1
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
2
|
Harris TJ, Trader DJ. Exploration of degrons and their ability to mediate targeted protein degradation. RSC Med Chem 2025:d4md00787e. [PMID: 39867589 PMCID: PMC11758578 DOI: 10.1039/d4md00787e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Degrons are short amino acid sequences that can facilitate the degradation of protein substrates. They can be classified as either ubiquitin-dependent or -independent based on their interactions with the ubiquitin proteasome system (UPS). These amino acid sequences are often found in exposed regions of proteins serving as either a tethering point for an interaction with an E3 ligase or initiating signaling for the direct degradation of the protein. Recent advancements in the protein degradation field have shown the therapeutic potential of both classes of degrons through leveraging their degradative effects to engage specific protein targets. This review explores what targeted protein degradation applications degrons can be used in and how they have inspired new degrader technology to target a wide variety of protein substrates.
Collapse
Affiliation(s)
- Timothy J Harris
- Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
| | - Darci J Trader
- Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
- Department of Chemistry, University of California Irvine California 92617 USA
| |
Collapse
|
3
|
Mattoo S, Arora M, Sharma P, Pore SK. Targeting mammalian N-end rule pathway for cancer therapy. Biochem Pharmacol 2025; 231:116684. [PMID: 39613115 DOI: 10.1016/j.bcp.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Regulated protein degradation plays a crucial role in maintaining proteostasis along with protein refolding and compartmentalisation which collectively control biological functions. The N-end rule pathway is a major ubiquitin-dependent protein degradation system. The short-lived protein substrates containing destabilizing amino acid residues (N-degrons) are recognized by E3 ubiquitin ligases containing UBR box domains (N-recognin) for degradation. The dysregulated pathway fails to maintain the metabolic stability of the substrate proteins which leads to diseases. The mammalian substrates of this pathway are involved in many hallmarks of cancer such as resisting cell death, evading growth suppression, chromosomal instability, angiogenesis, and deregulation of cellular metabolism. Besides, mutations in E3 N-recognin have been detected in human cancers. In this review, we discuss the mammalian N-end rule pathway components, functions, and mechanism of degradation of substrates, and their implications in cancer pathogenesis. We also discuss the impact of pharmacological and genetic inhibition of this pathway component on cancer cells and chemoresistance. We further highlight how this pathway can be manipulated for selective protein degradation; for instance, using PROTAC technique. The challenges and future perspectives to utilize this pathway as a drug target for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Muskaan Arora
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Priyanka Sharma
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
4
|
Kumar A, Ahmed B, Kaur IP, Saha L. Exploring dose and downregulation dynamics in lipid nanoparticles based siRNA therapy: Systematic review and meta-analysis. Int J Biol Macromol 2024; 277:133984. [PMID: 39053830 DOI: 10.1016/j.ijbiomac.2024.133984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Small interfering RNA (siRNA) holds promise as a therapeutic approach for various diseases, yet challenges persist in achieving efficient delivery, biodistribution, and minimizing off-target effects. Lipidic nanoformulations are being developed to address these hurdles, but the optimal dose for preclinical investigations remains unclear. This systematic review and meta-analysis aims to determine the optimal dose of nanoformulated siRNA and explore factors influencing dose and biodistribution, informing future research in this field. A comprehensive search across four electronic databases identified 25 potential studies, with 15 selected for meta-analysis after screening. Quality assessment was conducted using SYRCLE's risk of bias tool modified for animal studies based on research question. Study found an average siRNA dose of 1.513 ± 0.377 mg/kg with mean downregulation of 65.79 % achieved, with siRNA-LNPs mainly accumulating in the liver. While individual factors showed no significant correlation, a positive association between dose and downregulation was observed, alongside other influencing factors. Extrapolating intravenous doses to potential oral doses, we suggest an initial oral dose range of 1.5 to 8 mg/kg, considering siRNA-LNPs bioavailability. These findings contribute to advancing RNA interference research and encourage further exploration of siRNA-based treatments in personalized medicine.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bakr Ahmed
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, Punjab, India
| | - Indu Pal Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, Punjab, India.
