1
|
Chen J, Zhou Q, Su L, Ni L. Mitochondrial dysfunction: the hidden catalyst in chronic kidney disease progression. Ren Fail 2025; 47:2506812. [PMID: 40441691 PMCID: PMC12123951 DOI: 10.1080/0886022x.2025.2506812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic kidney disease (CKD) represents a global health epidemic, with approximately one-third of affected individuals ultimately necessitating renal replacement therapy or transplantation. The kidney, characterized by its exceptionally high energy demands, exhibits significant sensitivity to alterations in energy supply and mitochondrial function. In CKD, a compromised capacity for mitochondrial ATP synthesis has been documented. As research advances, the multifaceted roles of mitochondria, extending beyond their traditional functions in oxygen sensing and energy production, are increasingly acknowledged. Empirical studies have demonstrated a strong association between mitochondrial dysfunction and the pathogenesis of fibrosis and cellular apoptosis in CKD. Targeting mitochondrial dysfunction holds substantial therapeutic promise, with emerging insights into its epigenetic regulation in CKD, particularly involving non-coding RNAs and DNA methylation. This article presents a comprehensive review of contemporary research on mitochondrial dysfunction in relation to the onset and progression of CKD. It elucidates the associated molecular mechanisms across various renal cell types and proposes novel research avenues for CKD treatment.
Collapse
Affiliation(s)
- Jinhu Chen
- Department of Nephrology, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuyuan Zhou
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, Liang Ping People’s Hospital of Chongqing, Chongqing, People’s Republic of China
| | - Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Yang TT, Liu Y, Shao YT, Li L, Pan DD, Wang T, Jiang ZZ, Li BJ, Qian ST, Yan M, Zhu X, Heng C, Liu JJ, Lu Q, Yin XX. Activation of MST1 protects filtration barrier integrity of diabetic kidney disease in mice through restoring the tight junctions of glomerular endothelial cells. Acta Pharmacol Sin 2025; 46:1345-1360. [PMID: 39643641 PMCID: PMC12032108 DOI: 10.1038/s41401-024-01421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/03/2024] [Indexed: 12/09/2024]
Abstract
As a pathological feature of diabetic kidney disease (DKD), dysregulated glomerular filtration barrier function could lead to the increased levels of proteinuria. The integrity of tight junctions (TJs) of glomerular endothelial cells (GECs) is a guarantee of physiological function of glomerular filtration barrier. Mammalian sterile 20-like kinase (MST1) is a key regulatory protein in the blood-brain barrier (BBB), and it regulates the expression of TJs-related proteins in cerebral vascular endothelial cells. Our previous study showed that MST1 was involved in renal tubulointerstitial fibrosis of DKD. In the present study we investigated the role of MST1 in barrier function of GECs of DKD, and explored its regulatory mechanisms. In kidney tissue section of DKD patients and db/db mice, and high glucose (HG)-cultured mouse glomerular endothelial cells (mGECs), we showed that MST1 was inactivated in the GECs of DKD accompanied by disrupted glomerular endothelial barrier. In db/db mice and HG-cultured mGECs, knockdown of MST1 increased proteinuria levels, and disrupted glomerular endothelial barrier through decreasing TJs-related proteins, whereas MST1 overexpression restored glomerular endothelial barrier through regaining TJs-related proteins. In db/db mice and HG-cultured mGECs, we demonstrated that MST1 inhibition induced TJs's disruption of GECs via activating YAP1/TEAD signaling. Verteporfin (an inhibitor of YAP1-TEAD interaction) and PY-60 (a YAP1 agonist) were used to verify the role of YAP1/TEAD signaling in the regulation effect of MST1 on barrier function of mGECs. In conclusion, MST1 activation recovers glomerular endothelial barrier of DKD by regaining TJs-related proteins via inhibiting YAP1/TEAD signaling. This study highlights the multiple regulation of MST1 activation on kidney injury.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Ting Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin Li
- Department of Pharmacy, Yuncheng Central Hospital affiliated to Shanxi Medical University, Yuncheng, 044000, China
| | - Dan-Dan Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tao Wang
- Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Zhen-Zhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Bao-Jing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Si-Tong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cai Heng
- Department of Pharmacy, JingJiang People's Hospital, Jingjiang, 214500, China
| | - Jun-Jie Liu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
3
|
