1
|
Wang S, Huang Z, Zhou L, Li J, Li H, Jiang T, Lin L, Zhang Z, Fang Y, Zhang R. Therapeutic potential of recombinant human type XVII collagen in wound healing and bullous pemphigoid: From bench to bedside. Eur J Pharm Sci 2025; 207:107031. [PMID: 39914723 DOI: 10.1016/j.ejps.2025.107031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
OBJECTIVE To investigate the effects of recombinant human type XVII collagen (RHCXVII) on the proliferation and adhesion of primary human keratinocytes (HPKCs) and to observe its clinical efficacy and safety in bullous pemphigoid (BP). METHODS The RHCXVII was produced by genetic recombination technology and characterized by Fourier transform infrared (FTIR) spectroscopy. HPKCs were obtained from human foreskin and seeded onto culture plates coated with RHCXVII at concentrations of 10, 50 and 100μg/ml. The proliferation and relative adhesion of HPKCs were assessed by Cell Counting Kit-8 (CCK-8) and adhesion assays, respectively. Trajectories and velocities of HPKCs were recorded using a living cell imaging platform. To assess the effects of RHCXVII on HPKCs, E-cadherin, integrinα6 and laminin α3 mRNA levels were measured using reverse transcription-polymerase chain reaction (RT-PCR) assays. The patient test sites were treated with RHCXVII, while the contralateral sides served as controls. This was performed in combination with systemic glucocorticoid treatment. Bilateral wound healing was recorded at various time points and the efficacy in BP was assessed. RESULTS RHCXVII exhibited the anticipated structural characteristics of recombinant collagen and was deemed suitable for utilization in the present study. HPKCs demonstrated robust growth in culture plates precoated with RHCXVII, expressing keratin 15 (K15). After 3, 5 and 7 days, RHCXVII at a concentration of 10 µg/ml significantly promoted the proliferation of HPKCs (P<0.05). Furthermore, the optimal relative adhesion of HPKCs was observed when cells were cultured on RHCXVII at a concentration of 100 µg/ml (P<0.01). The mRNA levels of E-cadherin, integrinα6 and lamininα3 in HPKCs cultivated in wells coated with RHCXVII were considerably higher compared to the control group (P<0.05). The study encompassed a total of 12 patients. The mean time to resolution of lesions on the treated sides was 11.08 days, significantly shorter than the 13.42 days observed on the control sides. The mean time to blister resolution was 2.3 days shorter on the treated sides than on the controls. By day 7, the percentage improvement in wound healing compared to the baseline was 7.75 % greater on the treated sides than on the control sides. The study noted a high level of patient satisfaction and no occurrence of significant adverse events. CONCLUSION RHCXVII has the capacity to promote HPKC growth and adherence. In clinical applications, it has been demonstrated to accelerate wound healing in patients with bullous diseases (BD), thereby reducing the risk of subsequent secondary infection. Its potential as an adjunct treatment for wound repair in diseases such as BD merits further investigation.
Collapse
Affiliation(s)
- Suqin Wang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Zeyu Huang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Lailai Zhou
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Jiajia Li
- Jiangsu Trautec Medical Technology Co., Ltd., Changzhou, Jiangsu, 213100, China
| | - Haihang Li
- Jiangsu Trautec Medical Technology Co., Ltd., Changzhou, Jiangsu, 213100, China
| | - Tingting Jiang
- Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, 10 Kangfu Road, Wuhu, 241000, China
| | - Li Lin
- Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, 10 Kangfu Road, Wuhu, 241000, China
| | - Zhiqiang Zhang
- Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, 10 Kangfu Road, Wuhu, 241000, China
| | - Yuxia Fang
- Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, 10 Kangfu Road, Wuhu, 241000, China
| | - Ruzhi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, 10 Kangfu Road, Wuhu, 241000, China.
