1
|
Vinci M, Greco D, Treccarichi S, Chiavetta V, Figura MG, Musumeci A, Greco V, Federico C, Calì F, Saccone S. Bioinformatic Evaluation of KLF13 Genetic Variant: Implications for Neurodevelopmental and Psychiatric Symptoms. Genes (Basel) 2024; 15:1056. [PMID: 39202416 PMCID: PMC11354057 DOI: 10.3390/genes15081056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
The Krüppel-like factor (KLF) family represents a group of transcription factors (TFs) performing different biological processes that are crucial for proper neuronal function, including neuronal development, synaptic plasticity, and neuronal survival. As reported, genetic variants within the KLF family have been associated with a wide spectrum of neurodevelopmental and psychiatric symptoms. In a patient exhibiting attention deficit hyperactivity disorder (ADHD) combined with both neurodevelopmental and psychiatric symptoms, whole-exome sequencing (WES) analysis revealed a de novo heterozygous variant within the Krüppel-like factor 13 (KLF13) gene, which belongs to the KLF family and regulates axonal growth, development, and regeneration in mice. Moreover, in silico analyses pertaining to the likely pathogenic significance of the variant and the impact of the mutation on the KLF13 protein structure suggested a potential deleterious effect. In fact, the variant was localized in correspondence to the starting residue of the N-terminal domain of KLF13, essential for protein-protein interactions, DNA binding, and transcriptional activation or repression. This study aims to highlight the potential involvement of the KLF13 gene in neurodevelopmental and psychiatric disorders. Nevertheless, we cannot rule out that excluded variants, those undetectable by WES, or the polygenic risk may have contributed to the patient's phenotype given ADHD's high polygenic risk. However, further functional studies are required to validate its potential contribution to these disorders.
Collapse
Affiliation(s)
- Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Donatella Greco
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Valeria Chiavetta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Maria Grazia Figura
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Vittoria Greco
- Department of Biomedical Science, University of Messina, 98122 Messina, Italy;
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| |
Collapse
|
2
|
Oakley RH, Riddick NV, Moy SS, Cidlowski JA. Imbalanced glucocorticoid and mineralocorticoid stress hormone receptor function has sex-dependent and independent regulatory effects in the mouse hippocampus. Neurobiol Stress 2024; 28:100589. [PMID: 38075021 PMCID: PMC10709088 DOI: 10.1016/j.ynstr.2023.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 02/12/2024] Open
Abstract
Many stress-related neuropsychiatric disorders display pronounced sex differences in their frequency and clinical symptoms. Glucocorticoids are primary stress hormones that have been implicated in the development of these disorders but whether they contribute to the observed sex bias is poorly understood. Glucocorticoids signal through two closely related nuclear receptors, the glucocorticoid (GR) and mineralocorticoid receptor (MR). To elucidate the sex-specific and independent actions of glucocorticoids in the hippocampus, we developed knockout mice lacking hippocampal GR, MR, or both GR and MR. Mice deficient in hippocampal MR or both GR and MR showed an altered molecular phenotype of CA2 neurons and reduced anxiety-like behavior in both sexes, but altered stress adaptation behavior only in females and enhanced fear-motivated cue learning only in males. All three knockout mouse models displayed reduced sociability but only in male mice. Male and female mice deficient in both hippocampal GR and MR exhibited extensive neurodegeneration in the dentate gyrus. Global transcriptomic analysis revealed a marked expansion in the number of dysregulated genes in the hippocampus of female knockout mice compared to their male counterparts; however, the overall patterns of gene dysregulation were remarkably similar in both sexes. Within and across sex comparisons identified key GR and MR target genes and associated signaling pathways underlying the knockout phenotypes. These findings define major sex-dependent and independent effects of GR/MR imbalances on gene expression and functional profiles in the hippocampus and inform new strategies for treating men and women with stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Robert H. Oakley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Natallia V. Riddick