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India.
| |
Collapse
|
5
|
Xia M, Liang C, Yuan Y, Luo J, Zeng Y, Zhang M, Tang J, Jiang Z, Gong Y, Xie C. UBR1 promotes anaplastic thyroid carcinoma progression via stabilizing YAP through monoubiquitylation. Sci Rep 2024; 14:19496. [PMID: 39174635 PMCID: PMC11341911 DOI: 10.1038/s41598-024-70458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a highly aggressive human malignancy without effective treatment. Yes-associated protein (YAP) is a critical effector of the Hippo pathway, which is essential in thyroid carcinogenesis. However, the underlying mechanisms of aberrant YAP expression in ATC are not completely understood. Ubiquitylation-related enzyme siRNA screening identified the ubiquitin protein ligase E3 component n-recognin 1 (UBR1) as a stabilizer of YAP in ATC cells. UBR1 deficiency reduced YAP protein levels and its target gene expression. UBR1 directly interacted with YAP and promoted its monoubiquitylation, competitively suppressing its polyubiquitylation and resulting in extended protein half-life. UBR1 depletion reduced ATC cell proliferation and migration in vitro. Xenograft tumor studies also suggested that UBR1 knockdown suppressed ATC cell growth in vivo. Furthermore, exogenous YAP expression partially reversed the inhibitive effects of UBR1 depletion on ATC cell proliferation and migration. Our studies demonstrated that UBR1 directly interacts with YAP and stabilized it in a monoubiquitylation-dependent manner, consequently promoting ATC tumorigenesis, suggesting that UBR1 might be a potentially therapeutic target for ATC treatment.
Collapse
Affiliation(s)
- Min Xia
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiang Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuxin Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mini Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiawen Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ziyu Jiang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Yetkin-Arik B, Jansen SA, Varderidou-Minasian S, Westendorp B, Skarp KP, Altelaar M, Lindemans CA, Lorenowicz MJ. Mesenchymal stromal/stem cells promote intestinal epithelium regeneration after chemotherapy-induced damage. Stem Cell Res Ther 2024; 15:125. [PMID: 38679715 PMCID: PMC11057078 DOI: 10.1186/s13287-024-03738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/20/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for leukemia and a range of non-malignant disorders. The success of the therapy is hampered by occurrence of acute graft-versus-host disease (aGvHD); an inflammatory response damaging recipient organs, with gut, liver, and skin being the most susceptible. Intestinal GvHD injury is often a life-threatening complication in patients unresponsive to steroid treatment. Allogeneic mesenchymal stromal/stem cell (MSC) infusions are a promising potential treatment for steroid-resistant aGvHD. Data from our institution and others demonstrate rescue of approximately 40-50% of aGvHD patients with MSCs in Phase I, II studies and minor side effects. Although promising, better understanding of MSC mode of action and patient response to MSC-based therapy is essential to improve this lifesaving treatment. METHODS Single cell human small intestine organoids were embedded in Matrigel, grown for 5 days and treated with busulfan for 48 h. Organoids damaged by treatment with busulfan or control organoids were co-cultured with 5000, 10,000, and 50,000 MSCs for 24 h, 48 h or 7 days and the analyses such as surface area determination, proliferation and apoptosis assessment, RNA sequencing and proteomics were performed. RESULTS Here, we developed a 3D co-culture model of human small intestinal organoids and MSCs, which allows to study the regenerative effects of MSCs on intestinal epithelium in a more physiologically relevant setting than existing in vitro systems. Using this model we mimicked chemotherapy-mediated damage of the intestinal epithelium. The treatment with busulfan, the chemotherapeutic commonly used as conditioning regiment before the HSCT, affected pathways regulating epithelial to mesenchymal transition, proliferation, and apoptosis in small intestinal organoids, as shown by transcriptomic and proteomic analysis. The co-culture of busulfan-treated intestinal organoids with MSCs reversed the effects of busulfan on the transcriptome and proteome of intestinal epithelium, which we also confirmed by functional evaluation of proliferation and apoptosis. CONCLUSIONS Collectively, we demonstrate that our in vitro co-culture system is a new valuable tool to facilitate the investigation of the molecular mechanisms behind the therapeutic effects of MSCs on damaged intestinal epithelium. This could benefit further optimization of the use of MSCs in HSCT patients.
