1
|
EFSA Panel on Genetically Modified Organisms (GMO), Casacuberta J, Barro F, Braeuning A, de Maagd R, Epstein MM, Frenzel T, Gallois J, Koning F, Messéan A, Moreno FJ, Nogué F, Savoini G, Schulman AH, Tebbe C, Veromann E, Ardizzone M, De Sanctis G, Dumont AF, Ferrari A, Gennaro A, Gómez Ruiz JÁ, Goumperis T, Kagkli DM, Lewandowska A, Camargo AM, Franco MN, Piffanelli P, Raffaello T, Rodrigues M, Sánchez‐Brunete E. Assessment of genetically modified sugar beet KWS20-1 (application GMFF-2023-14732). EFSA J 2025; 23:e9381. [PMID: 40356790 PMCID: PMC12066990 DOI: 10.2903/j.efsa.2025.9381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Genetically modified sugar beet KWS20-1 was developed to confer tolerance to glyphosate-, dicamba- and glufosinate-ammonium-based herbicides. These properties were achieved by introducing the cp4 epsps, dmo and pat expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring further safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between sugar beet KWS20-1 and its conventional counterpart need further assessment, except for pectin in roots, which underwent additional evaluation and was found not to raise any safety or nutritional concerns. The GMO Panel does not identify safety concerns regarding the potential toxicity and allergenicity of the CP4 EPSPS, DMO and PAT proteins as expressed in sugar beet KWS20-1, and finds no evidence that the genetic modification would change the overall safety of sugar beet KWS20-1 as food and feed. In the context of this application, the consumption of food and feed from sugar beet KWS20-1 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that sugar beet KWS20-1 is as safe as the conventional counterpart and non-GM sugar beet reference varieties tested, and no post-market monitoring of food/feed is considered necessary. The scope of the application does not include cultivation and import of viable materials in the EU and the products would be expected to only contain residual amounts of DNA and protein. The environmental risk assessment was limited to the possible plant-to-bacteria horizontal gene transfer and the evaluation of potential interactions of KWS20-1 sugar beet products with biogeochemical cycles, and neither of them indicates a safety concern. The GMO Panel concludes that the sugar beet KWS20-1 is as safe as its conventional counterpart and the tested non-GM reference sugar beet varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
2
|
Wang C, Calcaterra J, Anderson B, Rydel T, Wang R, Bertho L, Saracco SA, Hodge-Bell K, Burzio L, White T, Li B. Risk assessment of homologous variants of biotech trait proteins using a bridging approach. GM CROPS & FOOD 2024; 15:336-351. [PMID: 39520709 PMCID: PMC11552266 DOI: 10.1080/21645698.2024.2420412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
A transgenic protein is frequently expressed as different homologous variants in genetically modified crops due to differential processing of targeting peptides or optimization of activity and specificity. The aim of this study was to develop a science-based approach for risk assessment of homologous protein variants using dicamba mono-oxygenase (DMO) as a case study. In this study, DMO expressed in the next-generation dicamba-tolerant maize, sugar beet and soybean crops exhibited up to 27 amino acid sequence differences in the N-terminus. Structure modeling using AlphaFold, ESMFold and OpenFold demonstrates that these small N-terminal extensions lack an ordered secondary structure and do not disrupt the DMO functional structure. Three DMO variants were demonstrated to have equivalent immunoreactivity and functional activity ranging from 214 to 331 nmol/min/mg. Repeated toxicity studies using each DMO variant found no test substance-related adverse effects. These results support that homologous protein variants, which have demonstrated physicochemical and functional equivalence, can leverage existing safety data from one variant without requiring additional de novo safety assessments.
