1
|
Vonica RC, Morgovan C, Butuca A, Pumnea M, Cipaian RC, Frum A, Dobrea CM, Vonica-Tincu AL, Pacnejer AM, Batar F, Vornicu V, Ghibu S, Gligor FG. Real-World Evidence of Bevacizumab and Panitumumab Drug Resistance and Drug Ineffectiveness from EudraVigilance Database. Cancers (Basel) 2025; 17:663. [PMID: 40002260 PMCID: PMC11853327 DOI: 10.3390/cancers17040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world, with an average 5-year overall survival (OS) rate of approximately 60% [...].
Collapse
Affiliation(s)
- Razvan Constantin Vonica
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Manuela Pumnea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Remus Calin Cipaian
- Clinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
- County Clinical Emergency Hospital of Sibiu, 2-4 Corneliu Coposu Str., 550245 Sibiu, Romania
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Andreea Loredana Vonica-Tincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Aliteia-Maria Pacnejer
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Florina Batar
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Vlad Vornicu
- Department IX Surgery, Discipline of Oncology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| |
Collapse
|
2
|
Grozav A, Cheminel T, Jurj A, Zanoaga O, Raduly L, Braicu C, Berindan-Neagoe I, Crisan O, Gaina L, Therrien B. Arene Ruthenium Complexes Specifically Inducing Apoptosis in Breast Cancer Cells. INORGANICS 2024; 12:287. [DOI: 10.3390/inorganics12110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Monocationic arene ruthenium complexes (RuL1–RuL4) incorporating phenothiazinyl-hydrazinyl-thiazole ligands (L1–L4) have been synthesized, characterized and evaluated as anticancer agents. Their cytotoxicity, antiproliferative activity and alteration of apoptotic gene expression were studied on three cancer cell lines, a double positive breast cancer cell line MCF-7 and two triple negative breast cancer cell lines Hs578T and MDA-MB-231. All arene ruthenium complexes were able to reduce the viability of the breast cancer cell lines, with the highest cytotoxicities being recorded for the [(p-cymene)RuL3Cl]+ (RuL3) complex on the MCF-7 (IC50 = 0.019 µM) and Hs578T cell lines (IC50 = 0.095 µM). In the double positive MCF-7 breast cancer cells, the complexes [(p-cymene)RuL1Cl]+ (RuL1) and [(p-cymene)RuL2Cl]+ (RuL2) significantly upregulated pro-apoptotic genes including BAK, FAS, NAIP, CASP8, TNF, XIAP and BAD, while downregulating TNFSF10. In the triple negative breast cancer cell line Hs578T, RuL1 reduced TNFSF-10 and significantly upregulated BAK, CASP8, XIAP, FADD and BAD, while complex RuL2 also increased BAK and CASP8 expression, but had limited effects on other genes. The triple negative MDA-MB-231 cancer cells treated with RuL1 upregulated NOD1 and downregulated p53, while RuL2 significantly downregulated p53, XIAP and TNFSF10, with minor changes in other genes. The significant alterations in the expression of key apoptotic genes suggest that such complexes have the potential to target cancer cells.
Collapse
Affiliation(s)
- Adriana Grozav
- Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes 41, 400012 Cluj-Napoca, Romania
| | - Thomas Cheminel
- Institute of Chemistry, University of Neuchatel, Ave. de Bellevaux 51, 2000 Neuchatel, Switzerland
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Marinescu 23, 400337 Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Marinescu 23, 400337 Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Marinescu 23, 400337 Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Marinescu 23, 400337 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Marinescu 23, 400337 Cluj-Napoca, Romania
| | - Ovidiu Crisan
- Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes 41, 400012 Cluj-Napoca, Romania
| | - Luiza Gaina
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania
| | - Bruno Therrien
- Institute of Chemistry, University of Neuchatel, Ave. de Bellevaux 51, 2000 Neuchatel, Switzerland
| |
Collapse
|
3
|
Geisler H, Westermayr J, Cseh K, Wenisch D, Fuchs V, Harringer S, Plutzar S, Gajic N, Hejl M, Jakupec MA, Marquetand P, Kandioller W. Tridentate 3-Substituted Naphthoquinone Ruthenium Arene Complexes: Synthesis, Characterization, Aqueous Behavior, and Theoretical and Biological Studies. Inorg Chem 2021; 60:9805-9819. [PMID: 34115482 PMCID: PMC8261824 DOI: 10.1021/acs.inorgchem.1c01083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A series of nine RuII arene complexes bearing tridentate naphthoquinone-based N,O,O-ligands was synthesized and characterized. Aqueous stability and their hydrolysis mechanism were investigated via UV/vis photometry, HPLC-MS, and density functional theory calculations. Substituents with a positive inductive effect improved their stability at physiological pH (7.4) intensely, whereas substituents such as halogens accelerated hydrolysis and formation of dimeric pyrazolate and hydroxido bridged dimers. The observed cytotoxic profile is unusual, as complexes exhibited much higher cytotoxicity in SW480 colon cancer cells than in the broadly chemo- (incl. platinum-) sensitive CH1/PA-1 teratocarcinoma cells. This activity pattern as well as reduced or slightly enhanced ROS generation and the lack of DNA interactions indicate a mode of action different from established or previously investigated classes of metallodrugs.
