2018; 8:jpm8040041. [PMID: 30544634 PMCID: PMC6313462 DOI: 10.3390/jpm8040041] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), a fatal X-linked recessive disorder, is caused mostly by frame-disrupting, out-of-frame deletions in the dystrophin (DMD) gene. Antisense oligonucleotide-mediated exon skipping is a promising therapy for DMD. Exon skipping aims to convert out-of-frame mRNA to in-frame mRNA and induce the production of internally-deleted dystrophin as seen in the less severe Becker muscular dystrophy. Currently, multiple exon skipping has gained special interest as a new therapeutic modality for this approach. Previous retrospective database studies represented a potential therapeutic application of multiple exon skipping. Since then, public DMD databases have become more useful with an increase in patient registration and advances in molecular diagnosis. Here, we provide an update on DMD genotype-phenotype associations using a global DMD database and further provide the rationale for multiple exon skipping development, particularly for exons 45–55 skipping and an emerging therapeutic concept, exons 3–9 skipping. Importantly, this review highlights the potential of multiple exon skipping for enabling the production of functionally-corrected dystrophin and for treating symptomatic patients not only with out-of-frame deletions but also those with in-frame deletions. We will also discuss prospects and challenges in multiple exon skipping therapy, referring to recent progress in antisense chemistry and design, as well as disease models.
Collapse
|