1
|
Ferreira-Rodrigues M, Sousa IS, Baptista FI, Coelho-Santos V. Stress in utero: prenatal dexamethasone exposure causes greater structural gliovascular alterations in female offspring than in males. Front Neurosci 2025; 19:1539867. [PMID: 40196234 PMCID: PMC11973320 DOI: 10.3389/fnins.2025.1539867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
From early in life, experiences like prenatal stress profoundly affect long-term health and behavior. Fetal exposure to increased levels of glucocorticoids (GC), via maternal stress or through antenatal corticosteroid therapy (commonly used in women at risk of preterm birth), can disrupt brain development and raise the susceptibility to psychiatric disorders. Previous studies on prenatal exposure to synthetic GCs, such as dexamethasone (DEX), revealed impairments in neurogenesis and dendritic spine development. However, the impact of prenatal stress, specifically antenatal DEX exposure, on the gliovascular interface remains unclear. This interface, involving the relationship between astrocytes and blood vessels, is essential for healthy brain development. Astrocytic endfeet coverage and organization are crucial features of the gliovascular interface, and in this study, we evaluated these aspects through aquaporin-4 (AQ4) expression and organization along the lectin labelled-vasculature. At Postnatal Day 14, no differences in AQ4 expression were observed between males and females. However, prenatal stress induced by DEX exposure (50 μg/kg was administered subcutaneously to pregnant mice through gestational days 16, 17 and 18) significantly impacted this structure in females but not in males. Specifically, in female offspring prenatally exposed to DEX, AQ4 expression was significantly upregulated in the hippocampus, and its rearrangement was observed in the prefrontal cortex. A comparison of vascular density between male and female brains showed no significant sex differences in any analyzed regions, though male cerebellar vessel segments were shorter. Interestingly, prenatal stress caused morphological alterations in female brains, including increased vessel tortuosity, while no such changes were seen in males. In the hippocampus, prenatal DEX exposure reduced vessel segment length in males but did not affect females. In the cerebellum, DEX exposure increased vessel segment length in females. This study highlights sex-specific differences in the impact of prenatal stress on the gliovascular structure across various brain regions, suggesting AQ4 as a potential molecular target relevant to depressive-like behaviors in female offspring. Future studies are needed to correlate the gliovascular structural alterations found with functional disturbances and sex-specific mental health issues.
Collapse
Affiliation(s)
- Magda Ferreira-Rodrigues
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC-UC), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
| | - Inês Santos Sousa
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
| | - Filipa I. Baptista
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Coimbra, Portugal
| | - Vanessa Coelho-Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
3
|
Takahashi A. Associations of the immune system in aggression traits and the role of microglia as mediators. Neuropharmacology 2024; 256:110021. [PMID: 38825308 DOI: 10.1016/j.neuropharm.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
There is an important relationship between the immune system and aggressive behavior. Aggressive encounters acutely increase the levels of proinflammatory cytokines, and there are positive correlations between aggressive traits and peripheral proinflammatory cytokines. Endotoxin lipopolysaccharide (LPS) treatment, which results in peripheral immune activation, decreases aggressive behavior as one of the sickness behavioral symptoms. In contrast, certain brain infections and chronic interferon treatment are associated with increased aggression. Indeed, the effects of proinflammatory cytokines on the brain in aggressive behavior are bidirectional, depending on the type and dose of cytokine, target brain region, and type of aggression. Some studies have suggested that microglial activation and neuroinflammation influence intermale aggression in rodent models. In addition, pathological conditions as well as physiological levels of cytokines produced by microglia play an important role in social and aggressive behavior in adult animals. Furthermore, microglial function in early development is necessary for the establishment of the social brain and the expression of juvenile social behaviors, including play fighting. Overall, this review discusses the important link between the immune system and aggressive traits and the role of microglia as mediators of this link.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Institute of Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
4
|
Li CF, Zhang QP, Cheng J, Xu GH, Zhu JX, Yi LT. Role of ginsenoside Rb1 in attenuating depression-like symptoms through astrocytic and microglial complement C3 pathway. Metab Brain Dis 2024; 39:1039-1050. [PMID: 39034364 DOI: 10.1007/s11011-024-01392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Ginsenoside Rb1, known as gypenoside III, exerts antidepressant-like effects in previous studies. It has also been indicated that ginsenoside Rb1 regulated neuroinflammation via inhibiting NF-κB signaling. According to the evidence that astrocytes can regulate microglia and neuroinflammation by secreting complement C3, the present study aimed to demonstrate the molecular mechanisms underlying ginsenoside Rb1-induced antidepressant-like effects from the astrocytic and microglial complement C3 pathway. The complement C3 mediated mechanism of ginsenoside Rb1 was investigated in mice exposed to chronic restraint stress (CRS). The results showed that ginsenoside Rb1 reversed the depressive-like behaviors in CRS. Treatment with ginsenoside Rb1 reduced both the number of astrocytes and microglia. In addition, ginsenoside Rb1 suppressed TLR4/NF-κB/C3 signaling in the astrocytes of the hippocampus. Furthermore, ginsenoside Rb1 attenuated the contents of synaptic protein including synaptophysin and PSD95 in microglia, suggesting the inhibition of microglia-mediated synaptic elimination caused by CRS. Importantly, ginsenoside Rb1 also maintained the dendritic spines in mice. In conclusion, our results demonstrate that ginsenoside Rb1 produces the antidepressant-like effects by inhibiting astrocyte TLR4/NF-κB/C3 signaling to covert microglia from a pro-inflammatory phenotype (amoeboid) towards an anti-inflammatory phenotype (ramified), which inhibit the synaptic pruning in the hippocampus.