Collapse
Affiliation(s)
- B Yetkin-Arik
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/E, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| | - S A Jansen
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
- Pediatric Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - S Varderidou-Minasian
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - B Westendorp
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Division Cell Biology, Metabolism and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - K-P Skarp
- Biomedical Primate Research Center, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - M Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute For Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - C A Lindemans
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
- Pediatric Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M J Lorenowicz
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
- Biomedical Primate Research Center, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|
7
|
Barnsby-Greer L, Mabbitt PD, Dery MA, Squair DR, Wood NT, Lamoliatte F, Lange SM, Virdee S. UBE2A and UBE2B are recruited by an atypical E3 ligase module in UBR4. Nat Struct Mol Biol 2024; 31:351-363. [PMID: 38182926 PMCID: PMC10873205 DOI: 10.1038/s41594-023-01192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024]
Abstract
UBR4 is a 574 kDa E3 ligase (E3) of the N-degron pathway with roles in neurodevelopment, age-associated muscular atrophy and cancer. The catalytic module that carries out ubiquitin (Ub) transfer remains unknown. Here we identify and characterize a distinct E3 module within human UBR4 consisting of a 'hemiRING' zinc finger, a helical-rich UBR zinc-finger interacting (UZI) subdomain, and an N-terminal region that can serve as an affinity factor for the E2 conjugating enzyme (E2). The structure of an E2-E3 complex provides atomic-level insight into the specificity determinants of the hemiRING toward the cognate E2s UBE2A/UBE2B. Via an allosteric mechanism, the UZI subdomain modestly activates the Ub-loaded E2 (E2∼Ub). We propose attenuated activation is complemented by the intrinsically high lysine reactivity of UBE2A, and their cooperation imparts a reactivity profile important for substrate specificity and optimal degradation kinetics. These findings reveal the mechanistic underpinnings of a neuronal N-degron E3, its specific recruitment of UBE2A, and highlight the underappreciated architectural diversity of cross-brace domains with Ub E3 activity.
Collapse
Affiliation(s)
- Lucy Barnsby-Greer
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Peter D Mabbitt
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
- Scion, Rotorua, New Zealand
| | - Marc-Andre Dery
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Daniel R Squair
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Nicola T Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Sven M Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK.
| |
Collapse
|
8
|
Jeong DE, Lee HS, Ku B, Kim CH, Kim SJ, Shin HC. Insights into the recognition mechanism in the UBR box of UBR4 for its specific substrates. Commun Biol 2023; 6:1214. [PMID: 38030679 PMCID: PMC10687169 DOI: 10.1038/s42003-023-05602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
The N-end rule pathway is a proteolytic system involving the destabilization of N-terminal amino acids, known as N-degrons, which are recognized by N-recognins. Dysregulation of the N-end rule pathway results in the accumulation of undesired proteins, causing various diseases. The E3 ligases of the UBR subfamily recognize and degrade N-degrons through the ubiquitin-proteasome system. Herein, we investigated UBR4, which has a distinct mechanism for recognizing type-2 N-degrons. Structural analysis revealed that the UBR box of UBR4 differs from other UBR boxes in the N-degron binding sites. It recognizes type-2 N-terminal amino acids containing an aromatic ring and type-1 N-terminal arginine through two phenylalanines on its hydrophobic surface. We also characterized the binding mechanism for the second ligand residue. This is the report on the structural basis underlying the recognition of type-2 N-degrons by the UBR box with implications for understanding the N-end rule pathway.