Collapse
Affiliation(s)
- Cunxi Wang
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, USA
| | | | | | - Timothy Rydel
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, USA
| | - Rong Wang
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, USA
| | - Lieselot Bertho
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, USA
| | | | | | - Luis Burzio
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, USA
- Bill & Melinda Gates Agricultural Innovations, St. Louis, MO, USA
| | - Tommi White
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, USA
| | - Bin Li
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, USA
| |
Collapse
|
3
|
Wang C, Zheng M, Est C, Lawal R, Liang W, Korasick DA, Rau MJ, Saracco SA, Johnson V, Wang Y, White T, Li W, Zhang J, Gu X, Liu-Gontarek F. Production and characterization of homologous protoporphyrinogen IX oxidase (PPO) proteins: Evidence that small N-terminal amino acid changes do not impact protein function. PLoS One 2024; 19:e0311049. [PMID: 39325813 PMCID: PMC11426539 DOI: 10.1371/journal.pone.0311049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Transgenic soybean, cotton, and maize tolerant to protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides have been developed by introduction of a bacterial-derived PPO targeted into the chloroplast. PPO is a membrane-associated protein with an intrinsic tendency for aggregation, making expression, purification, and formulation at high concentrations difficult. In this study, transgenic PPO expressed in three crops was demonstrated to exhibit up to a 13 amino acid sequence difference in the N-terminus due to differential processing of the chloroplast transit peptide (CTP). Five PPO protein variants were produced in and purified from E. coli, each displaying equivalent immunoreactivity and functional activity, with values ranging from 193 to 266 nmol min-1 mg-1. Inclusion of an N-terminal 6xHis-tag or differential processing of the CTP peptide does not impact PPO functional activity. Additionally, structural modeling by Alphafold, ESMfold, and Openfold indicates that these short N-terminal extensions are disordered and predicted to not interfere with the mature PPO structure. These results support the view that safety studies on PPO from various crops can be performed from a single representative variant. Herein, we report a novel and robust method for large-scale production of PPO, enabling rapid production of more than 200 g of highly active PPO protein at 99% purity and low endotoxin contamination. We also present a formulation that allows for concentration of active PPO to > 75 mg/mL in a buffer suitable for mammalian toxicity studies.
Collapse
Affiliation(s)
- Cunxi Wang
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Meiying Zheng
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Chandler Est
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Remi Lawal
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Wenguang Liang
- Plant Biotechnology, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - David A. Korasick
- Small Molecules, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Michael J. Rau
- Plant Biotechnology, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Scott A. Saracco
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Virginia Johnson
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Yanfei Wang
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Tommi White
- Plant Biotechnology, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Wenze Li
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jun Zhang
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Xin Gu
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Flora Liu-Gontarek
- Regulatory Science, Bayer Crop Science, Chesterfield, Missouri, United States of America
| |
Collapse
|
4
|
Zimmermann CS, Snow RF, Wilson-Mifsud B, LeRoy K, Boeckman C, Huang E, Mathesius CA, Roper JM, Hurley BP. Evaluation of an in vitro experimental platform of human polarized intestinal epithelial monolayers for the hazard assessment of insecticidal proteins. Food Chem Toxicol 2023; 181:114106. [PMID: 37852351 DOI: 10.1016/j.fct.2023.114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Previous work demonstrated the utility of using human-derived intestinal epithelial cell (IEC) lines cultured as polarized monolayers on Transwell® filters to differentiate between hazardous and non-hazardous proteins. The current study seeks to further resolve appropriate concentrations for evaluating proteins of unknown hazard potential using the IEC experimental platform and leverages these parameters for evaluating the potential toxicity of insecticidal proteins characteristic of those expressed in genetically modified (GM) agricultural biotechnology crops. To establish optimal test protein concentrations, effects of several known hazardous (C. perfringens epsilon toxin, Listeriolysin O, Phaseolus vulgaris erythroagglutinin, E. coli Shiga toxin 1, C. difficile Toxin B and wheat germ agglutinin) and non-hazardous (Ara-h2, β-lactoglobulin, fibronectin and Rubisco) proteins on IEC barrier integrity and cell viability were evaluated at concentration ranges. Two insecticidal proteins (AfIP-1A and AfIP-1B) were evaluated for effects in the IEC assay, a seven-day insecticidal bioassay, and assessed in a high-dose 14-day acute oral toxicity study in mice. The results obtained from the human in vitro IEC assay were consistent with results obtained from an in vivo acute oral toxicity study, both demonstrating that the combination of AfIP-1A and AfIP-1B do not exhibit any identifiable harmful impacts on mammalian cells.
