1
|
Veltman CHJ, van der Ven LTM, Menegola E, Luijten M. A pragmatic workflow for human relevance assessment of toxicological pathways and associated new approach methodologies. Regul Toxicol Pharmacol 2025; 160:105828. [PMID: 40228575 DOI: 10.1016/j.yrtph.2025.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Currently, safety assessments of chemical substances are predominantly based on animal data. Multiple considerations call for the use of alternative testing strategies that are based on new approach methodologies (NAMs). However, the human relevance of these testing strategies is usually uncertain. This necessitates a harmonized and accepted workflow for assessing their applicability for regulatory purposes. This report proposes such a workflow, applicable for assessing the human relevance of a toxicological pathway and the relevance of NAMs related to the different components of the pathway. The workflow starts with an established toxicological pathway, of which the adverse outcome is relevant for human health risk assessment and that has sufficient weight of evidence. Human relevance is assessed through three main questions, related to the different components (steps) of the pathway, the pathology of human syndromes that have a similar adverse outcome, and quantitative aspects. The latter comprise both interspecies differences and in vitro - in vivo differences. The combined evidence is scored as 'strong', 'moderate' or 'weak' support of human relevance, based on expert judgement. The workflow developed was tested in a case study, through application to an AOP describing craniofacial malformations after in utero exposure to triazoles. Based on evidence collected for two of the three main questions, the case study provided moderate to strong support for human relevance of both the various components of the AOP and its associated NAMs. Furthermore, it demonstrated that the workflow is a promising approach that allows for a more transparent scientific evaluation of human relevance of toxicological pathways and associated NAMs. Therefore, despite some areas for improvement, we consider the workflow an important step forward for application of AOPs and related NAMs in human health risk assessment.
Collapse
Affiliation(s)
- Christina H J Veltman
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elena Menegola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
2
|
Kougias DG, Southall MD, Scialli AR, Atillasoy E, Ejaz S, Schaeffer TH, Chu C, Jeminiwa BO, Massarsky A, Unice KM, Kovochich M. A quantitative weight-of-evidence review of preclinical studies examining the potential developmental and reproductive toxicity of acetaminophen. Crit Rev Toxicol 2025; 55:179-226. [PMID: 39982149 DOI: 10.1080/10408444.2024.2446471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 02/22/2025]
Abstract
We previously developed a quantitative weight-of-evidence (QWoE) framework using prespecified scoring criteria for preclinical acetaminophen data to characterize potential developmental neurotoxicity outcomes with considerations for biological relevance of the response to adverse outcomes and the strength of methods and study design. The current analysis uses this framework to characterize potential developmental and reproductive toxicity (DART) outcomes following exposure to acetaminophen. Two-hundred forty-two QWoE entries were documented from in vivo rodent studies identified in 110 publications across five categories: DART endpoints in the context of (1) periadolescent/adulthood (nonpregnancy) exposures; (2) pregnant female exposures; and, for in utero or other developmental exposures, (3) anatomical abnormalities, (4) reproductive development, and (5) other physical development. A mean outcome score and methods score were calculated for 242 QWoE entries. Data analyzed in our framework were of moderate quality showing no consistent evidence of DART in male and female rodents following exposure to acetaminophen at therapeutic and/or non-systemically toxic doses. Similar results were found for the individual context- and outcome-related endpoint analyses and as segregated by sex. Overall, this QWoE analysis on the in vivo rodent data demonstrated no consistent evidence of adverse effects following exposure to therapeutic and/or non-systemically toxic acetaminophen on development or on the structure and function of the reproductive system.
Collapse
Affiliation(s)
| | | | | | - Evren Atillasoy
- Kenvue Medical Clinical and Safety Sciences, Fort Washington, PA, USA
| | - Sadaff Ejaz
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | - Christopher Chu
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | | | | | | |
Collapse
|
3
|
Kougias DG, Atillasoy E, Southall MD, Scialli AR, Ejaz S, Chu C, Jeminiwa BO, Massarsky A, Unice KM, Schaeffer TH, Kovochich M. A quantitative weight-of-evidence review of preclinical studies examining the potential developmental neurotoxicity of acetaminophen. Crit Rev Toxicol 2025; 55:124-178. [PMID: 39982125 DOI: 10.1080/10408444.2024.2442344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 02/22/2025]
Abstract
Acetaminophen [paracetamol; N-acetyl-para-aminophenol (APAP)] is an antipyretic/analgesic commonly used in the treatment of fever and mild to moderate pain, headache, myalgia, and dysmenorrhea. Recent literature has questioned the safety of acetaminophen use during pregnancy, with an emphasis on whether exposure to the developing nervous system results in behavioral changes consistent with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and/or other cognitive deficits in the offspring. No previous review has used a fully detailed, quantitative weight-of-evidence (QWoE) approach to critically examine the preclinical acetaminophen data with regards to potential developmental neurotoxicity (DNT). Following regulatory guidance, a QWoE framework using prespecified scoring criteria was developed consistent with previous approaches to characterize potential adverse DNT outcomes with considerations for biological relevance of the response to adverse outcomes (outcome score) and the strength of methods and study design (methods score). Considerations for the methods score included (1) experimental design, (2) details/reliability of measurement(s), (3) data transparency, and (4) translational/methodological relevance. Considerations for the outcome score included response-related (1) statistical significance, (2) dose-response, (3) relevance/reliability/magnitude, (4) plausibility, and (5) translational relevance, including consideration of systemic toxicity/hepatotoxicity and therapeutic and/or non-systemically toxic doses and durations of use. Application of this QWoE framework to the 34 in vivo studies identified that assess the potential DNT of acetaminophen resulted in 188 QWoE entries documented across 11 DNT endpoints: social behavior, stereotypic behavior, behavioral rigidity, attention/impulsivity, hyperactivity, anxiety-like behavior, sensorimotor function, spatial learning/memory, nonspatial learning/memory, neuroanatomy, and neurotransmission. For each endpoint, the mean outcome score and methods score were calculated for total entries and for entries segregated by sex to assist in determining data quality and potential adversity. Informed by all 188 entries, the QWoE analysis demonstrated data of moderate quality showing no consistent evidence of DNT in male and female rodents following exposure to acetaminophen at therapeutic and/or nonsystemically toxic doses. Although some of the DNT endpoints (behavioral rigidity, attention/impulsivity, spatial learning/memory, neuroanatomy, and neurotransmission) generally displayed a more limited dataset and/or relatively lower data quality, similar conclusions were drawn based on results indicating a lack of biological relevance and reliability of reported adverse effects. Overall, this QWoE analysis on the preclinical in vivo data demonstrates no consistent evidence of adverse effects following developmental exposure to acetaminophen at therapeutic and/or non-systemically toxic doses on the structure and function of the nervous system, including neuroanatomical, neurotransmission, and behavioral endpoints.