| |
Collapse
|
2
|
Koller U, Bauer JW. Emerging DNA & RNA editing strategies for the treatment of epidermolysis bullosa. J DERMATOL TREAT 2024; 35:2391452. [PMID: 39155053 DOI: 10.1080/09546634.2024.2391452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Background: Epidermolysis bullosa (EB) is a clinically-heterogeneous genodermatosis with severe manifestations in the skin and other organs. The significant burden this condition places on patients justifies the development of gene therapeutic strategies targeting the genetic cause of the disease. Methods: Emerging RNA and DNA editing tools have shown remarkable advances in efficiency and safety. Applicable both in ex vivo- and in vivo settings, these gene therapeutics based on gene replacement or editing are either at the pre-clinical or clinical stage. Results: The recent landmark FDA approvals for gene editing based on CRISPR/Cas9, along with the first FDA-approved redosable in vivo gene replacement therapy for EB, will invigorate ongoing research efforts, increasing the likelihood of achieving local cure via CRISPR-based technologies in the near future. Conclusions: This review discusses the status quo of current gene therapeutics that act at the level of RNA or DNA, all with the common aim of improving the quality of life for EB patients.
Collapse
Affiliation(s)
- Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
3
|
Danescu S, Negrutiu M, Has C. Treatment of Epidermolysis Bullosa and Future Directions: A Review. Dermatol Ther (Heidelb) 2024; 14:2059-2075. [PMID: 39090514 PMCID: PMC11333680 DOI: 10.1007/s13555-024-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Epidermolysis bullosa (EB) comprises rare genetic disorders characterized by skin and mucosal membrane blistering induced by mechanical trauma. Molecularly, pathogenic variants affect genes encoding proteins crucial for epidermal-dermal adhesion and stability. Management of severe EB is multidisciplinary, focusing on wound healing support, ensuring that patients thrive, and complication treatment. Despite extensive research over 30 years, novel therapeutic approaches face challenges. Gene therapy and protein therapy struggle with efficacy, while regenerative cell-based therapies show limited effects. Drug repurposing to target various pathogenic mechanisms has gained attention, as has in vivo gene therapy with drugs for dystrophic and junctional EB that were recently approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). However, their high cost limits global accessibility. This review examines therapeutic advancements made over the past 5 years, exploiting a systematic literature review and clinical trial data.
Collapse
Affiliation(s)
- Sorina Danescu
- Department of Dermatology, University of Medicine Iuliu Hatieganu Cluj-Napoca, Cluj-Napoca, Romania
| | - Mircea Negrutiu
- Department of Dermatology, University of Medicine Iuliu Hatieganu Cluj-Napoca, Cluj-Napoca, Romania
| | - Cristina Has
- Department of Dermatology, Medical Center University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
4
|
Revert-Ros F, Ventura I, Prieto-Ruiz JA, Hernández-Andreu JM, Revert F. The Versatility of Collagen in Pharmacology: Targeting Collagen, Targeting with Collagen. Int J Mol Sci 2024; 25:6523. [PMID: 38928229 PMCID: PMC11203716 DOI: 10.3390/ijms25126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Collagen, a versatile family of proteins with 28 members and 44 genes, is pivotal in maintaining tissue integrity and function. It plays a crucial role in physiological processes like wound healing, hemostasis, and pathological conditions such as fibrosis and cancer. Collagen is a target in these processes. Direct methods for collagen modulation include enzymatic breakdown and molecular binding approaches. For instance, Clostridium histolyticum collagenase is effective in treating localized fibrosis. Polypeptides like collagen-binding domains offer promising avenues for tumor-specific immunotherapy and drug delivery. Indirect targeting of collagen involves regulating cellular processes essential for its synthesis and maturation, such as translation regulation and microRNA activity. Enzymes involved in collagen modification, such as prolyl-hydroxylases or lysyl-oxidases, are also indirect therapeutic targets. From another perspective, collagen is also a natural source of drugs. Enzymatic degradation of collagen generates bioactive fragments known as matrikines and matricryptins, which exhibit diverse pharmacological activities. Overall, collagen-derived peptides present significant therapeutic potential beyond tissue repair, offering various strategies for treating fibrosis, cancer, and genetic disorders. Continued research into specific collagen targeting and the application of collagen and its derivatives may lead to the development of novel treatments for a range of pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Revert
- Mitochondrial and Molecular Medicine Research Group, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.R.-R.); (I.V.); (J.A.P.-R.); (J.M.H.-A.)
| |
Collapse
|
5
|
Piñón Hofbauer J, Guttmann-Gruber C, Wally V, Sharma A, Gratz IK, Koller U. Challenges and progress related to gene editing in rare skin diseases. Adv Drug Deliv Rev 2024; 208:115294. [PMID: 38527624 DOI: 10.1016/j.addr.2024.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy. Here, we explore current advances and challenges related to gene editing in rare skin diseases, including different strategies tailored to mutation type and structural organization of the affected gene, considerations for in vivo and ex vivo applications, the critical issue of delivery into the skin, and immune aspects of therapy. Against the backdrop of a landmark FDA approval for the first re-dosable gene replacement therapy for a rare genetic skin disorder, gene editing approaches are inching closer to the clinics and the possibility of a local permanent cure for patients affected by these disorders.