Collapse
Affiliation(s)
- Da Eun Jeong
- Critical Disease Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bioscience & Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, Daejeon, 34141, Republic of Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, Daejeon, 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Bioscience & Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung Jun Kim
- Critical Disease Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Ho-Chul Shin
- Critical Disease Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
9
|
El Moukhtari SH, Garbayo E, Amundarain A, Pascual-Gil S, Carrasco-León A, Prosper F, Agirre X, Blanco-Prieto MJ. Lipid nanoparticles for siRNA delivery in cancer treatment. J Control Release 2023; 361:130-146. [PMID: 37532145 DOI: 10.1016/j.jconrel.2023.07.054] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/08/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
RNA-based therapies, and siRNAs in particular, have attractive therapeutic potential for cancer treatment due to their ability to silence genes that are imperative for tumor progression. To be effective and solve issues related to their poor half-life and poor pharmacokinetic properties, siRNAs require adequate drug delivery systems that protect them from degradation and allow intracellular delivery. Among the various delivery vehicles available, lipid nanoparticles have emerged as the leading choice. These nanoparticles consist of cholesterol, phospholipids, PEG-lipids and most importantly ionizable cationic lipids. These ionizable lipids enable the binding of negatively charged siRNA, resulting in the formation of stable and neutral lipid nanoparticles with exceptionally high encapsulation efficiency. Lipid nanoparticles have demonstrated their effectiveness and versatility in delivering not only siRNAs but also multiple RNA molecules, contributing to their remarkable success. Furthermore, the advancement of efficient manufacturing techniques such as microfluidics, enables the rapid mixing of two miscible solvents without the need for shear forces. This facilitates the reproducible production of lipid nanoparticles and holds enormous potential for scalability. This is shown by the increasing number of preclinical and clinical trials evaluating the potential use of siRNA-LNPs for the treatment of solid and hematological tumors as well as in cancer immunotherapy. In this review, we provide an overview of the progress made on siRNA-LNP development for cancer treatment and outline the current preclinical and clinical landscape in this area. Finally, the translational challenges required to bring siRNA-LNPs further into the clinic are also discussed.
Collapse
Affiliation(s)
- Souhaila H El Moukhtari
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Ane Amundarain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Simón Pascual-Gil
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Arantxa Carrasco-León
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Felipe Prosper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain; Departmento de Hematología and CCUN, Clínica Universidad de Navarra, University of Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
| | - Xabier Agirre
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
10
|
Shashkovskaya VS, Vetosheva PI, Shokhina AG, Aparin IO, Prikazchikova TA, Mikaelyan AS, Kotelevtsev YV, Belousov VV, Zatsepin TS, Abakumova TO. Delivery of Lipid Nanoparticles with ROS Probes for Improved Visualization of Hepatocellular Carcinoma. Biomedicines 2023; 11:1783. [PMID: 37509423 PMCID: PMC10376883 DOI: 10.3390/biomedicines11071783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive products of the cell metabolism derived from oxygen molecules, and their abundant level is observed in many diseases, particularly tumors, such as hepatocellular carcinoma (HCC). In vivo imaging of ROS is a necessary tool in preclinical research to evaluate the efficacy of drugs with antioxidant activity and for diagnosis and monitoring of diseases. However, most known sensors cannot be used for in vivo experiments due to low stability in the blood and rapid elimination from the body. In this work, we focused on the development of an effective delivery system of fluorescent probes for intravital ROS visualization using the HCC model. We have synthesized various lipid nanoparticles (LNPs) loaded with ROS-inducible hydrocyanine pro-fluorescent dye or plasmid DNA (pDNA) with genetically encoded protein sensors of hydrogen peroxide (HyPer7). LNP with an average diameter of 110 ± 12 nm, characterized by increased stability and pDNA loading efficiency (64 ± 7%), demonstrated preferable accumulation in the liver compared to 170 nm LNPs. We evaluated cytotoxicity and demonstrated the efficacy of hydrocyanine-5 and HyPer7 formulated in LNP for ROS visualization in mouse hepatocytes (AML12 cells) and in the mouse xenograft model of HCC. Our results demonstrate that obtained LNP could be a valuable tool in preclinical research for visualization ROS in liver diseases.