Collapse
Affiliation(s)
- Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, Fujian province, PR China.
| | - Qiu-Ping Zhang
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, Fujian province, PR China
| | - Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China
| |
Collapse
|
5
|
Zheng B, Zheng Y, Hu W, Chen Z. Dissecting the networks underlying diverse brain disorders after prenatal glucocorticoid overexposure. Arch Toxicol 2024; 98:1975-1990. [PMID: 38581585 DOI: 10.1007/s00204-024-03733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
New human life begins in the uterus in a period of both extreme plasticity and sensitivity to environmental disturbances. The fetal stage is also a vital period for central nervous system development, with experiences at this point profoundly and permanently shaping brain structure and function. As such, some brain disorders may originate in utero. Glucocorticoids, a class of essential stress hormones, play indispensable roles in fetal development, but overexposure may have lasting impacts on the brain. In this review, we summarize data from recent clinical and non-clinical studies regarding alterations in fetal brains due to prenatal glucocorticoid overexposure that are associated with nervous system disorders. We discuss relevant changes to brain structure and cellular functions and explore the underlying molecular mechanisms. In addition, we summarize factors that may cause differential outcomes between varying brain regions, and outline clinically feasible intervention strategies that are expected to minimize negative consequences arising from fetal glucocorticoid overexposure. Finally, we highlight the need for experimental evidence aided by new technologies to clearly determine the effects of excessive prenatal glucocorticoid exposure. This review consolidates diverse findings to help researchers better understand the relationship between the prenatal glucocorticoid overexposure and the effects it has on various fetal brain regions, promoting further development of critical intervention strategies.
Collapse
Affiliation(s)
- Baixiu Zheng
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weiwei Hu
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
6
|
Zhao M, Xu X, Xu H, Yang S, Li M, Wang W. The regulation of social factors on anxiety and microglial activity in nucleus accumbens of adolescent male mice: Influence of social interaction strategy. J Affect Disord 2024; 352:525-535. [PMID: 38403135 DOI: 10.1016/j.jad.2024.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Adolescence is a period characterized by a high vulnerability to emotional disorders, which are modulated by biological, psychological, and social factors. However, the underlying mechanisms remain poorly understood. METHODS Combining physical or emotional social defeat stress (PS and ES) and pair or isolation rearing conditions, we investigated the effects of stress type and social support on emotional behavior and central immune molecules in adolescent mice, including anxiety, social fear, and social interaction strategies, as well as changes in microglia-specific molecules (ionized calcium-binding adaptor molecule 1 (Iba1) and a cluster of differentiation molecule 11b (CD11b)) in the medial prefrontal cortex (mPFC), hippocampus (HIP), amygdala (AMY), and nucleus accumbens (NAc). RESULTS Mice exposed to both physical stress and isolated rearing condition exhibited the highest levels of anxiety, social fear, and microglial CD11b expression in the NAc. In terms of social support, pair-housing with siblings ameliorated social fear and NAc molecular changes in ES mice, but not in PS mice. The reason for the differential benefit from social support was attributed to the fact that ES mice exhibited more active and less passive social strategies in social environment compared to PS mice. Further, the levels of stress-induced social fear were positively associated with the expression of microglial CD11b in the NAc. CONCLUSION These findings offer extensive evidence regarding the intricate effects of multiple social factors on social anxiety and immune alteration in the NAc of adolescent mice. Additionally, they suggest potential behavioral and immune intervention strategies for anxiety-related disorders in adolescents.
Collapse
Affiliation(s)
- Mingyue Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xueping Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, China
| | - Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Shuming Yang
- Division of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510062, China
| | - Man Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China.
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Laricchiuta D, Papi M, Decandia D, Panuccio A, Cutuli D, Peciccia M, Mazzeschi C, Petrosini L. The role of glial cells in mental illness: a systematic review on astroglia and microglia as potential players in schizophrenia and its cognitive and emotional aspects. Front Cell Neurosci 2024; 18:1358450. [PMID: 38419655 PMCID: PMC10899480 DOI: 10.3389/fncel.2024.1358450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Schizophrenia is a complex and severe mental disorder that affects approximately 1% of the global population. It is characterized by a wide range of symptoms, including delusions, hallucinations, disorganized speech and behavior, and cognitive impairment. Recent research has suggested that the immune system dysregulation may play a significant role in the pathogenesis of schizophrenia, and glial cells, such as astroglia and microglia known to be involved in neuroinflammation and immune regulation, have emerged as potential players in this process. The aim of this systematic review is to summarize the glial hallmarks of schizophrenia, choosing as cellular candidate the astroglia and microglia, and focusing also on disease-associated psychological (cognitive and emotional) changes. We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched PubMed, Scopus, and Web of Science for articles that investigated the differences in astroglia and microglia in patients with schizophrenia, published in the last 5 years. The present systematic review indicates that changes in the density, morphology, and functioning of astroglia and microglia may be involved in the development of schizophrenia. The glial alterations may contribute to the pathogenesis of schizophrenia by dysregulating neurotransmission and immune responses, worsening cognitive capabilities. The complex interplay of astroglial and microglial activation, genetic/epigenetic variations, and cognitive assessments underscores the intricate relationship between biological mechanisms, symptomatology, and cognitive functioning in schizophrenia.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Martina Papi
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Davide Decandia
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Anna Panuccio
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Debora Cutuli
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Maurizio Peciccia