Collapse
Affiliation(s)
- Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anshu Sharma
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Iris K Gratz
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Center for Tumor Biology and Immunology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
6
|
Klermund J, Rhiel M, Kocher T, Chmielewski KO, Bischof J, Andrieux G, El Gaz M, Hainzl S, Boerries M, Cornu TI, Koller U, Cathomen T. On- and off-target effects of paired CRISPR-Cas nickase in primary human cells. Mol Ther 2024; 32:1298-1310. [PMID: 38459694 PMCID: PMC11081867 DOI: 10.1016/j.ymthe.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Undesired on- and off-target effects of CRISPR-Cas nucleases remain a challenge in genome editing. While the use of Cas9 nickases has been shown to minimize off-target mutagenesis, their use in therapeutic genome editing has been hampered by a lack of efficacy. To overcome this limitation, we and others have developed double-nickase-based strategies to generate staggered DNA double-strand breaks to mediate gene disruption or gene correction with high efficiency. However, the impact of paired single-strand nicks on genome integrity has remained largely unexplored. Here, we developed a novel CAST-seq pipeline, dual CAST, to characterize chromosomal aberrations induced by paired CRISPR-Cas9 nickases at three different loci in primary keratinocytes derived from patients with epidermolysis bullosa. While targeting COL7A1, COL17A1, or LAMA3 with Cas9 nucleases caused previously undescribed chromosomal rearrangements, no chromosomal translocations were detected following paired-nickase editing. While the double-nicking strategy induced large deletions/inversions within a 10 kb region surrounding the target sites at all three loci, similar to the nucleases, the chromosomal on-target aberrations were qualitatively different and included a high proportion of insertions. Taken together, our data indicate that double-nickase approaches combine efficient editing with greatly reduced off-target effects but still leave substantial chromosomal aberrations at on-target sites.
Collapse
Affiliation(s)
- Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Kay Ole Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany; PhD Program, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Melina El Gaz
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Tatjana I Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany.
| |
Collapse
|
7
|
Bischof J, Hierl M, Koller U. Emerging Gene Therapeutics for Epidermolysis Bullosa under Development. Int J Mol Sci 2024; 25:2243. [PMID: 38396920 PMCID: PMC10889532 DOI: 10.3390/ijms25042243] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenetic disease epidermolysis bullosa (EB) is characterised by the formation of extended blisters and lesions on the patient's skin upon minimal mechanical stress. Causal for this severe condition are genetic mutations in genes, leading to the functional impairment, reduction, or absence of the encoded protein within the skin's basement membrane zone connecting the epidermis to the underlying dermis. The major burden of affected families justifies the development of long-lasting and curative therapies operating at the genomic level. The landscape of causal therapies for EB is steadily expanding due to recent breakthroughs in the gene therapy field, providing promising outcomes for patients suffering from this severe disease. Currently, two gene therapeutic approaches show promise for EB. The clinically more advanced gene replacement strategy was successfully applied in severe EB forms, leading to a ground-breaking in vivo gene therapy product named beremagene geperpavec (B-VEC) recently approved from the US Food and Drug Administration (FDA). In addition, the continuous innovations in both designer nucleases and gene editing technologies enable the efficient and potentially safe repair of mutations in EB in a potentially permanent manner, inspiring researchers in the field to define and reach new milestones in the therapy of EB.