Collapse
Affiliation(s)
- Vera S Shashkovskaya
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Polina I Vetosheva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Arina G Shokhina
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Ilya O Aparin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | - Arsen S Mikaelyan
- Koltsov Institute of Developmental Biology of Russian Academy of Sciences, 152742 Moscow, Russia
| | - Yuri V Kotelevtsev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vsevolod V Belousov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Timofei S Zatsepin
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana O Abakumova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
11
|
Najafi M, Tavakol S, Zarrabi A, Ashrafizadeh M. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: a review. Arch Physiol Biochem 2022; 128:1438-1452. [PMID: 32521182 DOI: 10.1080/13813455.2020.1773864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemotherapy has opened a new window in cancer therapy. However, the resistance of cancer cells has dramatically reduced the efficacy of chemotherapy. Cisplatin is a chemotherapeutic agent and its potential in cancer therapy has been restricted by resistance of cancer cells. As a consequence, the scientists have attempted to find new strategies in elevating chemotherapy efficacy. Due to great anti-tumour activity, naturally occurring compounds are of interest in polychemotherapy. Quercetin is a flavonoid with high anti-tumour activity against different cancers that can be used with cisplatin to enhance its efficacy and also are seen to sensitise cancer cells into chemotherapy. Furthermore, cisplatin has side effects such as nephrotoxicity and ototoxicity. Administration of quercetin is advantageous in reducing the adverse effects of cisplatin without compromising its anti-tumour activity. In this review, we investigate the dual role of quercetin in enhancing anti-tumour activity of cisplatin and simultaneous reduction in its adverse effects.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
12
|
Wu Q, Liu L, Feng Y, Wang L, Liu X, Li Y. UBR5 promotes migration and invasion of glioma cells by regulating the ECRG4/NF-κB pathway. J Biosci 2022. [DOI: 10.1007/s12038-022-00280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Lazar I, Fabre B, Feng Y, Khateb A, Frit P, Kashina A, Zhang T, Avitan-Hersh E, Kim H, Brown K, Topisirovic I, Ronai ZA. Arginyl-tRNA-protein transferase 1 (ATE1) promotes melanoma cell growth and migration. FEBS Lett 2022; 596:1468-1480. [PMID: 35561126 PMCID: PMC10118390 DOI: 10.1002/1873-3468.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Arginyl-tRNA-protein transferase 1 (ATE1) catalyses N-terminal protein arginylation, a post-translational modification implicated in cell migration, invasion and the cellular stress response. Herein, we report that ATE1 is overexpressed in NRAS-mutant melanomas, while it is downregulated in BRAF-mutant melanomas. ATE1 expression was higher in metastatic tumours, compared with primary tumours. Consistent with these findings, ATE1 depletion reduced melanoma cell viability, migration and colony formation. Reduced ATE1 expression also affected cell responses to mTOR and MEK inhibitors and to serum deprivation. Among putative ATE1 substrates is the tumour suppressor AXIN1, pointing to the possibility that ATE1 may fine-tune AXIN1 function in melanoma. Our findings highlight an unexpected role for ATE1 in melanoma cell aggressiveness and suggest that ATE1 constitutes a potential new therapeutic target.
