1
|
Wang S, Jin Z, Wu B, Morris AJ, Deng P. Role of dietary and nutritional interventions in ceramide-associated diseases. J Lipid Res 2025; 66:100726. [PMID: 39667580 PMCID: PMC11754522 DOI: 10.1016/j.jlr.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Ceramides are important intermediates in sphingolipid metabolism and serve as signaling molecules with independent biological significance. Elevated cellular and circulating ceramide levels are consistently associated with pathological conditions including cardiometabolic diseases, neurological diseases, autoimmune diseases, and cancers. Although pharmacological inhibition of ceramide formation often protects against these diseases in animal models, pharmacological modulation of ceramides in humans remains impractical. Dietary interventions including the Mediterranean diet, lacto-ovo-vegetarian diet, calorie-restricted diet, restriction of dairy product consumption, and dietary supplementation with polyunsaturated fatty acids, dietary fibers, and polyphenols, all have beneficial effects on modulating ceramide levels. Mechanistic insights into these interventions are discussed. This article reviews the relationships between ceramides and disease pathogenesis, with a focus on dietary intervention as a viable strategy for lowering the concentration of circulating ceramides.
Collapse
Affiliation(s)
- Shengnan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zihui Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Biyu Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, Arkansas, USA
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Augusto SN, Suresh A, Tang WHW. Ceramides as Biomarkers of Cardiovascular Diseases and Heart Failure. Curr Heart Fail Rep 2024; 22:2. [PMID: 39560878 DOI: 10.1007/s11897-024-00689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE OF REVIEW Ceramides are lipid species that play several physiological roles in the body, including stress response, inflammation, and apoptosis, and their involvement in lipid metabolism and energy production makes them crucial in the pathophysiology of heart failure (HF). RECENT FINDINGS Several species of ceramides and ceramide signatures have recently been investigated as possible biomarkers of cardiovascular disease (CVD), and risk scores have demonstrated prognostic value in stratifying patients by risk and possibly predicting adverse cardiac events. With growing interest in targeting metabolic dysfunction, understanding the role of ceramides in CVD also opens the possibility of novel therapeutics that target ceramide metabolism to improve cardiac function and cardiac outcomes in patients. Understanding the role of ceramides in CVD opens the possibility of novel diagnostics and theragnostic targeting ceramide metabolism to improve cardiac function and cardiac outcomes in patients with heart failure.
Collapse
Affiliation(s)
- Silvio N Augusto
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA, 9500 Euclid Avenue, Desk J3-4, 44195
| | - Abhilash Suresh
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - W H Wilson Tang
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA, 9500 Euclid Avenue, Desk J3-4, 44195.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
3
|
Kim HY, Shin S, Yoon JJ, Ahn YM, Song JH, Lee DS, Park JY, Lee HS, Jung J. Exploring the potential effect of electroacupuncture on cardiovascular function and lipid profiles in spontaneously hypertensive rats. Integr Med Res 2024; 13:101041. [PMID: 38948488 PMCID: PMC11214362 DOI: 10.1016/j.imr.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 07/02/2024] Open
Abstract
Background Investigating the effects of electroacupuncture (EA) treatment on cardiovascular function and aortic lipid profiles in spontaneously hypertensive rats (SHR) constitutes the foundational focus of this study. The overarching goal is to comprehensively elucidate the alterations brought about by EA treatment and to assess its potential as an alternative therapy for hypertension. Methods Consecutive EA treatments were administered to SHR, and the effects on systolic blood pressure, cardiac function, and hypertension-related neuronal signals were assessed. Aortic lipid profiles in vehicle-treated SHR and EA-treated SHR groups were analyzed using mass spectrometry-based lipid profiling. Additionally, the expression of Cers2 and GNPAT, enzymes involved in the synthesis of specific aortic lipids, was examined. Results The study demonstrated that consecutive EA treatments restored systolic blood pressure, improved cardiovascular function, and normalized hypertension-related neuronal signals in SHR. Analysis of the aortic lipid profiles revealed distinct differences between the vehicle-treated SHR group and the EA-treated SHR group. Specifically, EA treatment significantly altered the levels of aortic sphingomyelin and phospholipids, including very long-chain fatty acyl-ceramides and ether phosphatidylcholines. These changes in aortic lipid profiles correlated significantly with systolic blood pressure and cardiac function indicators. Furthermore, EA treatment significantly altered the expression of Cers2 and GNPAT. Conclusions The findings suggest that EA may influence cardiovascular functions and aortic lipid profiles in SHR.