Collapse
Affiliation(s)
- Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| | - Markus Hierl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| |
Collapse
|
8
|
Redhead C, Taye N, Hubmacher D. En route towards a personalized medicine approach: Innovative therapeutic modalities for connective tissue disorders. Matrix Biol 2023; 122:46-54. [PMID: 37657665 PMCID: PMC10529529 DOI: 10.1016/j.matbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Connective tissue disorders can be caused by pathogenic variants (mutations) in genes encoding extracellular matrix (ECM) proteins. Such disorders typically manifest during development or postnatal growth and result in significant morbidity and mortality. The development of curative treatments for connective tissue disorders is hampered in part by the inability of many mature connective tissues to efficiently regenerate. To be most effective, therapeutic strategies designed to preserve or restore tissue function will likely need to be initiated during phases of significant endogenous connective tissue remodeling and organ sculpting postnatally and directly target the underlying ECM protein mutations. With recent advances in whole exome sequencing, in-vitro and in-vivo disease modeling, and the development of mutation-specific molecular therapeutic modalities, it is now feasible to directly correct disease-causing mutations underlying connective tissue disorders and ameliorate their pathogenic consequences. These technological advances may lead to potentially curative personalized medicine approaches for connective tissue disorders that have previously been considered incurable. In this review, we highlight innovative therapeutic modalities including gene replacement, exon skipping, DNA/mRNA editing, and pharmacological approaches that were used to preserve or restore tissue function in the context of connective tissue disorders. Inherent to a successful application of these approaches is the need to deepen the understanding of mechanisms that regulate ECM formation and homeostasis, and to decipher how individual mutations in ECM proteins compromise ECM and connective tissue development and function.
Collapse
Affiliation(s)
- Charlene Redhead
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Malta MD, Cerqueira MT, Marques AP. Extracellular matrix in skin diseases: The road to new therapies. J Adv Res 2023; 51:149-160. [PMID: 36481476 PMCID: PMC10491993 DOI: 10.1016/j.jare.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a vital structure with a dynamic and complex organization that plays an essential role in tissue homeostasis. In the skin, the ECM is arranged into two types of compartments: interstitial dermal matrix and basement membrane (BM). All evidence in the literature supports the notion that direct dysregulation of the composition, abundance or structure of one of these types of ECM, or indirect modifications in proteins that interact with them is linked to a wide range of human skin pathologies, including hereditary, autoimmune, and neoplastic diseases. Even though the ECM's key role in these pathologies has been widely documented, its potential as a therapeutic target has been overlooked. AIM OF REVIEW This review discusses the molecular mechanisms involved in three groups of skin ECM-related diseases - genetic, autoimmune, and neoplastic - and the recent therapeutic progress and opportunities targeting ECM. KEY SCIENTIFIC CONCEPTS OF REVIEW This article describes the implications of alterations in ECM components and in BM-associated molecules that are determinant for guaranteeing its function in different skin disorders. Also, ongoing clinical trials on ECM-targeted therapies are discussed together with future opportunities that may open new avenues for treating ECM-associated skin diseases.
Collapse
Affiliation(s)
- M D Malta
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - M T Cerqueira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - A P Marques
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017 Guimarães, Portugal.
| |
Collapse
|
10
|
Lu X, Jin H. A Review of CRISPR-Based Advances in Dermatological Diseases. Mol Diagn Ther 2023; 27:445-456. [PMID: 37041404 DOI: 10.1007/s40291-023-00642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 04/13/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) has revolutionized biomedical research by offering novel approaches to genetic and epigenetic manipulation. In dermatology, it has significantly promoted our understanding of complex diseases, and shown great potential in therapeutic applications. In this review, we introduce the adoption of CRISPR technology as a tool to study different types of skin disorders, including monogenic genodermatoses, inflammatory disorders, and cutaneous infections. We highlight the promising preclinical results of CRISPR-mediated treatment and important mechanic discoveries in investigative studies. Future opportunities and remaining challenges are also discussed. We predict that CRISPR will be more extensively used for dermatological research and even be accessible to patients in the future.
Collapse
Affiliation(s)
- Xinyi Lu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Hongzhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China.