Collapse
Affiliation(s)
- Ikrame Lazar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel.,MCD, Centre de Biologie Intégrative (CBI), CNRS, UT3, Université de Toulouse, France
| | - Bertrand Fabre
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel.,Laboratoire de Recherche en Sciences Végétales, UMR5546, UT3, INP, CNRS, Université de Toulouse, Auzeville-Tolosane, France
| | - Yongmei Feng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ali Khateb
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Philippe Frit
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089, CNRS, UT3, Université de Toulouse, France
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Emily Avitan-Hersh
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Hyungsoo Kim
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kevin Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ivan Topisirovic
- Gerald Bronfman Department of Oncology, Departments of Experimental Medicine and Biochemistry, Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
14
|
Cirinelli A, Wheelan J, Grieg C, Molina CA. Evidence that the transcriptional repressor ICER is regulated via the N-end rule for ubiquitination. Exp Cell Res 2022; 414:113083. [PMID: 35227662 PMCID: PMC8930515 DOI: 10.1016/j.yexcr.2022.113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/04/2022]
Abstract
ICER is a transcriptional repressor that is mono- or poly-ubiquitinated. This either causes ICER to be translocated from the nucleus, or degraded via the proteasome, respectively. In order to further studies the proteins involved in ICER regulation mass spectrometry analysis was performed to identify potential candidates. We identified twenty eight ICER-interacting proteins in human melanoma cells, Sk-Mel-24. In this study we focus on two proteins with potential roles in ICER proteasomal degradation in response to the N-end rule for ubiquitination: the N-alpha-acetyltransferase 15 (NAA15) and the E3 ubiquitin-protein ligase UBR4. Using an HA-tag on the N- or C-terminus of ICER (NHAICER or ICERCHA) it was found that the N-terminus of ICER is important for its interaction to UBR4, whereas NARG1 interaction is independent of HA-tag position. Silencing RNA experiments show that both NAA15 and UBR4 up-regulates ICER levels and that ICER's N-terminus is important for this regulation. The N-terminus of ICER was found to have dire consequences on its regulation by ubiquitination and cellular functions. The half-life of NHAICER was found to be about twice as long as ICERCHA. Polyubiquitination of ICER was found to be dependent on its N-terminus and mediated by UBR4. This data strongly suggests that ICER is ubiquitinated as a response to the N-end rule that governs protein degradation rate through recognition of the N-terminal residue of proteins. Furthermore, we found that NHAICER inhibits transcription two times more efficiently than ICERCHA, and causes apoptosis 5 times more efficiently than ICERCHA. As forced expression of ICER has been shown before to block cells in mitosis, our data represent a potentially novel mechanism for apoptosis of cells in mitotic arrest.
Collapse
|
15
|
Senichkin VV, Pervushin NV, Zamaraev AV, Sazonova EV, Zuev AP, Streletskaia AY, Prikazchikova TA, Zatsepin TS, Kovaleva OV, Tchevkina EM, Zhivotovsky B, Kopeina GS. Bak and Bcl-xL Participate in Regulating Sensitivity of Solid Tumor Derived Cell Lines to Mcl-1 Inhibitors. Cancers (Basel) 2021; 14:cancers14010181. [PMID: 35008345 PMCID: PMC8750033 DOI: 10.3390/cancers14010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Apoptosis is one of the best-known types of programmed cell death. This process is regulated by a number of genes and proteins, among which the Bcl-2 protein family plays a key role. This family includes anti- and proapoptotic proteins. Cancer cell resistance to apoptosis is commonly associated with overexpression of the antiapoptotic members of Bcl-2 family proteins, in particular, Bcl-2, Bcl-xL, and Mcl-1. Subsequently, these proteins represent perspective targets for anticancer therapy. Here, using an inhibitory approach, we found that Bak and Bcl-xL regulate sensitivity of cancer cells to Mcl-1 inhibition. Abstract BH3 mimetics represent a promising tool in cancer treatment. Recently, the drugs targeting the Mcl-1 protein progressed into clinical trials, and numerous studies are focused on the investigation of their activity in various preclinical models. We investigated two BH3 mimetics to Mcl-1, A1210477 and S63845, and found their different efficacies in on-target doses, despite the fact that both agents interacted with the target. Thus, S63845 induced apoptosis more effectively through a Bak-dependent mechanism. There was an increase in the level of Bcl-xL protein in cells with acquired resistance to Mcl-1 inhibition. Cell lines sensitive to S63845 demonstrated low expression of Bcl-xL. Tumor tissues from patients with lung adenocarcinoma were characterized by decreased Bcl-xL and increased Bak levels of both mRNA and proteins. Concomitant inhibition of Bcl-xL and Mcl-1 demonstrated dramatic cytotoxicity in six of seven studied cell lines. We proposed that co-targeting Bcl-xL and Mcl-1 might lead to a release of Bak, which cannot be neutralized by other anti-apoptotic proteins. Surprisingly, in Bak-knockout cells, inhibition of Mcl-1 and Bcl-xL still resulted in pronounced cell death, arguing against a sole role of Bak in the studied phenomenon. We demonstrate that Bak and Bcl-xL are co-factors for, respectively, sensitivity and resistance to Mcl-1 inhibition.