Collapse
Affiliation(s)
- Hye-Yoom Kim
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, South Korea
| | - Sarah Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Jung-Joo Yoon
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, South Korea
| | - You-Mee Ahn
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ji-Hye Song
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Da-Som Lee
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Ji-Yeun Park
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Ho-Sub Lee
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, South Korea
| | - Jeeyoun Jung
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
4
|
Wajapeyee N, Beamon TC, Gupta R. Roles and therapeutic targeting of ceramide metabolism in cancer. Mol Metab 2024; 83:101936. [PMID: 38599378 PMCID: PMC11031839 DOI: 10.1016/j.molmet.2024.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Ceramides are sphingolipids that act as signaling molecules involved in regulating cellular processes including apoptosis, proliferation, and metabolism. Deregulation of ceramide metabolism contributes to cancer development and progression. Therefore, regulation of ceramide levels in cancer cells is being explored as a new approach for cancer therapy. SCOPE OF THE REVIEW This review discusses the multiple roles of ceramides in cancer cells and strategies to modulate ceramide levels for cancer therapy. Ceramides attenuate cell survival signaling and metabolic pathways, while activating apoptotic mechanisms, making them tumor-suppressive. Approaches to increase ceramide levels in cancer cells include using synthetic analogs, inhibiting ceramide degradation, and activating ceramide synthesis. We also highlight combination therapies such as use of ceramide modulators with chemotherapies, immunotherapies, apoptosis inducers, and anti-angiogenics, which offer synergistic antitumor effects. Additionally, we also describe ongoing clinical trials evaluating ceramide nanoliposomes and analogs. Finally, we discuss the challenges of these therapeutic approaches including the complexity of ceramide metabolism, targeted delivery, cancer heterogeneity, resistance mechanisms, and long-term safety. MAJOR CONCLUSIONS Ceramide-based therapy is a potentially promising approach for cancer therapy. However, overcoming hurdles in pharmacokinetics, specificity, and resistance is needed to optimize its efficacy and safety. This requires comprehensive preclinical/clinical studies into ceramide signaling, formulations, and combination therapies. Ceramide modulation offers opportunities for developing novel cancer treatments, but a deeper understanding of ceramide biology is vital to advance its clinical applications.
Collapse
Affiliation(s)
- Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Teresa Chiyanne Beamon
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
5
|
Liu Y, Sun Z, Sun Q, Wang L, Wang C, Li Y, Ma C, Shi W, Zhang G, Dong Y, Zhang X, Cong B. The effects of restraint stress on ceramide metabolism disorders in the rat liver: the role of CerS6 in hepatocyte injury. Lipids Health Dis 2024; 23:68. [PMID: 38431645 PMCID: PMC10908211 DOI: 10.1186/s12944-024-02019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Stress is implicated in various pathological conditions leading to liver injury. Existing evidence suggests that excessive stress can induce mitochondrial damage in hepatocytes, yet the underlying mechanism remains unclear. Ceramide synthase 6 (CerS6)-derived C16:0 ceramide is recognised as a lipotoxic substance capable of causing mitochondrial damage. However, the role of CerS6 in stress has received insufficient attention. This study aimed to explore the involvement of CerS6 in stress-induced hepatic damage and its associated mechanisms. METHODS The rat restraint stress model and a corticosterone (CORT)-induced hepatocyte stress model were employed for in vivo and in vitro experimental analyses, respectively. Changes in mitochondrial damage and ceramide metabolism in hepatocytes induced by stress were evaluated. The impact of CORT on mitochondrial damage and ceramide metabolism in hepatocytes was assessed following CerS6 knockdown. Mitochondria were isolated using a commercial kit, and ceramides in liver tissue and hepatocytes were detected by LC-MS/MS. RESULTS In comparison to the control group, rats subjected to one week of restraint exhibited elevated serum CORT levels. The liver displayed significant signs of mitochondrial damage, accompanied by increased CerS6 and mitochondrial C16:0 ceramide, along with activation of the AMPK/p38 MAPK pathway. In vitro studies demonstrated that CORT treatment of hepatocytes resulted in mitochondrial damage, concomitant with elevated CerS6 and mitochondrial C16:0 ceramide. Furthermore, CORT induced sequential phosphorylation of AMPK and p38 MAPK proteins, and inhibition of the p38 MAPK pathway using SB203580 mitigated the CORT-induced elevation in CerS6 protein. Knocking down CerS6 in hepatocytes inhibited both the increase in C16:0 ceramide and the release of mitochondrial cytochrome c induced by CORT. CONCLUSIONS CerS6-associated C16:0 ceramide plays a mediating role in stress-induced mitochondrial damage in hepatocytes. The molecular mechanism is linked to CORT-induced activation of the AMPK/p38 MAPK pathway, leading to upregulated CerS6.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
- Department of Forensic Medicine, College of Medicine, Nantong University, Nantong, 226000, China
| | - Zhaoling Sun
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Qiuli Sun
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Li Wang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Chuan Wang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Yingmin Li
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Chunling Ma
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Weibo Shi
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Guozhong Zhang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
- Hebei Province Laboratory of Experimental Animal, Shijiazhuang, 050017, China
| | - Yiming Dong
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Xiaojing Zhang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China.