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Claudia Mazzeschi
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Laura Petrosini
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
8
|
Zeng J, Xie Z, Chen L, Peng X, Luan F, Hu J, Xie H, Liu R, Zeng N. Rosmarinic acid alleviate CORT-induced depressive-like behavior by promoting neurogenesis and regulating BDNF/TrkB/PI3K signaling axis. Biomed Pharmacother 2024; 170:115994. [PMID: 38070249 DOI: 10.1016/j.biopha.2023.115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Rosmarinic acid (RA), a natural phenolic acid compound with a variety of bioactive properties. However, the antidepressant activity and mechanism of RA remain unclear. The aim of this study is to investigate the effects and potential mechanisms of RA on chronic CORT injection induced depression-like behavior in mice. Male C57BL/6 J mice were intraperitoneally injected with CORT (10 mg/kg) and were orally given RA daily (10 or 20 mg/kg) for 21 consecutive days. In vitro, the HT22 cells were exposed to CORT (200 μM) with RA (12.5, 25 or 50 μM) and LY294002 (a PI3K inhibitor) or ANA-12 (a TrkB inhibitor) treatment. The depression-like behavior and various neurobiological changes in the mice and cell injury and levels of target proteins in vitro were subsequently assessed. Here, RA treatment decreased the expression of p-GR/GR, HSP90, FKBP51, SGK-1 in mice hippocampi. Besides, RA increased the average optical density of Nissl bodies and number of dendritic spines in CA3 region, and enhanced Brdu and DCX expression and synaptic transduction in DG region, as well as up-regulated both the BDNF/TrkB/CREB and PI3K/Akt/mTOR signaling. Moreover, RA reduced structural damage and apoptosis in HT22 cells, increased the differentiation and maturation of them. More importantly, LY294002, but not ANA-12, reversed the effect of RA on GR nuclear translocation. Taken together, RA exerted antidepressant activities by modulating the hippocampal glucocorticoid signaling and hippocampal neurogenesis, which related to the BDNF/TrkB/PI3K signaling axis regulating GR nuclear translocation, provide evidence for the application of RA as a candidate for depression.
Collapse
Affiliation(s)
- Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqiang Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Luan
- School of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | - Jingwen Hu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongxiao Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Liu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Xie L, Qin J, Wang T, Zhang S, Luo M, Cheng X, Cao X, Wang H, Yao B, Xu D, Peng B. Impact of Prenatal Acetaminophen Exposure for Hippocampal Development Disorder on Mice. Mol Neurobiol 2023; 60:6916-6930. [PMID: 37516664 DOI: 10.1007/s12035-023-03515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used as analgesic agents. They have been detected in various environmental matrices. The degradation of environmental contaminants and the long-term adverse effects have become a major public concern. Prenatal exposure to acetaminophen can cause damage to the developing hippocampus. However, the molecular mechanisms behind hippocampal damage following prenatal acetaminophen exposure (PAcE) remain unclear. The present study shows an increased risk of adverse neurodevelopmental outcomes in offspring following exposure to acetaminophen during pregnancy on mice. The results revealed that different doses, timings, and duration of exposure to acetaminophen during pregnancy were associated with dose-dependent changes in the hippocampus of the offspring. Furthermore, exposure to high doses, multiple-treatment courses, and late pregnancy induced pathological changes, such as wrinkling and vacuolation, inhibited hippocampal proliferation and increased apoptosis. In addition, PAcE significantly decreased the expression of genes related to synaptic development in fetal hippocampal neurons and hippocampal astrocyte and microglia were also damaged to varying degrees. The significant reduction either in SOX2, an essential gene in regulating neural progenitor cell proliferation, and reduction of genes related to the SOX2/Notch pathway may suggest that the role of SOX2/Notch pathway in impaired hippocampal development in the offspring due to PAcE. In general, PAcE at high doses, multiple-treatment courses, and mid- and late gestation were associated with neurodevelopmental toxicity to the offspring.
Collapse
Affiliation(s)
- Lulu Xie
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Qin
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Wang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Shuai Zhang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Mingcui Luo
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xuelei Cheng
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xinrui Cao
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Biwen Peng
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
10
|
Bobotis BC, Braniff O, Gargus M, Akinluyi ET, Awogbindin IO, Tremblay MÈ. Sex differences of microglia in the healthy brain from embryonic development to adulthood and across lifestyle influences. Brain Res Bull 2023; 202:110752. [PMID: 37652267 DOI: 10.1016/j.brainresbull.2023.110752] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Microglia, the central nervous system innate immune cells, play a critical role in maintaining a homeostatic environment in the brain throughout life. These cells exhibit an impressive range of functions and characteristics that help to ensure proper functioning of the brain. Notably, microglia can present differences in their genetic and physical traits, which can be influenced by a range of factors, including age, environmental exposures, disease, and sex. Remarkably, microglia have been found to express receptors for sex hormones, suggesting that these hormones may play a role in modulating microglial behavior and potentially contribute to sex differences. Additionally, sex-chromosomal factors were shown to impact microglial genetics and functioning. In this review, we will examine how microglial responses in homeostasis are impacted by their interaction with sex hormones and sex chromosomes. Specifically, our investigation will focus on examining this interaction from embryonic development to adulthood, and the influence of lifestyle elements on various microglial features, including density and distribution, morphology, transcriptome, and proteome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Makenna Gargus
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Ifeoluwa Oluleke Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada; Department of Molecular Medicine, Université Laval, Québec, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
| |
Collapse
|
11
|