Ho BHT, Spicer BA, Dunstone MA. Action of the Terminal Complement Pathway on Cell Membranes. J Membr Biol 2025:10.1007/s00232-025-00343-6. [PMID: 40122920 DOI: 10.1007/s00232-025-00343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The complement pathway is one of the most ancient elements of the host's innate response and includes a set of protein effectors that rapidly react against pathogens. The late stages of the complement reaction are broadly categorised into two major outcomes. Firstly, C5a receptors, expressed on membranes of host cells, are activated by C5a to generate pro-inflammatory responses. Secondly, target cells are lysed by a hetero-oligomeric pore known as the membrane attack complex (MAC) that punctures the cellular membrane, causing ion and osmotic flux. Generally, several membrane-bound and soluble inhibitors protect the host membrane from complement damage. This includes inhibitors against the MAC, such as clusterin and CD59. This review addresses the most recent molecular and structural insights behind the activation and modulation of the integral membrane proteins, the C5a receptors (C5aR1 and C5aR2), as well as the regulation of MAC assembly. The second aspect of the review focuses on the molecular basis behind inflammatory diseases that are reflective of failure to regulate the terminal complement effectors. Although each arm is unique in its function, both pathways may share similar outcomes in these diseases. As such, the review outlines potential synergy and crosstalk between C5a receptor activation and MAC-mediated cellular responses.
Collapse
Affiliation(s)
- Bill H T Ho
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michelle A Dunstone
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
He J, Chen Y, Li Y, Feng Y. Molecular mechanisms and therapeutic interventions in acute kidney injury: a literature review. BMC Nephrol 2025; 26:144. [PMID: 40121405 PMCID: PMC11929251 DOI: 10.1186/s12882-025-04077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Acute kidney injury (AKI) is a clinical challenge characterized by elevated morbidity and a substantial impact on individual health and socioeconomic factors. A comprehensive examination of the molecular pathways behind AKI is essential for its prevention and management. In recent years, vigorous research in the domain of AKI has concentrated on pathophysiological characteristics, early identification, and therapeutic approaches across many aetiologies and highlighted the principal themes of oxidative stress, inflammatory response, apoptosis, necrosis, and immunological response. This review comprehensively reviewed the molecular mechanisms underlying AKI, including oxidative stress, inflammatory pathways, immune cell-mediated injury, activation of the renin-angiotensin-aldosterone (RAAS) system, mitochondrial damage and autophagy, apoptosis, necrosis, etc. Inflammatory pathways are involved in the injuries in all four structural components of the kidney. We also summarized therapeutic techniques and pharmacological agents associated with the aforementioned molecular pathways. This work aims to clarify the molecular mechanisms of AKI thoroughly, offer novel insights for further investigations of AKI, and facilitate the formulation of efficient therapeutic methods to avert the progression of AKI.
Collapse
Affiliation(s)
- Jiajia He
- Department of Nephrology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqin Chen
- Department of Nephrology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yi Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, China
| | - Yunlin Feng
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, China.
| |
Collapse
|
5
|
Ma J, Yiu WH, Tang SCW. Complement anaphylatoxins: Potential therapeutic target for diabetic kidney disease. Diabet Med 2025; 42:e15427. [PMID: 39189098 PMCID: PMC11733663 DOI: 10.1111/dme.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Diabetic kidney disease (DKD) is the most common cause of kidney failure, characterized by chronic inflammation and fibrosis. The complement system is increasingly implicated in the development and progression of diabetic nephropathy. The important complement anaphylatoxins C3a and C5a are key mediators of the innate immune system, which regulates cellular inflammation, oxidative stress, mitochondrial homeostasis and tissue fibrosis. This review summarizes the involvement of anaphylatoxins in the pathogenesis of diabetic kidney disease, highlights their important roles in the pathophysiologic changes of glomerulopathy, tubulointerstitial damage and immune cell infiltration, and discusses the modulatory effects of new anti-diabetic drugs acting on the complement system. Based on available clinical data and findings from the preclinical studies of complement blockade, anaphylatoxin-targeted therapeutics may become a promising approach for patients with DKD in the future.