Collapse
Affiliation(s)
| | - Ryan F Snow
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Brittany Wilson-Mifsud
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | - Bryan P Hurley
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Canella Vieira C, Zhou J, Jarquin D, Zhou J, Diers B, Riechers DE, Nguyen HT, Shannon G. Genetic architecture of soybean tolerance to off-target dicamba. FRONTIERS IN PLANT SCIENCE 2023; 14:1230068. [PMID: 37877091 PMCID: PMC10590897 DOI: 10.3389/fpls.2023.1230068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
The adoption of dicamba-tolerant (DT) soybean in the United States resulted in extensive off-target dicamba damage to non-DT vegetation across soybean-producing states. Although soybeans are highly sensitive to dicamba, the intensity of observed symptoms and yield losses are affected by the genetic background of genotypes. Thus, the objective of this study was to detect novel marker-trait associations and expand on previously identified genomic regions related to soybean response to off-target dicamba. A total of 551 non-DT advanced breeding lines derived from 232 unique bi-parental populations were phenotyped for off-target dicamba across nine environments for three years. Breeding lines were genotyped using the Illumina Infinium BARCSoySNP6K BeadChip. Filtered SNPs were included as predictors in Random Forest (RF) and Support Vector Machine (SVM) models in a forward stepwise selection loop to identify the combination of SNPs yielding the highest classification accuracy. Both RF and SVM models yielded high classification accuracies (0.76 and 0.79, respectively) with minor extreme misclassifications (observed tolerant predicted as susceptible, and vice-versa). Eight genomic regions associated with off-target dicamba tolerance were identified on chromosomes 6 [Linkage Group (LG) C2], 8 (LG A2), 9 (LG K), 10 (LG O), and 19 (LG L). Although the genetic architecture of tolerance is complex, high classification accuracies were obtained when including the major effect SNP identified on chromosome 6 as the sole predictor. In addition, candidate genes with annotated functions associated with phases II (conjugation of hydroxylated herbicides to endogenous sugar molecules) and III (transportation of herbicide conjugates into the vacuole) of herbicide detoxification in plants were co-localized with significant markers within each genomic region. Genomic prediction models, as reported in this study, can greatly facilitate the identification of genotypes with superior tolerance to off-target dicamba.
Collapse
Affiliation(s)
- Caio Canella Vieira
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Jing Zhou
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Jianfeng Zhou
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Henry T. Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Grover Shannon
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
6
|
Canella Vieira C, Jarquin D, do Nascimento EF, Lee D, Zhou J, Smothers S, Zhou J, Diers B, Riechers DE, Xu D, Shannon G, Chen P, Nguyen HT. Identification of genomic regions associated with soybean responses to off-target dicamba exposure. FRONTIERS IN PLANT SCIENCE 2022; 13:1090072. [PMID: 36570921 PMCID: PMC9780662 DOI: 10.3389/fpls.2022.1090072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The widespread adoption of genetically modified (GM) dicamba-tolerant (DT) soybean was followed by numerous reports of off-target dicamba damage and yield losses across most soybean-producing states. In this study, a subset of the USDA Soybean Germplasm Collection consisting of 382 genetically diverse soybean accessions originating from 15 countries was used to identify genomic regions associated with soybean response to off-target dicamba exposure. Accessions were genotyped with the SoySNP50K BeadChip and visually screened for damage in environments with prolonged exposure to off-target dicamba. Two models were implemented to detect significant marker-trait associations: the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) and a model that allows the inclusion of population structure in interaction with the environment (G×E) to account for variable patterns of genotype responses in different environments. Most accessions (84%) showed a moderate response, either moderately tolerant or moderately susceptible, with approximately 8% showing tolerance and susceptibility. No differences in off-target dicamba damage were observed across maturity groups and centers of origin. Both models identified significant associations in regions of chromosomes 10 and 19. The BLINK model identified additional significant marker-trait associations on chromosomes 11, 14, and 18, while the G×E model identified another significant marker-trait association on chromosome 15. The significant SNPs identified by both models are located within candidate genes possessing annotated functions involving different phases of herbicide detoxification in plants. These results entertain the possibility of developing non-GM soybean cultivars with improved tolerance to off-target dicamba exposure and potentially other synthetic auxin herbicides. Identification of genetic sources of tolerance and genomic regions conferring higher tolerance to off-target dicamba may sustain and improve the production of other non-DT herbicide soybean production systems, including the growing niche markets of organic and conventional soybean.