Bollinger JL, Dadosky DT, Flurer JK, Rainer IL, Woodburn SC, Wohleb ES. Microglial P2Y12 mediates chronic stress-induced synapse loss in the prefrontal cortex and associated behavioral consequences. Neuropsychopharmacology 2023; 48:1347-1357. [PMID: 36517583 PMCID: PMC10354016 DOI: 10.1038/s41386-022-01519-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Chronic unpredictable stress (CUS) drives microglia-mediated neuronal remodeling and synapse loss in the prefrontal cortex (PFC), contributing to deficits in cognition and behavior. However, it remains unclear what mechanisms guide microglia-neuron interactions in stress. Evidence indicates that neuronal activity-dependent purinergic signaling directs microglial processes and synaptic engagement via P2Y12, a purinergic receptor exclusively expressed by microglia in the brain. Stress alters excitatory neurotransmission in the PFC, thus we aimed to determine if P2Y12 signaling promotes functional changes in microglia in chronic stress. Here we used genetic ablation of P2Y12 (P2ry12-/-) or pharmacological blockade (clopidogrel, ticagrelor) to examine the role of purinergic signaling in stress-induced microglia-neuron interaction. Multiple behavioral, physiological, and cytometric endpoints were analyzed. Deletion of P2Y12 led to a number of fundamental alterations in the PFC, including the heightened microglial number and increased dendritic spine density. Flow cytometry revealed that microglia in P2ry12-/- mice had shifts in surface levels of CX3CR1, CSF1R, and CD11b, suggesting changes in synaptic engagement and phagocytosis in the PFC. In line with this, pharmacological blockade of P2Y12 prevented CUS-induced increases in the proportion of microglia with neuronal inclusions, limited dendritic spine loss in the PFC, and attenuated alterations in stress coping behavior and working memory function. Overall, these findings indicate that microglial P2Y12 is a critical mediator of stress-induced synapse loss in the PFC and subsequent behavioral deficits.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David T Dadosky
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James K Flurer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ivanka L Rainer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Wang C, Li H, Chen C, Yao X, Yang C, Yu Z, Ren J, Ming Y, Huang Y, Rong Y, Ma Y, Liu L. High-Fat Diet Consumption Induces Neurobehavioral Abnormalities and Neuronal Morphological Alterations Accompanied by Excessive Microglial Activation in the Medial Prefrontal Cortex in Adolescent Mice. Int J Mol Sci 2023; 24:ijms24119394. [PMID: 37298345 DOI: 10.3390/ijms24119394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The association between a high-fat diet (HFD) consumption and emotional/cognitive disorders is widely documented. One distinctive feature of the prefrontal cortex (PFC), a kernel emotion- and cognition-related brain region, is its protracted adolescent maturation, which makes it highly vulnerable to the detrimental effects of environmental factors during adolescence. Disruption of the PFC structure and function is linked to emotional/cognitive disorders, especially those that emerge in late adolescence. A HFD consumption is common among adolescents, yet its potential effects on PFC-related neurobehavior in late adolescence and any related underlying mechanisms are yet to be established. In the present study, adolescent (postnatal days 28-56) male C57BL/6J mice were fed a control diet (CD) or a HFD and underwent behavioral tests in addition to Golgi staining and immunofluorescence targeting of the medial PFC (mPFC). The HFD-fed adolescent mice exhibited anxiety- and depression-like behavior and abnormal mPFC pyramidal neuronal morphology accompanied by alterations in microglial morphology indicative of a heightened state of activation and increased microglial PSD95+ inclusions signifying excessive phagocytosis of the synaptic material in the mPFC. These findings offer novel insights into the neurobehavioral effects due to adolescent HFD consumption and suggest a contributing role in microglial dysfunction and prefrontal neuroplasticity deficits for HFD-associated mood disorders in adolescents.
Collapse
Affiliation(s)
- Conghui Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Hong Li
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Chen Chen
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiuting Yao
- Medical College, Southeast University, Nanjing 210009, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Zhehao Yu
- Medical College, Southeast University, Nanjing 210009, China
| | - Jiayi Ren
- Medical College, Southeast University, Nanjing 210009, China
| | - Yue Ming
- Medical College, Southeast University, Nanjing 210009, China
| | - Yi Huang
- Medical College, Southeast University, Nanjing 210009, China
| | - Yi Rong
- Medical College, Southeast University, Nanjing 210009, China
| | - Yu Ma
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
13
|
Qin J, Yao B, Xie L, Wang T, Zhang S, Luo M, Wang H, Xu D, Peng B. Impact of prenatal amoxicillin exposure on hippocampal development deficiency. Neuropharmacology 2023; 223:109331. [PMID: 36396078 DOI: 10.1016/j.neuropharm.2022.109331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Amoxicillin has been widely used to treat infectious diseases during pregnancy. Current studies suggest that amoxicillin exposure during pregnancy could lead to developmental disorders in the offspring and increase the incidence of long-term complications such as asthma and kidney damage in adulthood. However, the adverse effects of prenatal amoxicillin exposure (PAmE) including administration stage, doses and courses on fetal hippocampal neurodevelopment and its function in the offspring have not been elucidated. In this study, we intend to investigate the effects of PAmE on fetal hippocampal development and its possible mechanisms. METHOD Pregnant Kunming mice were given intragastric administration with amoxicillin at different administration stage, doses and courses, and GD (gestational day) 18 offspring hippocampus was collected for morphological and development-related functional assays, and the molecular mechanisms were explored. RESULTS PAmE induced hippocampal hypoplasia in the offspring with suppressed hippocampal neuronal cell proliferation and impaired neuronal synaptic plasticity comparatively; hippocampal astrocyte and microglia were damaged to varying degrees. The developmental toxicity of PAmE in fetal mices varies by time, dose, and course of treatment. The most severe damage was observed in the late gestation, high dose, and multi-course dosing groups. The significant reduction either in SOX2, an essential gene in regulating neural progenitor cell proliferation, and reduction of genes related to the Wnt/β-catenin pathway may suggest that the key role of SOX2/Wnt/β-catenin pathway in impaired hippocampal development in the offspring due to PAmE. CONCLUSION In this study, PAmE was found to be developmentally toxic to the hippocampus thus to induce developmental damage to various hippocampal cells; Even with current clinically safe doses, potential hippocampal damage to offspring may still present; This study provides a theoretical and experimental basis for guiding the rational usage of drugs during pregnancy and giving effectively assessment of the risk on fetal hippocampal developmental toxicity.