| | - Bin Cong
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China.
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, 571199, China.
| |
Collapse
|
6
|
Urbain F, Ponnaiah M, Ichou F, Lhomme M, Materne C, Galier S, Haroche J, Frisdal E, Mathian A, Durand H, Pha M, Hie M, Kontush A, Cluzel P, Lesnik P, Amoura Z, Guerin M, Cohen Aubart F, Le Goff W. Impaired metabolism predicts coronary artery calcification in women with systemic lupus erythematosus. EBioMedicine 2023; 96:104802. [PMID: 37725854 PMCID: PMC10518349 DOI: 10.1016/j.ebiom.2023.104802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Patients with systemic lupus erythematosus (SLE) exhibit a high risk for cardiovascular diseases (CVD) which is not fully explained by the classical Framingham risk factors. SLE is characterized by major metabolic alterations which can contribute to the elevated prevalence of CVD. METHODS A comprehensive analysis of the circulating metabolome and lipidome was conducted in a large cohort of 211 women with SLE who underwent a multi-detector computed tomography scan for quantification of coronary artery calcium (CAC), a robust predictor of coronary heart disease (CHD). FINDINGS Beyond traditional risk factors, including age and hypertension, disease activity and duration were independent risk factors for developing CAC in women with SLE. The presence of coronary calcium was associated with major alterations of circulating lipidome dominated by an elevated abundance of ceramides with very long chain fatty acids. Alterations in multiple metabolic pathways, including purine, arginine and proline metabolism, and microbiota-derived metabolites, were also associated with CAC in women with SLE. Logistic regression with bootstrapping of lipidomic and metabolomic variables were used to develop prognostic scores. Strikingly, combining metabolic and lipidomic variables with clinical and biological parameters markedly improved the prediction (area under the curve: 0.887, p < 0.001) of the presence of coronary calcium in women with SLE. INTERPRETATION The present study uncovers the contribution of disturbed metabolism to the presence of coronary artery calcium and the associated risk of CHD in SLE. Identification of novel lipid and metabolite biomarkers may help stratifying patients for reducing CVD morbidity and mortality in SLE. FUNDING INSERM and Sorbonne Université.
Collapse
Affiliation(s)
- Fanny Urbain
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des Anti-phospholipides et Autres Maladies Auto-immunes Rares, Service de Médecine Interne 2, Paris, France
| | - Maharajah Ponnaiah
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), ICAN I/O Data Science (MPo), ICAN Omics (FI and ML), 75013, Paris, France
| | - Farid Ichou
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), ICAN I/O Data Science (MPo), ICAN Omics (FI and ML), 75013, Paris, France
| | - Marie Lhomme
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), ICAN I/O Data Science (MPo), ICAN Omics (FI and ML), 75013, Paris, France
| | - Clément Materne
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), UMR_S1166, F-75013, Paris, France
| | - Sophie Galier
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), UMR_S1166, F-75013, Paris, France
| | - Julien Haroche
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des Anti-phospholipides et Autres Maladies Auto-immunes Rares, Service de Médecine Interne 2, Paris, France
| | - Eric Frisdal
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), UMR_S1166, F-75013, Paris, France
| | - Alexis Mathian
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des Anti-phospholipides et Autres Maladies Auto-immunes Rares, Service de Médecine Interne 2, Paris, France
| | - Herve Durand
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), UMR_S1166, F-75013, Paris, France
| | - Micheline Pha
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des Anti-phospholipides et Autres Maladies Auto-immunes Rares, Service de Médecine Interne 2, Paris, France
| | - Miguel Hie
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des Anti-phospholipides et Autres Maladies Auto-immunes Rares, Service de Médecine Interne 2, Paris, France
| | - Anatol Kontush
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), UMR_S1166, F-75013, Paris, France
| | - Philippe Cluzel
- Cardiovascular and Interventional Radiology Department, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, F-75013, France
| | - Philippe Lesnik
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), UMR_S1166, F-75013, Paris, France
| | - Zahir Amoura
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des Anti-phospholipides et Autres Maladies Auto-immunes Rares, Service de Médecine Interne 2, Paris, France; Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Maryse Guerin
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), UMR_S1166, F-75013, Paris, France
| | - Fleur Cohen Aubart
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des Anti-phospholipides et Autres Maladies Auto-immunes Rares, Service de Médecine Interne 2, Paris, France.