Collapse
Affiliation(s)
- Heiko Geisler
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Julia Westermayr
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV47AL, United Kingdom
| | - Klaudia Cseh
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Dominik Wenisch
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Valentin Fuchs
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Sophia Harringer
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Sarah Plutzar
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Natalie Gajic
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michaela Hejl
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michael A. Jakupec
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria,Research
Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Philipp Marquetand
- Faculty
of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Waehringer Str. 17, A-1090 Vienna, Austria,Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Wien, Austria
| | - Wolfgang Kandioller
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria,Research
Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria,. Phone: +43 1 4277
52609
| |
Collapse
|
4
|
Fizeșan I, Rusu ME, Georgiu C, Pop A, Ștefan MG, Muntean DM, Mirel S, Vostinaru O, Kiss B, Popa DS. Antitussive, Antioxidant, and Anti-Inflammatory Effects of a Walnut ( Juglans regia L.) Septum Extract Rich in Bioactive Compounds. Antioxidants (Basel) 2021; 10:119. [PMID: 33467612 PMCID: PMC7830861 DOI: 10.3390/antiox10010119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The antitussive, antioxidant, and anti-inflammatory effects of a walnut (Juglans regia L.) septum extract (WSE), rich in bioactive compounds were investigated using the citric acid aerosol-induced cough experimental model in rodents. Wistar male rats were treated orally for three days with distilled water (control), codeine (reference), and WSE in graded doses. On the third day, all rats were exposed to citric acid aerosols, the number of coughs being recorded. Each animal was sacrificed after exposure, and blood and lung tissue samples were collected for histopathological analysis and the assessment of oxidative stress and inflammatory biomarkers. The results of the experiment showed a significant antitussive effect of WSE, superior to codeine. This activity could be due to cellular protective effect and anti-inflammatory effect via the stimulation of the antioxidant enzyme system and the decrease of IL-6 and CXC-R1 concentration in the lung tissue of WSE-treated animals. The antioxidant and anti-inflammatory effects of WSE were confirmed by biochemical assays and histopathological analysis. This is the first scientific study reporting the antitussive effect of walnut septum, a new potential source of non-opioid antitussive drug candidates, and a valuable bioactive by-product that could be used in the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (I.F.); (A.P.); (M.-G.Ș.); (B.K.); (D.-S.P.)
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (M.E.R.); (D.-M.M.)
| | - Carmen Georgiu
- Department of Pathological Anatomy, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (I.F.); (A.P.); (M.-G.Ș.); (B.K.); (D.-S.P.)
| | - Maria-Georgia Ștefan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (I.F.); (A.P.); (M.-G.Ș.); (B.K.); (D.-S.P.)
| | - Dana-Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (M.E.R.); (D.-M.M.)
| | - Simona Mirel
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania;
| | - Oliviu Vostinaru
- Department of Pharmacology, Physiology and Physiopathology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
| | - Béla Kiss
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (I.F.); (A.P.); (M.-G.Ș.); (B.K.); (D.-S.P.)