Collapse
Affiliation(s)
- Jiaxin Qin
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Lulu Xie
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shuai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mingcui Luo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China; Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Simões-Henriques CF, Rodrigues-Neves AC, Sousa FJ, Gaspar R, Almeida I, Baptista FI, Ambrósio AF, Gomes CA. Neonatal testosterone voids sexually differentiated microglia morphology and behavior. Front Endocrinol (Lausanne) 2023; 14:1102068. [PMID: 36926023 PMCID: PMC10013065 DOI: 10.3389/fendo.2023.1102068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
The involvement of immunity in psychiatric disorders, such as anxiety, is typified by the morphologic adaptation of microglia, immune cells of the brain, to anxiogenic stimuli. We previously reported sexually differentiated microglia morphology in adult rodents, in brain locations implicated in anxiety, including the pre-frontal cortex. These physiologic differences likely drive sex-dependent patterns of microglia morphologic remodeling in response to varied stress conditions in different periods of life, that correlate with sex-dependent behavioral adaptation to anxiogenic stimuli. The time-window of appearance of sex differences in microglia, correlating with sex-specific behavioral performance in anxiogenic conditions are still unknown. In rodents, a postnatal peak of the sexual hormone testosterone is determinant for the so-called brain masculinization and sex-determined behavioral traits. In the present work we aim to clarify if differences in microglia morphology are present at birth or can be driven by postnatal testosterone and impacts on the ability to deal with an anxiogenic context. Differences in microglia morphology are not present at birth, but are observable at adolescence (increased complexity of male microglia, particularly in branches more proximal to the soma), when differences in behavior are also observed. Our data also show that adolescent females neonatally treated with testosterone exhibit masculinized microglia and behavior. Importantly, between adolescence and adulthood, a sex-determined shift in the pattern of complexity takes place and microglia from females become more complex. When testosterone is administered, this morphological effect is partially abolished, approximating microglia and behavior to the male phenotype.
Collapse
Affiliation(s)
- Carla Filipa Simões-Henriques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - A. Catarina Rodrigues-Neves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Fábio J. Sousa
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Rita Gaspar
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Inês Almeida
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Filipa I. Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - António F. Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Catarina A. Gomes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- *Correspondence: Catarina A. Gomes,
| |
Collapse
|
15
|
Chronic clomipramine treatment reverses depressogenic-like effects of a chronic treatment with dexamethasone in rats. IBRO Neurosci Rep 2022; 13:147-155. [PMID: 36035970 PMCID: PMC9400083 DOI: 10.1016/j.ibneur.2022.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Corticosteroids are widely used in medicine, for their anti-inflammatory and immunosuppressive actions, but can lead to troubling psychiatric side-effects. In fact, corticosteroids can induce many symptoms and syndromes, for example, mood disorders, anxiety and panic disorder, suicidal thinking and behavior. Furthermore, chronic stress and the administration of exogenous glucocorticoids are reported to induce affective changes in humans and rodents that relate to depressive state. Animal models are highly useful tools for studying the depression etiology. Face validity, construct validity, and predictive validity are the main criteria to evaluate animal depression models. The present study aimed to investigate the behavioral, cognitive, and biochemical effects of a chronic administration of DEX on Wistar rats. Wistar rats were administered daily with DEX (1.5 mg/kg, i.p., 21 days) or saline, the clomipramine treatment (2 mg/kg, i.p.) was realized just after the DEX injections for 21 days. DEX induced changes were evaluated by: forced swimming, novelty suppressed feeding, saccharin preference, open field, Morris water maze, and oxidative stress state in the brain. Results showed that chronic DEX administration conduct to a range of depression-related behavioral traits, including anhedonia, despair, weight loss, anxiety-like behavior, and cognitive impairments, which fill the face validity criterion. The DEX induced behavioral changes may result from the massive production of oxidative stress agents. This sustains the etiological hypothesis claiming that hyper-circulating glucocorticoid resulting from HPA dysfunction induces damage in certain neural structures related to depressive disorder, essentially the hippocampus. The antidepressant treatment has restored the behavioral state of rats which fills the predictive validity criterion.