| | - Wilfried Le Goff
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN), UMR_S1166, F-75013, Paris, France.
| |
Collapse
|
7
|
Issleny BM, Jamjoum R, Majumder S, Stiban J. Sphingolipids: From structural components to signaling hubs. Enzymes 2023; 54:171-201. [PMID: 37945171 DOI: 10.1016/bs.enz.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In late November 2019, Prof. Lina M. Obeid passed away from cancer, a disease she spent her life researching and studying its intricate molecular underpinnings. Along with her husband, Prof. Yusuf A. Hannun, Obeid laid down the foundations of sphingolipid biochemistry and oversaw its remarkable evolution over the years. Lipids are a class of macromolecules that are primarily associated with cellular architecture. In fact, lipids constitute the perimeter of the cell in such a way that without them, there cannot be cells. Hence, much of the early research on lipids identified the function of this class of biological molecules as merely structural. Nevertheless, unlike proteins, carbohydrates, and nucleic acids, lipids are elaborately diverse as they are not made up of monomers in polymeric forms. This diversity in structure is clearly mirrored by functional pleiotropy. In this chapter, we focus on a major subset of lipids, sphingolipids, and explore their historic rise from merely inert structural components of plasma membranes to lively and necessary signaling molecules that transmit various signals and control many cellular processes. We will emphasize the works of Lina Obeid since she was an integral pillar of the sphingolipid research world.
Collapse
Affiliation(s)
- Batoul M Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | | | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
8
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
9
|
Song Z, Gao P, Zhong X, Li M, Wang M, Song X. Identification of Five Hub Genes Based on Single-Cell RNA Sequencing Data and Network Pharmacology in Patients With Acute Myocardial Infarction. Front Public Health 2022; 10:894129. [PMID: 35757636 PMCID: PMC9219909 DOI: 10.3389/fpubh.2022.894129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myocardial infarction (AMI) has a high mortality. The single-cell RNA sequencing (scRNA-seq) method was used to analyze disease heterogeneity at the single-cell level. From the Gene Expression Omnibus (GEO) database (GSE180678), AMI scRNA-seq were downloaded and preprocessed by the Seurat package. Gene expression data came from GSE182923. Cell cluster analysis was conducted. Cell types were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed on hub genes. Drugs were predicted by protein–protein interaction (PPI) and molecular docking. In total, 7 cell clusters were defined based on the scRNA-seq dataset, and the clusters were labeled as 5 cell types by marker genes. Hematopoietic stem cell types as a differential subgroups were higher in AMI than in healthy tissues. From available databases and PPI analysis, 52 common genets were identified. Based on 52 genes, 5 clusters were obtained using the MCODE algorithm, and genes in these 5 clusters involved in immune and inflammatory pathways were determined. Correlation analysis showed that hematopoietic stem cell types were negatively correlated with ATM, CARM1, and CASP8 but positively correlated with CASP3 and PPARG. This was reversed with immune cells. Molecular docking analysis showed that DB05490 had the lowest docking score with PPARG. We identified 5 hub genes (ATM, CARM1, CASP8, CASP3, and PPARG) involved in AMI progression. Compound DB05490 was a potential inhibitor of PPAG.
Collapse
Affiliation(s)
- Ziguang Song
- Department of Cardiovascular Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Clinical Medicine, Harbin Medical University, Harbin, China
| | - Pingping Gao
- Department of Cardiovascular Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiao Zhong
- Department of Cardiovascular Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Clinical Medicine, Harbin Medical University, Harbin, China
| | - Mingyang Li
- Department of Cardiovascular Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Clinical Medicine, Harbin Medical University, Harbin, China
| | - Mengmeng Wang
- Fourth Department of Clinical Medicine, GI Medicine, Cancer Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Xiang Song
- Department of Cardiovascular Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
10
|
Hornemann T. Sphingolipids and metabolic disease: Will the real killer please stand up? Mol Ther 2022; 30:1359-1360. [PMID: 35279234 PMCID: PMC9077363 DOI: 10.1016/j.ymthe.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
|