Collapse
Affiliation(s)
- Jingyuan Ma
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Sydney C. W. Tang
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| |
Collapse
|
6
|
Lai Y, Zhuang L, Zhu J, Wang S, Guo C, Chen B, Li J, Shi J, Li M, Yang N, Zhou M. Novel approach to alleviate lupus nephritis: targeting the NLRP3 inflammasome in CD8 +CD69 +CD103 + T RM cells. J Transl Med 2024; 22:1139. [PMID: 39716284 DOI: 10.1186/s12967-024-05951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Renal CD8+ tissue-resident memory T (TRM) cells display prolonged survival and activity in lupus nephritis (LN), exacerbating renal pathology. NLRP3 regulates the T cell response. This study explored the impact of NLRP3 inflammasome activity on the regulatory functions of TRM cells in LN. METHODS NLRP3 inflammasome activity in renal CD8+ TRM cells from lupus-prone MRL/lpr mice and in vitro induced human CD8+CD103+ T cells was assessed by quantifying NLRP3, caspase-1, gasdermin D (GSDMD), and IL-1β levels using flow cytometry, ELISA, and western blotting analysis. The specific NLRP3 inhibitor MCC950, caspase-1 inhibitor Ac-YVAD-cmk, and NF-κB inhibitor JSH23 were utilized to delineate the role of NLRP3 in modulating the pathogenicity of CD8+ TRM cells in LN. RESULTS Activation of the NLRP3 inflammasome was confirmed in renal CD8+CD69+CD103+ TRM cells derived from mice with LN and in vitro-induced human CD8+CD103+ TRM-like cells. MCC950 curtailed the infiltration and activity of CD8+CD69+CD103+ TRM cells and enhanced renal outcomes. MCC950 also suppressed the maturation and functional capabilities of CD8+CD103+ T cells in a manner reliant on inflammasome activity in vitro. IL-1β promoted the expression of TGF-βRII in CD8+ T cells via the NF-κB pathway. CONCLUSIONS NLRP3 inflammasome activity in renal CD8+CD69+CD103+ TRM cells contributes to LN pathogenesis by regulating cell differentiation and effector functions. Therapeutically targeting the NLRP3 inflammasome could significantly mitigate CD8+CD69+CD103+ TRM cell-mediated renal damage in LN.
Collapse
Affiliation(s)
- Yimei Lai
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Lili Zhuang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Jieying Zhu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Shuang Wang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Chaohuan Guo
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Binfeng Chen
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Jin Li
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Jia Shi
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Mengyuan Li
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Niansheng Yang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China.
| | - Mianjing Zhou
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China.
| |
Collapse
|
7
|
Zou HM, Yu J, Ruan YY, Xie Y, An XM, Chen PL, Luo YQ, Shi MJ, Liu M, Xu LF, Liu J, Guo B, Zhang F. HNF-1β alleviates podocyte injury in lupus nephritis by maintaining endoplasmic reticulum homeostasis. Lupus Sci Med 2024; 11:e001349. [PMID: 39608815 PMCID: PMC11603702 DOI: 10.1136/lupus-2024-001349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE The current study aims to elucidate the critical function of hepatocyte nuclear factor 1-beta (HNF1-β) in lupus nephritis (LN) by investigating its modulation of the Derlin-1/valosin-containing protein (VCP)/VCP-interacting membrane selenoprotein (VIMP) complex, endoplasmic reticulum (ER) stress and podocyte apoptosis. METHODS In vitro and in vivo models of LN were established using glomerular podocytes treated with LN serum and MRL/lpr mice, respectively. The expression levels of HNF1-β were analysed in kidney tissues from patients with LN and MRL/lpr mice. To assess the effects of HNF1-β inhibition, an adeno-associated virus vector carrying HNF1-β short hairpin was administered to MRL/lpr mice. In vitro, glomerular podocytes were transfected with HNF1-β small interfering RNA (siRNA) or HNF1-β overexpression plasmids to explore their regulatory effects on the Derlin-1/VCP/VIMP complex and podocyte apoptosis. Dual-luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays were performed to investigate the transcriptional activation of Derlin-1 and VCP promoters by HNF1-β. RESULTS A significant decrease in HNF1-β levels was observed in kidney tissues from patients with LN while MRL/lpr mice exhibited an initial compensatory increase followed by a subsequent decrease in renal HNF1-β expression. Overexpression of HNF1-β transcriptionally upregulated Derlin-1 and VCP mitigating LN serum-induced ER stress and podocyte apoptosis. In contrast, HNF1-β inhibition exacerbated renal dysfunction and structural damage in MRL/lpr mice. Interestingly, HNF1-β inhibition transcriptionally repressed ERP44, leading to calcium ions (Ca²+) release-mediated disruption and inactivation of the Derlin-1/VCP/VIMP complex. This finding suggests that HNF1-β not only regulates the expression of key proteins in the Derlin-1/VCP/VIMP complex but also influences their assembly through Ca²+ release regulation. CONCLUSION This study provides novel insights into the regulatory mechanisms of HNF1-β in LN emphasising its impact on the Derlin-1/VCP/VIMP complex, ER stress and podocyte apoptosis. These findings have the potential to inform the development of new diagnostic tools and therapeutic strategies for LN.