Collapse
|
16
|
Rodrigues-Neves AC, Ambrósio AF, Gomes CA. Microglia sequelae: brain signature of innate immunity in schizophrenia. Transl Psychiatry 2022; 12:493. [PMID: 36443303 PMCID: PMC9705537 DOI: 10.1038/s41398-022-02197-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Schizophrenia is a psychiatric disorder with significant impact on individuals and society. The current pharmacologic treatment, which principally alleviates psychosis, is focused on neurotransmitters modulation, relying on drugs with severe side effects and ineffectiveness in a significant percentage of cases. Therefore, and due to difficulties inherent to diagnosis and treatment, it is vital to reassess alternative cellular and molecular drug targets. Distinct risk factors - genetic, developmental, epigenetic, and environmental - have been associated with disease onset and progression, giving rise to the proposal of different pathophysiological mechanisms and putative pharmacological targets. Immunity is involved and, particularly microglia - innate immune cells of the central nervous system, critically involved in brain development - have captured attention as cellular players. Microglia undergo marked morphologic and functional alterations in the human disease, as well as in animal models of schizophrenia, as reported in several original papers. We cluster the main findings of clinical studies by groups of patients: (1) at ultra-high risk of psychosis, (2) with a first episode of psychosis or recent-onset schizophrenia, and (3) with chronic schizophrenia; in translational studies, we highlight the time window of appearance of particular microglia alterations in the most well studied animal model in the field (maternal immune activation). The organization of clinical and translational findings based on schizophrenia-associated microglia changes in different phases of the disease course may help defining a temporal pattern of microglia changes and may drive the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- A. Catarina Rodrigues-Neves
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - António. F. Ambrósio
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Catarina A. Gomes
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| |
Collapse
|
17
|
Lynch MA. Exploring Sex-Related Differences in Microglia May Be a Game-Changer in Precision Medicine. Front Aging Neurosci 2022; 14:868448. [PMID: 35431903 PMCID: PMC9009390 DOI: 10.3389/fnagi.2022.868448] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
One area of microglial biology that has been relatively neglected until recently is sex differences and this is in spite of the fact that sex is a risk factor in several diseases that are characterized by neuroinflammation and, by extension, microglial activation. Why these sex differences exist is not known but the panoply of differences extend to microglial number, genotype and phenotype. Significantly, several of these sex-related differences are also evident in health and change during life emphasizing the dynamic and plastic nature of microglia. This review will consider how age impacts on sex-related differences in microglia and ask whether the advancement of personalized medicine demands that a greater focus is placed on studying sex-related differences in microglia in Alzheimer's disease, Parkinson's disease and models of inflammatory stress and trauma in order to make true progress in dealing with these conditions.
Collapse
Affiliation(s)
- Marina A. Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
18
|
Gaspar R, Soares-Cunha C, Domingues AV, Coimbra B, Baptista FI, Pinto L, Ambrósio AF, Rodrigues AJ, Gomes CA. The Duration of Stress Determines Sex Specificities in the Vulnerability to Depression and in the Morphologic Remodeling of Neurons and Microglia. Front Behav Neurosci 2022; 16:834821. [PMID: 35330844 PMCID: PMC8940280 DOI: 10.3389/fnbeh.2022.834821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Stress exposure has been shown to induce a variety of molecular and functional alterations associated with anxiety and depression. Some studies suggest that microglia, the immune cells of the brain, play a significant role in determining neuronal and behavioral responses to chronic stress and also contribute to the development of stress-related psychopathologies. However, little is known about the impact of the duration of stress exposure upon microglia and neurons morphology, particularly considering sex differences. This issue deserves particular investigation, considering that the process of morphologic remodeling of neurons and microglia is usually accompanied by functional changes with behavioral expression. Here, we examine the effects of short and long unpredictable chronic mild stress (uCMS) protocols on behavior, evaluating in parallel microglia and neurons morphology in the dorsal hippocampus (dHIP) and in the nucleus accumbens (NAc), two brain regions involved in the etiology of depression. We report that long-term uCMS induced more behavioral alterations in males, which present anxiety and depression-like phenotypes (anhedonia and helplessness behavior), while females only display anxiety-like behavior. After short-term uCMS, both sexes presented anxiety-like behavior. Microglia cells undergo a process of morphologic adaptation to short-term uCMS, dependent on sex, in the NAc: we observed a hypertrophy in males and an atrophy in females, transient effects that do not persist after long-term uCMS. In the dHIP, the morphologic adaptation of microglia is only observed in females (hypertrophy) and after the protocol of long uCMS. Interestingly, males are more vulnerable to neuronal morphological alterations in a region-specific manner: dendritic atrophy in granule neurons of the dHIP and hypertrophy in the medium spiny neurons of the NAc, both after short- or long-term uCMS. The morphology of neurons in these brain regions were not affected in females. These findings raise the possibility that, by differentially affecting neurons and microglia in dHIP and NAc, chronic stress may contribute for differences in the clinical presentation of stress-related disorders under the control of sex-specific mechanisms.
Collapse
Affiliation(s)
- Rita Gaspar
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa I. Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António F. Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
- *Correspondence: Ana João Rodrigues,
| | - Catarina A. Gomes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Catarina A. Gomes,
| |
Collapse
|
19
|
Stress induced microglial activation contributes to depression. Pharmacol Res 2022; 179:106145. [DOI: 10.1016/j.phrs.2022.106145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
|
20
|
Laine M, Shansky R. Rodent models of stress and dendritic plasticity – Implications for psychopathology. Neurobiol Stress 2022; 17:100438. [PMID: 35257016 PMCID: PMC8897597 DOI: 10.1016/j.ynstr.2022.100438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022] Open
Abstract
Stress, as commonplace as it is, is a major environmental risk factor for psychopathology. While this association intuitively, anecdotally, and empirically makes sense, we are still very early in the process of understanding what the neurobiological manifestations of this risk truly are. Seminal work from the past few decades has established structural plasticity in the brain as a potential key mechanism. In this review we discuss evidence linking particularly chronic stress exposure in rodent models to plasticity at the dendrites, like remodeling of dendritic branches and spines, in a range of brain regions. A number of candidate mechanisms that seek to explain how stress influences neuroanatomy at this level have been proposed, utilizing in vivo, ex vivo and in vitro methods. However, a large gap still remains in our knowledge of how such dynamic structural changes ultimately relate to downstream effects such as altered affective and cognitive states relevant for psychopathology. We propose that future work expand our understanding of plasticity of specific stress-related brain circuits and cell-types. We also note that the vast majority of the work has been conducted solely on male rodents. The next big strides in our understanding of the neurobiology of psychopathology will require the inclusion of female subjects, as several studies have suggested both sex divergent and convergent features. By understanding plasticity, we can harness it. The growth of this body of knowledge will inform our efforts to improve the therapeutic options for stress-related psychopathology.