| |
Collapse
|
11
|
Zwicklhuber J, Kocher T, Liemberger B, Hainzl S, Bischof J, Strunk D, Raninger AM, Gratz I, Wally V, Guttmann-Gruber C, Hofbauer JP, Bauer JW, Koller U. A Novel Fluorescence-Based Screen of Gene Editing Molecules for Junctional Epidermolysis Bullosa. Int J Mol Sci 2023; 24:ijms24065197. [PMID: 36982270 PMCID: PMC10049061 DOI: 10.3390/ijms24065197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Junctional epidermolysis bullosa (JEB) is a severe blistering skin disease caused by mutations in genes encoding structural proteins essential for skin integrity. In this study, we developed a cell line suitable for gene expression studies of the JEB-associated COL17A1 encoding type XVII collagen (C17), a transmembrane protein involved in connecting basal keratinocytes to the underlying dermis of the skin. Using the CRISPR/Cas9 system of Streptococcus pyogenes we fused the coding sequence of GFP to COL17A1 leading to the constitutive expression of GFP-C17 fusion proteins under the control of the endogenous promoter in human wild-type and JEB keratinocytes. We confirmed the accurate full-length expression and localization of GFP-C17 to the plasma membrane via fluorescence microscopy and Western blot analysis. As expected, the expression of GFP-C17mut fusion proteins in JEB keratinocytes generated no specific GFP signal. However, the CRISPR/Cas9-mediated repair of a JEB-associated frameshift mutation in GFP-COL17A1mut-expressing JEB cells led to the restoration of GFP-C17, apparent in the full-length expression of the fusion protein, its accurate localization within the plasma membrane of keratinocyte monolayers as well as within the basement membrane zone of 3D-skin equivalents. Thus, this fluorescence-based JEB cell line provides the potential to serve as a platform to screen for personalized gene editing molecules and applications in vitro and in appropriate animal models in vivo.
Collapse
Affiliation(s)
- Janine Zwicklhuber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Bernadette Liemberger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anna M. Raninger
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Iris Gratz
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
12
|
COL7A1 Editing via RNA Trans-Splicing in RDEB-Derived Skin Equivalents. Int J Mol Sci 2023; 24:ijms24054341. [PMID: 36901775 PMCID: PMC10002491 DOI: 10.3390/ijms24054341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3'-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3'-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3'-RTMS6m repair molecule.
Collapse
|
13
|
Bauer J. Dermatologie und Venerologie 2021-2022: Eine persönliche Sicht. J Dtsch Dermatol Ges 2023; 21:219-220. [PMID: 36808455 DOI: 10.1111/ddg.15017_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Petković I, Bischof J, Kocher T, March OP, Liemberger B, Hainzl S, Strunk D, Raninger AM, Binder HM, Reichelt J, Guttmann-Gruber C, Wally V, Piñón Hofbauer J, Bauer JW, Koller U. COL17A1 editing via homology-directed repair in junctional epidermolysis bullosa. Front Med (Lausanne) 2022; 9:976604. [PMID: 36091706 PMCID: PMC9454317 DOI: 10.3389/fmed.2022.976604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEpidermolysis bullosa (EB), a severe genetic disorder characterized by blister formation in skin, is caused by mutations in genes encoding dermal-epidermal junction proteins that function to hold the skin layers together. CRISPR/Cas9-induced homology-directed repair (HDR) represents a promising tool for editing causal mutations in COL17A1 in the treatment of junctional epidermolysis bullosa (JEB).MethodsIn this study, we treated primary type XVII collagen (C17)-deficient JEB keratinocytes with either Cas9 nuclease or nickase (Cas9n) ribonucleoproteins (RNP) and a single-stranded oligonucleotide (ssODN) HDR template in order to correct a causal pathogenic frameshift mutation within the COL17A1 gene.ResultsAs analyzed by next-generation sequencing of RNP-nucleofected keratinocytes, we observed an HDR efficiency of ∼38% when cells were treated with the high-fidelity Cas9 nuclease, a mutation-specific sgRNA, and an ssODN template. The combined induction of end-joining repair and HDR-mediated pathways resulted in a C17 restoration efficiency of up to 60% as assessed by flow cytometry. Furthermore, corrected JEB keratinocytes showed a significantly increased adhesive strength to laminin-332 and an accurate deposition of C17 along the basement membrane zone (BMZ) upon differentiation into skin equivalents.ConclusionHere we present a gene editing approach capable of reducing end joining-generated repair products while increasing the level of seamless HDR-mediated gene repair outcomes, thereby providing a promising CRISPR/Cas9-based gene editing approach for JEB.
Collapse
Affiliation(s)
- Igor Petković
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Oliver Patrick March
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Bernadette Liemberger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Anna Maria Raninger
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Heide-Marie Binder
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Julia Reichelt
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johann Wolfgang Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
- *Correspondence: Ulrich Koller,
| |
Collapse
|