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sheryl S. Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John A. Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
3
|
Takeuchi Y, Murayama Y, Aita Y, Mehrazad Saber Z, Karkoutly S, Tao D, Katabami K, Ye C, Shikama A, Masuda Y, Izumida Y, Miyamoto T, Matsuzaka T, Kawakami Y, Shimano H, Yahagi N. GR-KLF15 pathway controls hepatic lipogenesis during fasting. FEBS J 2024; 291:259-271. [PMID: 37702262 DOI: 10.1111/febs.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
During periods of fasting, the body undergoes a metabolic shift from carbohydrate utilization to the use of fats and ketones as an energy source, as well as the inhibition of de novo lipogenesis and the initiation of gluconeogenesis in the liver. The transcription factor sterol regulatory element-binding protein-1 (SREBP-1), which plays a critical role in the regulation of lipogenesis, is suppressed during fasting, resulting in the suppression of hepatic lipogenesis. We previously demonstrated that the interaction of fasting-induced Kruppel-like factor 15 (KLF15) with liver X receptor serves as the essential mechanism for the nutritional regulation of SREBP-1 expression. However, the underlying mechanisms of KLF15 induction during fasting remain unclear. In this study, we show that the glucocorticoid receptor (GR) regulates the hepatic expression of KLF15 and, subsequently, lipogenesis through the KLF15-SREBP-1 pathway during fasting. KLF15 is necessary for the suppression of SREBP-1 by GR, as demonstrated through experiments using KLF15 knockout mice. Additionally, we show that GR is involved in the fasting response, with heightened binding to the KLF15 enhancer. It has been widely known that the hypothalamic-pituitary-adrenal (HPA) axis regulates the secretion of glucocorticoids and plays a significant role in the metabolic response to undernutrition. These findings demonstrate the importance of the HPA-axis-regulated GR-KLF15 pathway in the regulation of lipid metabolism in the liver during fasting.
Collapse
Affiliation(s)
- Yoshinori Takeuchi
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zahra Mehrazad Saber
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Samia Karkoutly
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Duhan Tao
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kyoka Katabami
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Chen Ye
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasushi Kawakami
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
4
|
Simmen FA, Alhallak I, Simmen RCM. Krüppel-like Factor-9 and Krüppel-like Factor-13: Highly Related, Multi-Functional, Transcriptional Repressors and Activators of Oncogenesis. Cancers (Basel) 2023; 15:5667. [PMID: 38067370 PMCID: PMC10705314 DOI: 10.3390/cancers15235667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Thakkar C, Alikunju S, Niranjan N, Rizvi W, Abbas A, Abdellatif M, Sayed D. Klf9 plays a critical role in GR -dependent metabolic adaptations in cardiomyocytes. Cell Signal 2023; 111:110886. [PMID: 37690661 PMCID: PMC10591860 DOI: 10.1016/j.cellsig.2023.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Glucocorticoids through activation of the Glucocorticoid receptor (GR) play an essential role in cellular homeostasis during physiological variations and in response to stress. Our genomic GR binding and transcriptome data from Dexamethasone (Dex) treated cardiomyocytes showed an early differential regulation of mostly transcription factors, followed by sequential change in genes involved in downstream functional pathways. We examined the role of Krüppel-like factor 9 (Klf9), an early direct target of GR in cardiomyocytes. Klf9-ChIPseq identified 2150 genes that showed an increase in Klf9 binding in response to Dex. Transcriptome analysis of Dex treated cardiomyocytes with or without knockdown of Klf9 revealed differential regulation of 1777 genes, of which a reversal in expression is seen in 1640 genes with knockdown of Klf9 compared to Dex. Conversely, only 137 (∼8%) genes show further dysregulation in expression with siKLf9, as seen with Dex treated cardiomyocytes. Functional annotation identified genes of metabolic pathways on the top of differentially expressed genes, including those involved in glycolysis and oxidative phosphorylation. Knockdown of Klf9 in cardiomyocytes inhibited Dex induced increase in glycolytic function and mitochondrial spare respiratory capacity, as measured by glycolysis and mito stress tests, respectively. Thus, we conclude that cyclic, diurnal GR activation, through Klf9 -dependent feedforward signaling plays a central role in maintaining cellular homeostasis through metabolic adaptations in cardiomyocytes.