Collapse
|
21
|
Innate immune stimulation prevents the development of anxiety-like behaviors in chronically stressed mice. Neuropharmacology 2022; 207:108950. [PMID: 35074304 DOI: 10.1016/j.neuropharm.2022.108950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Anxiety is a common psychological disease which can induce severe social burdens. Searching methods that prevent the onset of anxiety is of great significance for ameliorating the social and individual problems induced by this type of disease. In this study, we investigated how innate immune pre-stimulation influences the anxiety-like behaviors in chronically stressed mice. Our results showed that a single injection of an innate immune stimulant lipopolysaccharide (LPS) at the dose of 50, 100, and 500 μg/kg 1 day before stress exposure prevented chronic social defeat stress (CSDS)-induced anxiety-like behaviors in mice. A single injection of LPS (100 μg/kg) 5 days before stress exposure produced similar preventive effects on CSDS-induced anxiety-like behaviors, while similar effects were not observed at the condition of 10-days interval between LPS injection and stress exposure. A second LPS injection 10 days after the first LPS injection or a 4 × LPS injection 10 days before stress exposure also prevented CSDS-induced anxiety-like behaviors. Moreover, a single injection of LPS (100 μg/kg) 1 day before stress exposure prevented the production of pro-inflammatory cytokines in the hippocampus and prefrontal cortex of CSDS mice. Suppression of innate immune stimulation by minocycline pretreatment simultaneously abrogated the preventive effect of LPS pre-injection (100 μg/kg) on CSDS-induced anxiety-like behaviors and pro-inflammatory cytokine production in the brain. Our results demonstrated that the pre-stimulation of the innate immune system can prevent the development of anxiety-like behaviors and the progression of the neuroinflammatory responses in the brain in chronically stressed mice.
Collapse
|
22
|
Ferreira AS, Galvão S, Gaspar R, Rodrigues-Neves AC, Ambrósio AF, Matafome P, Gomes CA, Baptista FI. Sex-specific changes in peripheral metabolism in a model of chronic anxiety induced by prenatal stress. Eur J Clin Invest 2021; 51:e13639. [PMID: 34120349 DOI: 10.1111/eci.13639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Prenatal stress is associated with increased susceptibility to psychiatric and metabolic disorders later in life. Prenatal exposure to stress mediators may have sex-dependent effects on offspring brain and metabolic function, promoting a sex-specific vulnerability to psychopathology and metabolic alterations at adulthood. In this work, the impact of prenatal stress on glucose homeostasis and peripheral metabolism of male and female offspring was investigated in a chronic anxiety animal model. METHODS Pregnant Wistar rats were injected with saline or glucocorticoid (dexamethasone: 1 mg/kg, subcutaneous) at gestational days 18 and 19. Male and female offspring weight was monitored, and anxious-like behaviour and peripheral insulin-sensitive tissues were analysed at adulthood. RESULTS At birth, females and males prenatally exposed to stress presented decreased body weight which remained low in females. At adulthood, a morphological disorganization of the Langerhans islets was observed in both sexes prenatally exposed to stress, yet not changes in insulin levels were detected. Also, prenatal stress increased glucose transporter 4 (GLUT-4) levels in female and male adipose tissues and decreased insulin receptor levels in the liver and skeleton muscle but only in females. CONCLUSIONS Exposure to stress mediators in critical periods of development negatively affects behaviour and metabolism. Prenatal stress programmes offspring peripheral metabolism in a sex-specific manner, emphasizing that the response to stress in critical periods of development may be sex-specific having each sex different vulnerabilities to psychiatric and metabolic disorders. Considering sex-specificities may provide critical clues for the design of preventive strategies and for early therapeutic intervention.
Collapse
Affiliation(s)
- Ana Sofia Ferreira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Sofia Galvão
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Rita Gaspar
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana C Rodrigues-Neves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - António F Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Matafome
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Catarina A Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Filipa I Baptista
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
23
|
Tsyglakova M, Huskey AM, Hurst EH, Telep NM, Wilding MC, Babington ME, Rainville JR, Hodes GE. Sex and region-specific effects of variable stress on microglia morphology. Brain Behav Immun Health 2021; 18:100378. [PMID: 34820640 PMCID: PMC8600001 DOI: 10.1016/j.bbih.2021.100378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Major Depressive Disorder (MDD) is a common and debilitating mood disorder that is more prevalent in women than men. In humans, PET imaging of microglia activation is currently being explored as a potential biomarker of MDD and suicidal ideation. Stress is a trigger for many mood disorders, including MDD. Microglial changes in morphology and activation state in response to stress has been reported in various brain regions, but most studies only examined male subjects. Here we report changes in microglia morphology in the nucleus accumbens (NAc) and subregions of the hippocampus (HPC) in both male and female mice following variable stress of 6 or 28 days in duration. Our data demonstrate that after 6 days of stress, microglia in the female NAc and dentate gyrus have a reduction in homeostatic associated morphology and an increase in primed microglia. After 28 days some of these sex specific stress effects were still present in microglia within the NAc but not the dentate gyrus. There were no effects of stress in either sex at either timepoint in CA1. In female mice, anti-inflammatory activation of microglia using rosiglitazone promoted sociability behavior after 6 days of stress. Furthermore, both drug and stress have impact on microglia morphology and activation state in the NAc. These data suggest that microglia morphology and activation state are altered by 6 days of variable stress in a region-specific manner and may contribute to, or potentially compensate for, the onset of stress susceptibility rather than impacting long term exposure to stress.