Collapse
Affiliation(s)
- Viacheslav V. Senichkin
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
| | - Nikolay V. Pervushin
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
| | - Alexey V. Zamaraev
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
| | - Elena V. Sazonova
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
| | - Anton P. Zuev
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
| | - Alena Y. Streletskaia
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
| | | | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology, 121205 Skolkovo, Russia; (T.A.P.); (T.S.Z.)
- Faculty of Chemistry, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga V. Kovaleva
- NN Blokhin Russian Cancer Research Center, Department of Oncogenes Regulation, 115478 Moscow, Russia; (O.V.K.); (E.M.T.)
| | - Elena M. Tchevkina
- NN Blokhin Russian Cancer Research Center, Department of Oncogenes Regulation, 115478 Moscow, Russia; (O.V.K.); (E.M.T.)
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
- Correspondence: (B.Z.); (G.S.K.)
| | - Gelina S. Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (V.V.S.); (N.V.P.); (A.V.Z.); (E.V.S.); (A.P.Z.); (A.Y.S.)
- Correspondence: (B.Z.); (G.S.K.)
| |
Collapse
|
16
|
Signaling Pathways Regulated by UBR Box-Containing E3 Ligases. Int J Mol Sci 2021; 22:ijms22158323. [PMID: 34361089 PMCID: PMC8346999 DOI: 10.3390/ijms22158323] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
UBR box E3 ligases, also called N-recognins, are integral components of the N-degron pathway. Representative N-recognins include UBR1, UBR2, UBR4, and UBR5, and they bind destabilizing N-terminal residues, termed N-degrons. Understanding the molecular bases of their substrate recognition and the biological impact of the clearance of their substrates on cellular signaling pathways can provide valuable insights into the regulation of these pathways. This review provides an overview of the current knowledge of the binding mechanism of UBR box N-recognin/N-degron interactions and their roles in signaling pathways linked to G-protein-coupled receptors, apoptosis, mitochondrial quality control, inflammation, and DNA damage. The targeting of these UBR box N-recognins can provide potential therapies to treat diseases such as cancer and neurodegenerative diseases.
Collapse
|
17
|
Eldeeb MA. N-Terminal-Dependent Protein Degradation and Targeting Cancer Cells. Anticancer Agents Med Chem 2021; 21:231-236. [PMID: 32814541 DOI: 10.2174/1871520620666200819112632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/11/2020] [Accepted: 04/19/2020] [Indexed: 11/22/2022]
Abstract
Intracellular protein degradation is mediated selectively by the Ubiquitin-Proteasome System (UPS) and autophagic-lysosomal system in mammalian cells. Many cellular and physiological processes, such as cell division, cell differentiation, and cellular demise, are fine-tuned via the UPS-mediated protein degradation. Notably, impairment of UPS contributes to human disorders, including cancer and neurodegeneration. The proteasome- dependent N-degron pathways mediate the degradation of proteins through their destabilizing aminoterminal residues. Recent advances unveiled that targeting N-degron proteolytic pathways can aid in sensitizing some cancer cells to chemotherapeutic agents. Furthermore, interestingly, exploiting the N-degron feature, the simplest degradation signal in mammals, and fusing it to a ligand specific for Estrogen-Related Receptor alpha (ERRa) has demonstrated its utility in ERRa knockdown, via N-terminal dependent degradation, and also its efficiency in the inhibition of growth of breast cancer cells. These recent advances uncover the therapeutic implications of targeting and exploiting N-degron proteolytic pathways to curb growth and migration of cancer cells.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment. Cell Death Dis 2021; 12:421. [PMID: 33927191 PMCID: PMC8085011 DOI: 10.1038/s41419-021-03704-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022]
Abstract
Liver fibrosis (LF) is a dangerous clinical condition with no available treatment. Inflammation plays a critical role in LF progression. Glucocorticoid-induced leucine zipper (GILZ, encoded in mice by the Tsc22d3 gene) mimics many of the anti-inflammatory effects of glucocorticoids, but its role in LF has not been directly addressed. Here, we found that GILZ deficiency in mice was associated with elevated CCL2 production and pro-inflammatory leukocyte infiltration at the early LF stage, resulting in enhanced LF development. RNA interference-mediated in vivo silencing of the CCL2 receptor CCR2 abolished the increased leukocyte recruitment and the associated hepatic stellate cell activation in the livers of GILZ knockout mice. To highlight the clinical relevance of these findings, we found that TSC22D3 mRNA expression was significantly downregulated and was inversely correlated with that of CCL2 in the liver samples of patients with LF. Altogether, these data demonstrate a protective role of GILZ in LF and uncover the mechanism, which can be targeted therapeutically. Therefore, modulating GILZ expression and its downstream targets represents a novel avenue for pharmacological intervention for treating LF and possibly other liver inflammatory disorders.