Collapse
Affiliation(s)
- Caio Canella Vieira
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Emanuel Ferrari do Nascimento
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Dongho Lee
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Jing Zhou
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Scotty Smothers
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Jianfeng Zhou
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Grover Shannon
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Pengyin Chen
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Henry T. Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
7
|
EFSA Panel on Genetically Modified Organisms (GMO), Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F, Rostoks N, Serrano JJS, Savoini G, Veromann E, Veronesi F, Ardizzone M, Camargo AM, de Sanctis G, Federici S, Dumont AF, Gennaro A, Ruiz JAG, Goumperis T, Kagkli DM, Lanzoni A, Lewandowska A, Lenzi P, Neri FM, Papadopoulou N, Paraskevopoulos K, Piffanelli P, Raffaello T, Streissl F. Assessment of genetically modified Maize MON 87429 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2019-161). EFSA J 2022; 20:e07589. [PMID: 36415855 PMCID: PMC9672889 DOI: 10.2903/j.efsa.2022.7589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Maize MON 87429 was developed to confer tolerance to dicamba, glufosinate, quizalofop and 2,4-D herbicides. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 87429 and its conventional counterpart needs further assessment, except for the levels of phytic acid in grains, which do not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the DMO, PAT, FT_T and CP4 EPSPS proteins as expressed in maize MON 87429. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize MON 87429. In the context of this application, the consumption of food and feed from maize MON 87429 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 87429 is as safe as the conventional counterpart and non-GM maize reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 87429 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 87429. The GMO Panel concludes that maize MON 87429, as described in this application, is as safe as its conventional counterpart and the tested non-GM maize reference varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
8
|
Wang C, Bean GJ, Chen CJ, Kessenich CR, Peng J, Visconti NR, Milligan JS, Moore RG, Tan J, Edrington TC, Li B, Giddings KS, Bowen D, Luo J, Ciche T, Moar WJ. Safety assessment of Mpp75Aa1.1, a new ETX_MTX2 protein from Brevibacillus laterosporus that controls western corn rootworm. PLoS One 2022; 17:e0274204. [PMID: 36074780 PMCID: PMC9455866 DOI: 10.1371/journal.pone.0274204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
The recently discovered insecticidal protein Mpp75Aa1.1 from Brevibacillus laterosporus is a member of the ETX_MTX family of beta-pore forming proteins (β-PFPs) expressed in genetically modified (GM) maize to control western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte). In this manuscript, bioinformatic analysis establishes that although Mpp75Aa1.1 shares varying degrees of similarity to members of the ETX_MTX2 protein family, it is unlikely to have any allergenic, toxic, or otherwise adverse biological effects. The safety of Mpp75Aa1.1 is further supported by a weight of evidence approach including evaluation of the history of safe use (HOSU) of ETX_MTX2 proteins and Breviballus laterosporus. Comparisons between purified Mpp75Aa1.1 protein and a poly-histidine-tagged (His-tagged) variant of the Mpp75Aa1.1 protein demonstrate that both forms of the protein are heat labile at temperatures at or above 55°C, degraded by gastrointestinal proteases within 0.5 min, and have no adverse effects in acute mouse oral toxicity studies at a dose level of 1920 or 2120 mg/kg body weight. These results support the use of His-tagged proteins as suitable surrogates for assessing the safety of their non-tagged parent proteins. Taken together, we report that Mpp75Aa1.1 is the first ETX-MTX2 insecticidal protein from B. laterosporus and displays a similar safety profile as typical Cry proteins from Bacillus thuringiensis.
