1
|
Huang Z, Jiang Q, Wang Y, Yang J, Du T, Yi H, Li C, Li Y, Wu Z, Fan S, Liao Y, Zhang Y, Wang L, Jiang G, Tang D, Ye Y, Wang C, Li Z, Li Z, Zhang C, Ma K, Li Q. SARS-CoV-2 inactivated vaccine (Vero cells) shows good safety in repeated administration toxicity test of Sprague Dawley rats. Food Chem Toxicol 2021; 152:112239. [PMID: 33901607 PMCID: PMC8064818 DOI: 10.1016/j.fct.2021.112239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/02/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
The outbreak of COVID-19 has posed a serious threat to global public health. Vaccination may be the most effective way to prevent and control the spread of the virus. The safety of vaccines is the focus of preclinical research, and the repeated dose toxicity test is the key safety test to evaluate the vaccine before clinical trials. The purpose of this study was (i) to observe the toxicity and severity of an inactivated SARS-CoV-2 vaccine (Vero cells) in rodent Sprague Dawley rats after multiple intramuscular injections under the premise of Good Laboratory Practice principles and (ii) to provide a basis for the formulation of a clinical trial scheme. The results showed that all animals in the experimental group were in good condition, no regular changes related to the vaccine were found in the detection of various toxicological indexes, and no noticeable stimulating reaction related to the vaccine was found in the injected local tissues. The neutralizing antibodies in the low- and high-dose vaccine groups began to appear 14 days after the last administration. In the negative control group, no neutralizing antibodies were observed from the administration period to the recovery period. Therefore, the repeated administration toxicity test of the inactivated SARS-CoV-2 vaccine (Vero cells) in Sprague Dawley rats showed no obvious toxic reaction. It was preliminarily confirmed that the vaccine can stimulate production of neutralizing antibodies and is safe in Sprague Dawley rats.
Collapse
Affiliation(s)
- Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Qinfang Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yixuan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Jinling Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Tingfu Du
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Hongkun Yi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Cong Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Zhengcun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Guorun Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Donghong Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yousong Ye
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Chenyun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Zheli Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Zhisai Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Caixing Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China; Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China; Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, 650118, China.
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China; Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, 650118, China.
| |
Collapse
|
2
|
Mancebo Rodríguez A, Bergado Báez G, Acosta Lago E, León Goñi A, Blanco Gámez D, Fuentes Morales D, Hernández Fernández DR, Sánchez Ramírez B, Pérez Barreda A, Casacó Parada Á. Immuno-toxicological evaluation of her1 cancer vaccine in non-human primates: a 6-month subcutaneous study. Immunopharmacol Immunotoxicol 2021; 43:283-290. [PMID: 33722157 DOI: 10.1080/08923973.2021.1900232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: A vaccine composition based on the extracellular domain of the human epidermal growth factor receptor 1 (HER1-ECD) and the combination of VSSP (very small size proteoliposomes) and Montanide ISA 51 adjuvants when used by intramuscular route, demonstrated promising results in preclinical studies. However, in order to avoid potential adverse events due to the use of Montanide, it is proposed to modify the vaccine formulation by using VSSP (very small size proteoliposomes) adjuvant alone, and to evaluate the quality of subcutaneously induced immune response. This study aimed to assess the immunotoxicological effects of HER1 vaccine in Cercopithecus aethiops.Materials and methods: Fifteen monkeys were randomized into four groups: Negative Control (Tris/NaCl, s.c.), Positive Control (200 µg HER1-ECD/VSSP/Montanide ISA-51 VG, i.m), Low Dose (200 µg HER1-ECD/VSSP/Tris NaCl, s.c.) and High Dose (800 µg HER1-ECD/VSSP/Tris NaCl, s.c). All monkeys received 7 doses and were daily inspected for clinical signs. Body weight, rectal temperature, cardiac and respiratory rates were measured during the study, and electrocardiographical and ophthalmological studies were performed. Humoral and cellular immune response and clinical pathology parameters were analyzed.Results: Animal's survival in the study was 100% (n = 15). Administration site reactions were observed in the Positive Control animals (n = 4). HER1 vaccine administered subcutaneously (High Dose Group) achieved good IgG antibody titers although lower than the Positive Control group, but with higher ability to inhibit HER1 phosphorylation. Conclusions: This suggests that the alternative of eliminating the use of Montanide in the HER1 vaccine preparation and the using subcutaneous route is feasible.