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (I.F.); (A.P.); (M.-G.Ș.); (B.K.); (D.-S.P.)
| |
Collapse
|
5
|
Vasconcelos Gomes de Oliveira V, Angela Aranda de Souza M, Ramos Mororó Cavalcanti R, Veríssimo de Oliveira Cardoso M, Lima Leite AC, de Figueiredo RCBQ, Rogério de Freitas Silva S, Câmara Alves L, Amaro da Silva Junior V. Study of acute oral toxicity of the thiazole derivative N-(1-methyl-2-methyl-pyridine)-N-(p-bromophenylthiazol-2-yl)-hydrazine in a Syrian hamster. Toxicol Mech Methods 2021; 31:197-204. [PMID: 33349088 DOI: 10.1080/15376516.2020.1867681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The thiazole derivative N-1-methyl-2-methyl-pyridine)-N-(p-bromophenylthiazol-2-yl)-hydrazine was used to evaluate the acute oral toxicity in Syrian hamsters. The concentration of the doses (300 mg/kg and 2000 mg/kg) were based on the "Class Acute Toxicity Method" displayed in the OECD-423 guide. In addition, renal and liver biochemical tests were performed, as well as histopathological analysis. Our results showed that the compound's lethal dose (LD50) was 1000 mg/kg and classified as category 4 according to the criteria adopted in the experiment's protocol. Biochemical analysis of the liver function's parameters showed that the LD50 values in all animals were higher than the reference values. However, the analyze of the kidney injury parameters showed an increase in the urea's dosage but a decrease in the albumin's dosage in all animals when compared to the reference values. Kidney biochemical analysis also showed that creatinine's level was only higher than the reference values in one animal. Massive damages in the liver were observed, such as hypertrophy and hyperplasia of the hepatocyte, coagulation necrosis, the presence of mononuclear cells in the sinusoidal capillaries, steatosis, cholestasis, and congestion of sinusoidal capillaries and central-lobular veins. The animals presented renal injuries related to congestion of glomerular and interstitial capillaries, nephrosis of contorted proximal and distal tubules and congestion in the medullary region. In conclusion, the thiazole derivative was well tolerated although it caused acute liver and kidney damages. Therefore, these results showed the need of further investigation of this compound in vivo to evaluate the potential therapeutic effects with chronic models.
Collapse
Affiliation(s)
- Vinícius Vasconcelos Gomes de Oliveira
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brasil.,Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brasil
| | | | | | | | | | | | | | - Leucio Câmara Alves
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, Brasil
| | | |
Collapse
|
6
|
Ohui K, Babak MV, Darvasiova D, Roller A, Vegh D, Rapta P, Guan GRS, Ou YH, Pastorin G, Arion VB. Redox-Active Organoruthenium(II)– and Organoosmium(II)–Copper(II) Complexes, with an Amidrazone–Morpholine Hybrid and [Cu ICl 2] − as Counteranion and Their Antiproliferative Activity. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kateryna Ohui
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Maria V. Babak
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543, Singapore
- Drug Development Unit, National University of Singapore, 28 Medical Drive, 117546, Singapore
| | - Denisa Darvasiova
- Institute of Physical Chemistry and Chemical Physics, Slovak Technical University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Alexander Roller
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Daniel Vegh
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Department of Organic Chemistry, Slovak Technical University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Slovak Technical University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Grace Rui Shi Guan
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| | - Yi Hsuan Ou
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
7
|