Collapse
Affiliation(s)
- Cunxi Wang
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Gregory J. Bean
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Chun Ju Chen
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | | | - Jiexin Peng
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | | | - Jason S. Milligan
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Robert G. Moore
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jianguo Tan
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | | | - Bin Li
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Kara S. Giddings
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - David Bowen
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jinhua Luo
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Todd Ciche
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - William J. Moar
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| |
Collapse
|
9
|
Differentiate Soybean Response to Off-Target Dicamba Damage Based on UAV Imagery and Machine Learning. REMOTE SENSING 2022. [DOI: 10.3390/rs14071618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The wide adoption of dicamba-tolerant (DT) soybean has led to numerous cases of off-target dicamba damage to non-DT soybean and dicot crops. This study aimed to develop a method to differentiate soybean response to dicamba using unmanned-aerial-vehicle-based imagery and machine learning models. Soybean lines were visually classified into three classes of injury, i.e., tolerant, moderate, and susceptible to off-target dicamba. A quadcopter with a built-in RGB camera was used to collect images of field plots at a height of 20 m above ground level. Seven image features were extracted for each plot, including canopy coverage, contrast, entropy, green leaf index, hue, saturation, and triangular greenness index. Classification models based on artificial neural network (ANN) and random forest (RF) algorithms were developed to differentiate the three classes of response to dicamba. Significant differences for each feature were observed among classes and no significant differences across fields were observed. The ANN and RF models were able to precisely distinguish tolerant and susceptible lines with an overall accuracy of 0.74 and 0.75, respectively. The imagery-based classification model can be implemented in a breeding program to effectively differentiate phenotypic dicamba response and identify soybean lines with tolerance to off-target dicamba damage.
Collapse
|
10
|
Masinja W, Elliott C, Modi S, Enoch SJ, Cronin MTD, McInnes EF, Currie RA. Comparison of the predictive nature of the Genomic Allergen Rapid Detection (GARD) assay with mammalian assays in determining the skin sensitisation potential of agrochemical active ingredients. Toxicol In Vitro 2020; 70:105017. [PMID: 33038465 DOI: 10.1016/j.tiv.2020.105017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 01/22/2023]
Abstract
Alternatives to mammalian testing are highly desirable to predict the skin sensitisation potential of agrochemical active ingredients (AI). The GARD assay, a stimulated, dendritic cell-like, cell line measuring genomic signatures, was evaluated using twelve AIs (seven sensitisers and five non-sensitisers) and the results compared with historical results from guinea pig or local lymph node assay (LLNA) studies. Initial GARD results suggested 11/12 AIs were sensitisers and six concurred with mammalian data. Conformal predictions changed one AI to a non-sensitiser. An AI identified as non-sensitising in the GARD assay was considered a potent sensitiser in the LLNA. In total 7/12 GARD results corresponded with mammalian data. AI chemistries might not be comparable to the GARD training set in terms of applicability domains. Whilst the GARD assay can replace mammalian tests for skin sensitisation evaluation for compounds including cosmetic ingredients, further work in agrochemical chemistries is needed for this assay to be a viable replacement to animal testing. The work conducted here is, however, considered exploratory research and the methodology needs further development to be validated for agrochemicals. Mammalian and other alternative assays for regulatory safety assessments of AIs must provide confidence to assign the appropriate classification for human health protection.