Collapse
Affiliation(s)
- Chandni Thakkar
- From the Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Saleena Alikunju
- From the Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Nandita Niranjan
- From the Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Wajiha Rizvi
- High School Research Intern, Wayne Hills High School, Wayne, NJ 07470, United States of America
| | - Ali Abbas
- From the Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07103, United States of America
| | - Maha Abdellatif
- From the Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Danish Sayed
- From the Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America.
| |
Collapse
|
6
|
Gaudenzi C, Mifsud KR, Reul JMHM. Insights into isoform-specific mineralocorticoid receptor action in the hippocampus. J Endocrinol 2023; 258:e220293. [PMID: 37235709 PMCID: PMC7616738 DOI: 10.1530/joe-22-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/26/2023] [Indexed: 05/28/2023]
Abstract
The mineralocorticoid receptor (MR) plays a critical role in the mammalian brain as a mediator of appropriate cellular and behavioural responses under both baseline and stressful conditions. In the hippocampus, the MR has been implicated in several processes, such as neuronal maintenance, adult neurogenesis, inhibitory control of the hypothalamic-pituitary-adrenal axis, and learning and memory. Because of its high affinity for endogenous glucocorticoid hormones, the MR has long been postulated to mediate tonic actions in the brain, but more recent data have expanded on this view, indicating that the MR elicits dynamic responses as well. The complexity of the diverse molecular, cellular, and physiological functions fulfilled by the human, rat and mouse MR could at least partially be explained by the existence of different isoforms of the receptor. The structural and functional characteristics of these isoforms, however, have remained largely unexplored. The present article will review the current knowledge concerning human, rat, and mouse MR isoforms and evaluate seminal studies concerning the roles of the brain MR, with the intent to shed light on the function of its specific isoforms.
Collapse
Affiliation(s)
- Carolina Gaudenzi
- Neuro-Epigenetics Research Group, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Karen R Mifsud
- Neuro-Epigenetics Research Group, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Johannes M H M Reul
- Neuro-Epigenetics Research Group, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Ávila-Mendoza J, Delgado-Rueda K, Urban-Sosa VA, Carranza M, Luna M, Martínez-Moreno CG, Arámburo C. KLF13 Regulates the Activity of the GH-Induced JAK/STAT Signaling by Targeting Genes Involved in the Pathway. Int J Mol Sci 2023; 24:11187. [PMID: 37446365 DOI: 10.3390/ijms241311187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The Krüppel-like factor 13 (KLF13) has emerged as an important transcription factor involved in essential processes of the central nervous system (CNS). It predominantly functions as a transcriptional repressor, impacting the activity of several signaling pathways with essential roles in the CNS, including the JAK/STAT pathway, which is the canonical mediator of growth hormone (GH) signaling. It is now recognized that GH has important actions as a neurotrophic factor. Therefore, we analyzed the effects of KLF13 on the activity of the JAK/STAT signaling pathway in the hippocampus-derived cell line HT22. Results showed that KLF13 directly regulates the expression of several genes involved in the JAK-STAT pathway, including Jak1, Jak2, Jak3, and Socs1, by associating with their proximal gene promoters. In addition, it was found that in KLF13-deficient HT22 neurons, the expression of Jak1, Stat3, Socs1, Socs3, and Igf1 was dysregulated, exhibiting mRNA levels that went up to 7-fold higher than the control cell line. KLF13 displayed a differential effect on the GH-induced JAK/STAT pathway activity, decreasing the STAT3 branch while enhancing the STAT5 branch. In KLF13-deficient HT22 cells, the activity of the STAT3 branch was enhanced, mediating the GH-dependent augmented expression of the JAK/STAT output genes Socs1, Socs3, Igf1, and Bdnf. Furthermore, GH treatment increased both the nuclear content of KLF13 and Klf13 mRNA levels, suggesting that KLF13 could be part of the mechanisms that maintain the homeostatic state of this pathway. These findings support the notion that KLF13 is a regulator of JAK/STAT activity.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Karen Delgado-Rueda
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Valeria A Urban-Sosa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| |
Collapse
|