“The return of ceramic implants”: Rose stem inspired dual layered modification of ceramic scaffolds with improved mechanical and anti-infective properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:873-879. [DOI: 10.1016/j.msec.2018.08.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/06/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023]
|
8
|
Carnizello AP, Alves JM, Pereira DE, Campos JCL, Barbosa MIF, Batista AA, Tavares DC. Study of the cytotoxic and genotoxic potential of the carbonyl ruthenium(II) compound,
ct‐
[RuCl(CO)(dppb)(bipy)]PF
6
[dppb = 1,4‐bis(diphenylphosphino)butane and bipy = 2,2′‐bipyridine], by in vitro and in vivo assays. J Appl Toxicol 2018; 39:630-638. [DOI: 10.1002/jat.3753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/24/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Andréa P. Carnizello
- Departamento de QuímicaUniversidade Federal de São Carlos CP 676, CEP 13565‐905 São Carlos SP Brazil
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| | - Jacqueline M. Alves
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| | - Daiane E. Pereira
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| | - Jacqueline C. L. Campos
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| | - Marília I. F. Barbosa
- Departamento de QuímicaUniversidade Federal de São Carlos CP 676, CEP 13565‐905 São Carlos SP Brazil
| | - Alzir A. Batista
- Departamento de QuímicaUniversidade Federal de São Carlos CP 676, CEP 13565‐905 São Carlos SP Brazil
| | - Denise C. Tavares
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| |
Collapse
|
9
|
Ramírez-Rivera S, Pizarro S, Gallardo M, Gajardo F, Delgadillo A, De La Fuente-Ortega E, MacDonnell F, Bernal G. Anticancer activity of two novel ruthenium compounds in gastric cancer cells. Life Sci 2018; 213:57-65. [PMID: 30326218 DOI: 10.1016/j.lfs.2018.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022]
|
10
|
Becceneri AB, Popolin CP, Plutin AM, Maistro EL, Castellano EE, Batista AA, Cominetti MR. The trans-[Ru(PPh 3) 2(N,N-dimethyl-N'-thiophenylthioureato-k 2O,S)(bipy)]PF 6 complex has pro-apoptotic effects on triple negative breast cancer cells and presents low toxicity in vivo. J Inorg Biochem 2018; 186:70-84. [PMID: 29857173 DOI: 10.1016/j.jinorgbio.2018.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 10/16/2022]
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous subtype of breast tumors that does not exhibit the expression of estrogen and progesterone receptors, neither the amplification of the human epidermal growth factor receptor 2 (HER-2) gene. Despite all the advances in cancer treatments, the development of new anticancer drugs for TNBC tumors is still a challenge. There is an increasing interest in new agents to be used in cancer treatment. Ruthenium is a metal that has unique characteristics and important in vivo and in vitro results achieved for cancer treatment. Thus, in this work, with the aim to develop anticancer drugs, three new ruthenium complexes containing acylthiourea ligands have been synthesized and characterized: trans-[Ru(PPh3)2(N,N-dibutyl-N'-benzoylthioureato-k2O,S)(2,2'-bipyridine (bipy))]PF6(1), trans-[Ru(PPh3)2(N,N-dimethyl-N'-thiophenylthioureato-k2O,S)(bipy)]PF6(2) and trans-[Ru(PPh3)2(N,N-dimethyl-N'-benzoylthioureato-k2O,S)(bipy)]PF6(3). Then, the cytotoxicity of these three new ruthenium complexes was investigated in TNBC MDA-MB-231 and in non-tumor MCF-10A cells. Complex (2) was the most selective complex and was chosen for further studies to verify its effects on cell morphology, adhesion, migration, invasion, induction of apoptosis and DNA damage in vitro, as well as its toxicity and capacity of causing DNA damage in vivo. Complex (2) inhibited proliferation, migration, invasion, adhesion, changed morphology and induced apoptosis, DNA damage and nuclear fragmentation of TNBC cells at lower concentrations compared to non-tumor MCF-10A cells, suggesting an effective action for this complex on tumor cells. Finally, complex (2) did not induce toxicity or caused DNA damage in vivo when low doses were administered to mice.