Collapse
|
19
|
Prikazchikova TA, Abakumova TO, Sergeeva OV, Zatsepin TS. Design and Validation of siRNA Targeting Gankyrin in the Murine Liver. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Van V, Smith AT. ATE1-Mediated Post-Translational Arginylation Is an Essential Regulator of Eukaryotic Cellular Homeostasis. ACS Chem Biol 2020; 15:3073-3085. [PMID: 33228359 DOI: 10.1021/acschembio.0c00677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Arginylation is a protein post-translational modification catalyzed by arginyl-tRNA transferases (ATE1s), which are critical enzymes conserved across all eukaryotes. Arginylation is a key step in the Arg N-degron pathway, a hierarchical cellular signaling pathway that links the ubiquitin-dependent degradation of a protein to the identity of its N-terminal amino acid side chain. The fidelity of ATE1-catalyzed arginylation is imperative, as this post-translational modification regulates several essential biological processes such as cardiovascular maturation, chromosomal segregation, and even the stress response. While the process of ATE1-catalyzed arginylation has been studied in detail at the cellular level, much remains unknown about the structure of this important enzyme, its mechanism of action, and its regulation. In this work, we detail the current state of knowledge on ATE1-catalyzed arginylation, and we discuss both ongoing and future directions that will reveal the structural and mechanistic details of this essential eukaryotic cellular regulator.
Collapse
Affiliation(s)
- Verna Van
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T. Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
21
|
Leboeuf D, Pyatkov M, Zatsepin TS, Piatkov K. The Arg/N-Degron Pathway-A Potential Running Back in Fine-Tuning the Inflammatory Response? Biomolecules 2020; 10:biom10060903. [PMID: 32545869 PMCID: PMC7356051 DOI: 10.3390/biom10060903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Recognition of danger signals by a cell initiates a powerful cascade of events generally leading to inflammation. Inflammatory caspases and several other proteases become activated and subsequently cleave their target proinflammatory mediators. The irreversible nature of this process implies that the newly generated proinflammatory fragments need to be sequestered, inhibited, or degraded in order to cancel the proinflammatory program or prevent chronic inflammation. The Arg/N-degron pathway is a ubiquitin-dependent proteolytic pathway that specifically degrades protein fragments bearing N-degrons, or destabilizing residues, which are recognized by the E3 ligases of the pathway. Here, we report that the Arg/N-degron pathway selectively degrades a number of proinflammatory fragments, including some activated inflammatory caspases, contributing in tuning inflammatory processes. Partial ablation of the Arg/N-degron pathway greatly increases IL-1β secretion, indicating the importance of this ubiquitous pathway in the initiation and resolution of inflammation. Thus, we propose a model wherein the Arg/N-degron pathway participates in the control of inflammation in two ways: in the generation of inflammatory signals by the degradation of inhibitory anti-inflammatory domains and as an “off switch” for inflammatory responses through the selective degradation of proinflammatory fragments.
Collapse
Affiliation(s)
- Dominique Leboeuf
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (D.L.); (T.S.Z.)
| | - Maxim Pyatkov
- Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia;
| | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (D.L.); (T.S.Z.)
| | - Konstantin Piatkov
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (D.L.); (T.S.Z.)
- Correspondence:
| |
Collapse
|