Collapse
Affiliation(s)
- William Masinja
- Syngenta, International Research Centre, Jealott's Hill, Bracknell, Berks RG42 6EY, United Kingdom; School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom.
| | - Claire Elliott
- Syngenta, International Research Centre, Jealott's Hill, Bracknell, Berks RG42 6EY, United Kingdom; Penman Consulting Limited, Aspect House, Waylands Avenue, Wantage, Oxon OX12 9FF, United Kingdom
| | - Sandeep Modi
- Syngenta, International Research Centre, Jealott's Hill, Bracknell, Berks RG42 6EY, United Kingdom
| | - Steven J Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Elizabeth F McInnes
- Syngenta, International Research Centre, Jealott's Hill, Bracknell, Berks RG42 6EY, United Kingdom
| | - Richard A Currie
- Syngenta, International Research Centre, Jealott's Hill, Bracknell, Berks RG42 6EY, United Kingdom
| |
Collapse
|
11
|
Lanter BB, Eaton AD, Roper JM, Zimmermann C, Delaney B, Hurley BP. Single versus repeated exposure to human polarized intestinal epithelial monolayers for in vitro protein hazard characterization. Food Chem Toxicol 2019; 132:110666. [PMID: 31288052 DOI: 10.1016/j.fct.2019.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 11/25/2022]
Abstract
Recent studies suggest human-derived intestinal epithelial cell (IEC) lines cultured as polarized monolayers on permeable Transwell® filters are effective at differentiating between hazardous and non-hazardous proteins following a single exposure. In this study, IEC polarized monolayers were subjected to hazardous or non-hazardous proteins in nine exposures over 30 days and compared to a single exposure of the same protein. The objective was to evaluate whether repeated exposures to a protein differently alter barrier integrity or compromise cell viability compared to single exposures. Proteins tested included Clostridium difficile toxin A, Streptolysin O, Wheat Germ Agglutinin, Phaseolus vulgaris Hemagglutinin-E, bovine serum albumin, porcine serum albumin, and fibronectin. Evidence of diminished barrier integrity and/or cell viability following exposure to hazardous proteins was more pronounced in magnitude when IECs were subjected to multiple rather than single exposures. In some cases, an effect on IEC monolayers was observed only with repeated exposures. In general, IEC responses to non-hazardous proteins following either single or repeated exposures were minimal. Results from these studies support the utility of using cultured human IEC polarized monolayers to differentiate between hazardous and non-hazardous proteins and suggest that repeated exposures may reveal a greater magnitude of response when compared to single exposures.
Collapse
Affiliation(s)
- B B Lanter
- Department of Pediatrics, Mucosal Immunology & Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States
| | - A D Eaton
- Department of Pediatrics, Mucosal Immunology & Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States
| | - J M Roper
- Corteva Agriscience, Newark, DE, 19711, United States
| | - C Zimmermann
- Corteva Agriscience, Johnston, IA, 50131, United States.
| | - B Delaney
- Corteva Agriscience, Johnston, IA, 50131, United States
| | - B P Hurley
- Department of Pediatrics, Mucosal Immunology & Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States.
| |
Collapse
|
12
|
Lee TC, Edrington TC, Bell E, Burzio LA, Glenn KC. Effect of common processing of soybeans on the enzymatic activity and detectability of the protein, Dicamba Mono-Oxygenase (DMO), introduced into dicamba-tolerant MON 87708. Regul Toxicol Pharmacol 2019; 102:98-107. [PMID: 30562601 DOI: 10.1016/j.yrtph.2018.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/14/2018] [Indexed: 11/24/2022]
Abstract
Assessing the safety of genetically engineered crops includes evaluating the risk (hazard and exposure) of consuming their newly expressed proteins. The dicamba monooxygenase (DMO) protein, introduced into soybeans to confer tolerance (DT) to dicamba herbicide, was previously characterized and identified to pose no food or feed safety hazards. Most agricultural commodities (e.g., soybeans, maize) enter the food supply after processing methods that can include exposure to high temperatures, harsh solvents or pH extremes that can adversely impact the structure and function of proteins. To understand the likelihood of exposure to DMO in foods from DT soy, enzymatically active and/or immunodetectable forms of DMO were measured in pilot-scale productions of two soy foods (soymilk and tofu), and eight processed fractions (full fat flour, inactivated full fat flour, defatted flour, toasted meal, protein isolate, protein concentrate, crude lecithin, and refined, bleached and deodorized oil). Western blot analysis detected DMO in tofu and in five of the eight processed fractions. DMO activity was not detected in either soymilk or tofu, nor in six of the eight processed fractions. Therefore, many commercial soy processing methods can denature and/or degrade introduced proteins, like DMO. Although the DMO protein has shown no evidence of hazard, this study demonstrates that processing further reduces any food or feed risk by limiting dietary exposure to intact DMO protein.