Collapse
Affiliation(s)
- Axel Mancebo Rodríguez
- Center of Experimental Toxicology, National Center for Laboratory Animals Breeding (CENPALAB), La Habana, Cuba
| | | | - Eric Acosta Lago
- Center of Experimental Toxicology, National Center for Laboratory Animals Breeding (CENPALAB), La Habana, Cuba
| | - Avelina León Goñi
- Center of Experimental Toxicology, National Center for Laboratory Animals Breeding (CENPALAB), La Habana, Cuba
| | - Diuris Blanco Gámez
- Center of Experimental Toxicology, National Center for Laboratory Animals Breeding (CENPALAB), La Habana, Cuba
| | - Dasha Fuentes Morales
- Center of Experimental Toxicology, National Center for Laboratory Animals Breeding (CENPALAB), La Habana, Cuba
| | | | | | | | - Ángel Casacó Parada
- Tumor Immunology Direction, Center of Molecular Immunology (CIM), La Habana, Cuba
| |
Collapse
|
3
|
Suárez NG, Báez GB, Rodríguez MC, Pérez AG, García LC, Hernández Fernández DR, Pous JR, Ramírez BS. Anti-proliferative and pro-apoptotic effects induced by simultaneous inactivation of HER1 and HER2 through endogenous polyclonal antibodies. Oncotarget 2017; 8:82872-82884. [PMID: 29137309 PMCID: PMC5669935 DOI: 10.18632/oncotarget.19958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/22/2017] [Indexed: 12/19/2022] Open
Abstract
The human epidermal growth factor receptor (HER1) and its partner HER2 are extensively described oncogenes and validated targets for cancer therapy. However, the effectiveness of monospecific therapies targeting these receptors is hampered by resistance emergence, which is frequently associated with the upregulation of other members of HER family. Combined therapies using monoclonal antibodies or tyrosine kinase inhibitors have been suggested as a promising strategy to circumvent this resistance mechanism. We propose an alternative approach based on simultaneous inactivation of HER1 and HER2 by multi-epitope blockade with specific polyclonal antibodies induced by vaccination. Elicited antibodies impaired both receptors activation and induced their degradation, which caused the inhibition of down-signaling cascades. This effect was translated into cell cycle arrest and apoptosis induction of human tumor cells. Elicited antibodies were able to reduce the viability of a panel of human tumor lines with differential expression levels of HER1 and HER2. The most significant effects were obtained in the tumor lines with lower expression levels of both receptors. These new insights would contribute to the rational design of HER receptors targeting multivalent vaccines, as an encouraging approach for the treatment of cancer patients.
Collapse
Affiliation(s)
- Narjara González Suárez
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana 11600, Cuba
| | - Gretchen Bergado Báez
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana 11600, Cuba
| | - Mabel Cruz Rodríguez
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana 11600, Cuba
| | - Amelia Gutiérrez Pérez
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana 11600, Cuba
| | - Lisset Chao García
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana 11600, Cuba
| | | | - Judith Raymond Pous
- System Biology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana 11600, Cuba
| | - Belinda Sánchez Ramírez
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana 11600, Cuba
| |
Collapse
|
4
|
Caballero I, Aira LE, Lavastida A, Popa X, Rivero J, González J, Mesa M, González N, Coba K, Lorenzo-Luaces P, Wilkinson B, Santiesteban Y, Santiesteban Y, Troche M, Suarez E, Crombet T, Sánchez B, Casacó A, Macías A, Mazorra Z. Safety and Immunogenicity of a Human Epidermal Growth Factor Receptor 1 (HER1)-Based Vaccine in Prostate Castration-Resistant Carcinoma Patients: A Dose-Escalation Phase I Study Trial. Front Pharmacol 2017; 8:263. [PMID: 28539888 PMCID: PMC5423955 DOI: 10.3389/fphar.2017.00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (CRPC) remains incurable due to the lack of effective therapies. Activation of the human epidermal growth factor receptor 1 (HER1) in prostate cancer contributes to metastatic progression as well as to disease relapse. Here, we determined the toxicity and immunogenicity of a HER1-based cancer vaccine in CRPC patients included in a phase I clinical trial. CRPC patients (n = 24) were intramuscularly vaccinated with HER1 vaccine consisting of the extracellular domain of HER1 molecule (ECD) and very small size proteoliposome from Neisseria meningitidis (VSSP) and Montanide ISA-51 VG as adjuvants. Patients were included in five groups according to the vaccine dose (100, 200, 400, 600, and 800 μg). The primary endpoints were safety and immunogenicity. The anti-HER1 antibodies were measured by an ELISA, the recognition of an HER1 positive tumor cell line and the inhibition of HER1 phosphorylation by sera were determined by flow cytometry and western blot analysis, respectively. The HER1-specific T cell response was assessed by determination of IFN-γ-producing T cells using ELISpot assay. The vaccine was well tolerated. No grade III or IV adverse events were reported. High titers of anti-HER1 antibodies were observed in most of the evaluated patients. There were no significant differences regarding the geometric means of the anti-HER1 titers among the dose groups except the group of 100 μg in which antibody titers were significantly lower. A Th1-type IgG subclasses pattern was predominant in most patients. Only patients receiving the higher doses of vaccine showed significant tumor cell recognition and HER1 phosphorylation inhibition by hyperimmune sera. Forty two percent of the patients showed a specific T cell response against HER1 peptides pool in post-treatment samples. There was a trend toward survival benefit in those patients showing high anti-HER1 specific antibody titers and a significant association between cellular immune response and clinical outcome.
Collapse
Affiliation(s)
- Iraida Caballero
- Department of Oncology, Hermanos Ameijeiras HospitalHavana, Cuba
| | - Lazaro E Aira
- Department of Clinical Immunology, Center of Molecular ImmunologyHavana, Cuba
| | - Anabel Lavastida
- Department of Clinical Immunology, Center of Molecular ImmunologyHavana, Cuba
| | - Xitlally Popa
- Department of Clinical Immunology, Center of Molecular ImmunologyHavana, Cuba
| | | | - Joaquín González
- Department of Oncology, Hermanos Ameijeiras HospitalHavana, Cuba
| | - Mónica Mesa
- Tumor Immunology Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Narjara González
- Tumor Immunology Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Kelly Coba
- Faculty of Medicine "Victoria de Girón"Havana, Cuba
| | | | - Barbara Wilkinson
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | | | | | - Mayelin Troche
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Eduardo Suarez
- Department of Innovation, Center of Molecular ImmunologyHavana, Cuba
| | - Tania Crombet
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Belinda Sánchez
- Tumor Immunology Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Angel Casacó
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Amparo Macías
- Clinical Trials Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Zaima Mazorra
- Department of Clinical Immunology, Center of Molecular ImmunologyHavana, Cuba
| |
Collapse
|