Collapse
Affiliation(s)
- Hui-mei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- School of Nursing, Guizhou Medical University, Guiyang, China
| | - Jie Yu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Yuan-yuan Ruan
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Xiao-min An
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Pei-lei Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Ying-qin Luo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Ming-jun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Urinary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Li-fen Xu
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jun Liu
- Department of Rheumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Lv Z, Wang Z, Hu J, Su H, Liu B, Lang Y, Yu Q, Liu Y, Fan X, Yang M, Shen N, Zhang D, Zhang X, Wang R. LncRNA PVT1 induces mitochondrial dysfunction of podocytes via TRIM56 in diabetic kidney disease. Cell Death Dis 2024; 15:697. [PMID: 39349450 PMCID: PMC11442824 DOI: 10.1038/s41419-024-07107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Mitochondrial dysfunction is a significant contributor to podocyte injury in diabetic kidney disease (DKD). While previous studies have shown that PVT1 might play a vital role in DKD, the precise molecular mechanisms are largely unknown. By analyzing the plasma and kidney tissues of DKD patients, we observed a significant upregulation of PVT1 expression, which exhibited a positive correlation with albumin/creatinine ratios and serum creatinine levels. Then, we generated mice with podocyte-specific deletion of PVT1 (Nphs2-Cre/Pvt1flox/flox) and confirmed that the deletion of PVT1 suppressed podocyte mitochondrial dysfunction and inflammation in addition to ameliorating diabetes-induced podocyte injury, glomerulopathy, and proteinuria. Subsequently, we cultured podocytes in vitro and observed that PVT1 expression was upregulated under hyperglycemic conditions. Mechanistically, we demonstrated that PVT1 was involved in mitochondrial dysfunction by interacting with TRIM56 post-transcriptionally to modulate the ubiquitination of AMPKα, leading to aberrant mitochondrial biogenesis and fission. Additionally, the release of mtDNA and mtROS from damaged mitochondria triggered inflammation in podocytes. Subsequently, we verified the important role of TRIM56 in vivo by constructing Nphs2-Cre/Trim56flox/flox mice, consistently with the results of Nphs2-Cre/Pvt1flox/flox mice. Together, our results revealed that upregulation of PVT1 could promote mitochondrial dysfunction and inflammation of podocyte by modulating TRIM56, highlighting a potential novel therapeutic target for DKD.
Collapse
Affiliation(s)
- Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Ziyang Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Jinxiu Hu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bing Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qun Yu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Dongdong Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xia Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
9
|
Fang Y, Min S, Shen H. The role of mitochondrial fusion and fission in immune-mediated inflammatory diseases. Cell Immunol 2024; 403-404:104864. [PMID: 39190985 DOI: 10.1016/j.cellimm.2024.104864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Mitochondria are highly dynamic organelles that maintain their homeostasis through mitochondrial dynamics. Mitochondrial fusion and fission are two important processes of mitochondrial dynamics. There is accumulating evidence that mitochondrial fusion and fission play an important role in the development of immune-mediated inflammatory diseases. This article provides a brief review of the essential role of mitochondrial fusion and fission in immune-mediated inflammatory diseases. It will provide a novel perspective and direction for the elucidation of the pathogenesis and treatment of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Yulai Fang
- Nanjing University of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Shichen Min
- Nanjing University of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Hong Shen
- Nanjing University of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
10
|
Lei J, Wen Z. DRP1 bridges complement component C5a and podocyte injury in lupus nephritis. Mol Ther 2024; 32:1199-1201. [PMID: 38631351 PMCID: PMC11081909 DOI: 10.1016/j.ymthe.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- Jiaxin Lei
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|