Collapse
Affiliation(s)
- Thomas C Lee
- Bayer U.S. - Crop Science, 700 Chesterfield Parkway West., St. Louis, MO, 63017, USA.
| | - Thomas C Edrington
- Bayer U.S. - Crop Science, 700 Chesterfield Parkway West., St. Louis, MO, 63017, USA
| | - Erin Bell
- Bayer U.S. - Crop Science, 700 Chesterfield Parkway West., St. Louis, MO, 63017, USA
| | - Luis A Burzio
- Bayer U.S. - Crop Science, 700 Chesterfield Parkway West., St. Louis, MO, 63017, USA
| | - Kevin C Glenn
- Bayer U.S. - Crop Science, 700 Chesterfield Parkway West., St. Louis, MO, 63017, USA
| |
Collapse
|
13
|
Wang C, Li W, Kessenich CR, Petrick JS, Rydel TJ, Sturman EJ, Lee TC, Glenn KC, Edrington TC. Safety of the Bacillus thuringiensis-derived Cry1A.105 protein: Evidence that domain exchange preserves mode of action and safety. Regul Toxicol Pharmacol 2018; 99:50-60. [DOI: 10.1016/j.yrtph.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
|
14
|
Zimmermann C, Eaton A, Lanter B, Roper J, Hurley B, Delaney B. Extended exposure duration of cultured intestinal epithelial cell monolayers in characterizing hazardous and non-hazardous proteins. Food Chem Toxicol 2018; 115:451-459. [DOI: 10.1016/j.fct.2018.03.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 01/08/2023]
|
15
|
Farmer DR, Edrington TC, Kessenich CR, Wang C, Petrick JS. Improving insect control protein activity for GM crops: A case study demonstrating that increased target insect potency can be achieved without impacting mammalian safety. Regul Toxicol Pharmacol 2017; 89:155-164. [DOI: 10.1016/j.yrtph.2017.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
|
16
|
Taylor M, Bickel A, Mannion R, Bell E, Harrigan GG. Dicamba-Tolerant Soybeans (Glycine max L.) MON 87708 and MON 87708 × MON 89788 Are Compositionally Equivalent to Conventional Soybean. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8037-8045. [PMID: 28825823 DOI: 10.1021/acs.jafc.7b03844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herbicide-tolerant crops can expand both tools for and timing of weed control strategies. MON 87708 soybean has been developed through genetic modification and confers tolerance to the dicamba herbicide. As part of the safety assessment conducted for new genetically modified (GM) crop varieties, a compositional assessment of MON 87708 was performed. Levels of key soybean nutrients and anti-nutrients in harvested MON 87708 were compared to levels of those components in a closely related non-GM variety as well as to levels measured in other conventional soybean varieties. From this analysis, MON 87708 was shown to be compositionally equivalent to its comparator. A similar analysis conducted for a stacked trait product produced by conventional breeding, MON 87708 × MON 89788, which confers tolerance to both dicamba and glyphosate herbicides, reached the same conclusion. These results are consistent with other results that demonstrate no compositional impact of genetic modification, except in those cases where an impact was an intended outcome.
Collapse
Affiliation(s)
- Mary Taylor
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Anna Bickel
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Rhonda Mannion
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Erin Bell
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - George G Harrigan
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| |
Collapse
|