Collapse
Affiliation(s)
- Amanda Blanque Becceneri
- Departmento de Gerontologia, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Cecília Patrícia Popolin
- Departmento de Gerontologia, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Ana Maria Plutin
- Facultad de Química, Universidad de la Habana, Zapata s/n entre G y Carlitos Aguirre, 10400 Habana, Cuba
| | - Edson Luis Maistro
- Departamento de Fonoaudiologia, Faculdade de Filosofia e Ciências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Av. Hygino Muzzi Filho, 737, Marília, SP 17525-900, Brazil
| | - Eduardo Ernesto Castellano
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970 São Carlos, SP, Brazil
| | - Alzir Azevedo Batista
- Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Márcia Regina Cominetti
- Departmento de Gerontologia, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
11
|
Mello-Andrade F, Cardoso CG, Silva CRE, Chen-Chen L, Melo-Reis PRD, Lima APD, Oliveira R, Ferraz IBM, Grisolia CK, Almeida MAP, Batista AA, Silveira-Lacerda EDP. Acute toxic effects of ruthenium (II)/amino acid/diphosphine complexes on Swiss mice and zebrafish embryos. Biomed Pharmacother 2018; 107:1082-1092. [PMID: 30257320 DOI: 10.1016/j.biopha.2018.08.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 11/25/2022] Open
Abstract
Anticancer potential of ruthenium complexes has been widely investigated, but safety evaluation studies are still scarce. Despite of ruthenium-based anticancer agents are known to cause fewer side effects compared to other metal-based drugs, these compounds are not fully free of toxicity, causing mainly nephrotoxicity. Based on the promising results from antitumor activity of the complexes [Ru(L-Met)(bipy)(dppb)]PF6 (RuMet) and [Ru(L-Trp)(bipy)(dppb)]PF6 (RuTrp), for the first time we investigated the toxicity profile of these complexes in rodent and zebrafish models. The acute oral toxicity was evaluated in Swiss mice. The mutagenic and genotoxic potential was determined by a combination of Micronucleus (MN) and Comet assay protocols, after exposure of Swiss mice to RuMet and RuTrp in therapeutic doses. Zebrafish embryos were exposed to these complexes, and their development observed up to 96 h post-fertilization. RuMet and RuTrp complexes showed low acute oral toxicity. Recorded behavioral changes were not recorded, nor were macroscopic morphological changes or structural modifications in the liver and kidneys. These complexes did not cause genetic toxicity, presenting a lack of micronuclei formation and low DNA damage induction in the cells from Swiss mice. In contradiction, cisplatin treatment exhibited high mutagenicity and genotoxicity. RuMet and RuTrp showed low toxicity in the embryo development of zebrafish. The RuMet and RuTrp complexes demonstrated low toxicity in the two study models, an interesting property in preclinical studies for novel anticancer agents.
Collapse
Affiliation(s)
- Francyelli Mello-Andrade
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Cléver Gomes Cardoso
- Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Carolina Ribeiro E Silva
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO,74690-900, Brazil
| | - Lee Chen-Chen
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO,74690-900, Brazil
| | - Paulo Roberto de Melo-Reis
- Laboratory of Experimental and Biotechnological Research, Master's Program in Environmental Sciences and Health of School of Medical Sciences, Pharmaceutical and Biomedical, Laboratory, Pontifical Catholic University of Goiás, Goiânia, GO, 74605-010, Brazil
| | - Aliny Pereira de Lima
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Rhaul Oliveira
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Irvin Bryan Machado Ferraz
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Cesar Koppe Grisolia
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | | | - Alzir Azevedo Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Elisângela de Paula Silveira-Lacerda
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
12
|
Cutaneous wound healing using polymeric surgical dressings based on chitosan, sodium hyaluronate and resveratrol. A preclinical experimental study. Colloids Surf B Biointerfaces 2018; 163:155-166. [DOI: 10.1016/j.colsurfb.2017.12.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 01/07/2023]
|
13
|
Thangavel P, Viswanath B, Kim S. Recent developments in the nanostructured materials functionalized with ruthenium complexes for targeted drug delivery to tumors. Int J Nanomedicine 2017; 12:2749-2758. [PMID: 28435255 PMCID: PMC5388259 DOI: 10.2147/ijn.s131304] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years, the field of metal-based drugs has been dominated by other existing precious metal drugs, and many researchers have focused their attention on the synthesis of various ruthenium (Ru) complexes due to their potential medical and pharmaceutical applications. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidation states, low toxicity, high selectivity for diseased cells, ligand exchange properties, and the ability to mimic iron binding to biomolecules. In addition, Ru complexes have favorable adsorption properties, along with excellent photochemical and photophysical properties, which make them promising tools for photodynamic therapy. At present, nanostructured materials functionalized with Ru complexes have become an efficient way to administer Ru-based anticancer drugs for cancer treatment. In this review, the recent developments in the nanostructured materials functionalized with Ru complexes for targeted drug delivery to tumors are discussed. In addition, information on "traditional" (ie, non-nanostructured) Ru-based cancer therapies is included in a precise manner.
Collapse
Affiliation(s)
- Prakash Thangavel
- Department of Bionanotechnology, Gachon University, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do
| | - Buddolla Viswanath
- Department of Bionanotechnology, Gachon University, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do
- Graduate Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|