Collapse
Affiliation(s)
- Mariya Tsyglakova
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alisa M. Huskey
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Emily H. Hurst
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Natalie M. Telep
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mary C. Wilding
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Meghan E. Babington
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jennifer R. Rainville
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Georgia E. Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
24
|
Cai X, Yang C, Chen J, Gong W, Yi F, Liao W, Huang R, Xie L, Zhou J. Proteomic Insights Into Susceptibility and Resistance to Chronic-Stress-Induced Depression or Anxiety in the Rat Striatum. Front Mol Biosci 2021; 8:730473. [PMID: 34676246 PMCID: PMC8523913 DOI: 10.3389/fmolb.2021.730473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic stress is a key factor for the onset of anxiety and depression disorders. However, the stress-induced common and unique molecular basis of the two psychiatric disorders is not fully known and still needs to be explored. Previously, we employed a chronic mild stress (CMS) procedure to induce a rat model including depression-susceptible (Dep-Sus), anxiety-susceptible (Anx-Sus), and insusceptible (Insus) cohorts. In this work, we continuously analyze the striatal proteomes of the three stressed cohorts by the use of comparative proteomics and bioinformatics approaches. Through isobaric tags for relative and absolute quantitation (iTRAQ)-based analysis, 386 abnormally expressed proteins in total were identified. These deregulated proteins are involved in various biological functions and significant pathways that are potentially connected with resistance and susceptibility to CMS-caused anxious- or depressive-like behaviors and, hence, could act as suggestive protein targets. A further parallel reaction monitoring-based independent investigation shows that alterations in Pak5, Dgkg, Scn4b, Rb1cc1, and Acin1; Ggps1, Fntb, Nudt19, Ufd1, and Ndufab1; and Dnajb12, Hbb2, Ap2s1, Ip6k1, and Stk4 were specifically connected with Dep-Sus, Anx-Sus, or Insus groups, respectively, potentially indicating that identical CMS treatment results in the different changes in the striatal protein regulations. Overall, our current proteomics study of the striatum provides an important molecular foundation and comprehensive insights into common and specific deregulations correlated with pathophysiological mechanisms that underlie resistance and susceptibility to chronic stress-induced anxiety or depression.
Collapse
Affiliation(s)
- Xiao Cai
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Chen Yang
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jin Chen
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weibo Gong
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Faping Yi
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Wei Liao
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Rongzhong Huang
- Statistics Laboratory, ChuangXu Institute of Life Science, Chongqing, China.,Chongqing Institute of Life Science, Chongqing, China
| | - Liang Xie
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Zhou
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Bollinger J. Uncovering microglial pathways driving sex-specific neurobiological effects in stress and depression. Brain Behav Immun Health 2021; 16:100320. [PMID: 34589809 PMCID: PMC8474553 DOI: 10.1016/j.bbih.2021.100320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Women suffer from major depressive disorder (MDD) more often than men and report greater MDD symptom severity. Mounting evidence suggests that sex differences in MDD may be driven, in part, by sex-specific neurobiological mechanisms. Chronic stress is a significant risk factor in MDD, and preclinical rodent models show differential patterns of stress-induced neural remodeling and cognitive-behavioral dysfunction in males and females. For instance, chronic stress leads to synapse loss in the medial prefrontal cortex in male rodents yet has either no effect on- or increases-synapse number in females. Recent reports have implicated microglia, the immune cells of the brain, in MDD, and findings demonstrate sex-specific microglial signatures in both preclinical stress models and MDD patients. Given that microglia can remodel neural architecture, modulate synaptic transmission, and affect subsequent changes in behavior, it is plausible that microglial pathways contribute to differential stress effects on neuroplasticity and function in males and females. As such, this review examines the evidence for sex-specific microglia-neuron interactions in preclinical stress models and in patients with MDD. Discoveries highlighted herein demonstrate divergent microglial contributions in males and females and suggest that future studies investigating stress-linked disorders should be guided by sex-dependent neurobiological and behavioral findings. Examining these pathways represents a clear avenue toward both a richer understanding of brain, behavior, and immunity, and innovative psychoneuroimmunology-based applications in personalized medicine.
Collapse
Affiliation(s)
- J.L. Bollinger
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 2120 East Galbraith Road, Cincinnati, OH, 45237, USA
| |
Collapse
|
26
|
De Ridder D, Adhia D, Vanneste S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev 2021; 130:125-146. [PMID: 34411559 DOI: 10.1016/j.neubiorev.2021.08.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. Chronic pain, with a prevalence of 20-30 % is the major cause of human suffering worldwide, because effective, specific and safe therapies have yet to be developed. It is unevenly distributed among sexes, with women experiencing more pain and suffering. Chronic pain can be anatomically and phenomenologically dissected into three separable but interacting pathways, a lateral 'painfulness' pathway, a medial 'suffering' pathway and a descending pain inhibitory pathway. One may have pain(fullness) without suffering and suffering without pain(fullness). Pain sensation leads to suffering via a cognitive, emotional and autonomic processing, and is expressed as anger, fear, frustration, anxiety and depression. The medial pathway overlaps with the salience and stress networks, explaining that behavioural relevance or meaning determines the suffering associated with painfulness. Genetic and epigenetic influences trigger chronic neuroinflammatory changes which are involved in transitioning from acute to chronic pain. Based on the concept of the Bayesian brain, pain (and suffering) can be regarded as the consequence of an imbalance between the two ascending and the descending pain inhibitory pathways under control of the reward system. The therapeutic clinical implications of this simple pain model are obvious. After categorizing the working mechanisms of each of the available treatments (pain killers, psychopharmacology, psychotherapy, neuromodulation, psychosurgery, spinal cord stimulation) to 1 or more of the 3 pathways, a rational combination can be proposed of activating the descending pain inhibitory pathway in combination with inhibition of the medial and lateral pathway, so as to rebalance the pain (and suffering) pathways.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|