Collapse
Affiliation(s)
| | - Evren Atillasoy
- Kenvue Medical Clinical and Safety Sciences, Fort Washington, PA, USA
| | | | - Anthony R Scialli
- Reproductive Toxicology Center, A Non-Profit Foundation, Washington, DC, USA
| | - Sadaff Ejaz
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | - Christopher Chu
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | | | | | | | | |
Collapse
|
4
|
Callewaert E, Louisse J, Kramer N, Sanz-Serrano J, Vinken M. Adverse Outcome Pathways Mechanistically Describing Hepatotoxicity. Methods Mol Biol 2025; 2834:249-273. [PMID: 39312169 DOI: 10.1007/978-1-0716-4003-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Adverse outcome pathways (AOPs) describe toxicological processes from a dynamic perspective by linking a molecular initiating event to a specific adverse outcome via a series of key events and key event relationships. In the field of computational toxicology, AOPs can potentially facilitate the design and development of in silico prediction models for hazard identification. Various AOPs have been introduced for several types of hepatotoxicity, such as steatosis, cholestasis, fibrosis, and liver cancer. This chapter provides an overview of AOPs on hepatotoxicity, including their development, assessment, and applications in toxicology.
Collapse
Affiliation(s)
- Ellen Callewaert
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Nynke Kramer
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Toxicology Division, Wageningen University, Wageningen, Netherlands
| | - Julen Sanz-Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
5
|
Clewell H. Mode of action Criteria for selection of the critical effect and safe dose range for PFOA by the Alliance for risk assessment. Regul Toxicol Pharmacol 2024; 154:105738. [PMID: 39542340 DOI: 10.1016/j.yrtph.2024.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
In response to the current disparity in risk assessment values for PFOA from different agencies and countries, an international effort facilitated by the Alliance for Risk Assessment (ARA) was recently undertaken to characterize the range of scientifically supportable safe dose estimates. In this assessment (Burgoon et al., 2023), an evaluation of the evidence regarding the potential modes of action (MOA) for PFOA toxicity was performed first, so that it could be used to inform subsequent decisions regarding potential critical effects and studies. This review describes the evidence considered in the MOA evaluations that were performed as part of the ARA effort. The overall conclusions of this evaluation are that the available mechanistic data do not support any conclusion that reported epidemiological associations of blood concentrations of PFOA as low as 10 ng/mL with various health effects should be considered causal. It is more likely that the reported associations may instead reflect reverse causality/pharmacokinetic confounding. These conclusions are consistent with the opinions of the World Health Organization (WHO, 2022).
Collapse
Affiliation(s)
- Harvey Clewell
- Ramboll Americas Engineering Solutions, 3107 Armand Street, Monroe, LA, USA.
| |
Collapse
|
6
|
Zhang L, Tian L, Liang B, Wang L, Huang S, Zhou Y, Ni M, Zhang L, Li Y, Chen J, Li X. Construction of an adverse outcome pathway for the cardiac toxicity of bisphenol a by using bioinformatics analysis. Toxicology 2024; 509:153955. [PMID: 39303899 DOI: 10.1016/j.tox.2024.153955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bisphenol A (BPA), a common endocrine disruptor, has shown cardiovascular toxicity in several epidemiological studies, as well as in vivo and in vitro experimental studies. However, the related adverse outcome pathway (AOP) of BPA toxicity remains unraveled. This study aimed to develop an AOP for the cardiac toxicity of BPA through bioinformatics analysis. The interactions among BPA, genes, phenotypes, and cardiac toxicity were retrieved from several databases, including the Comparative Toxicogenomics Database, Computational Toxicology, DisGeNet, and MalaCards. The target genes and part of target phenotypes were obtained by Venn analysis and literature screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed for target genes by using the DAVID online analysis tool to obtain other target phenotypes. AOP hypotheses from BPA exposure to heart disease were established and evaluated comprehensively by a quantitative weight of evidence (QWOE) method. The target genes included ESR2, MAPK1, TGFB1, and ESR1, and the target phenotypes included heart contraction, cardiac muscle contraction, cellular Ca2+ homeostasis, cellular metabolic process, heart development, etc. Overall, the AOP of BPA cardiac toxicity was deduced to be as follows. Initially, BPA bound with ERα/β and then activated the MAPK, AKT, and IL-17 signaling pathways, leading to Ca2+ homeostasis disorder and increased inflammatory response. Subsequently, cardiac function was impaired, causing coronary heart disease, arrhythmia, cardiac dysplasia, and other heart diseases. According to the Bradford-Hill causal considerations, the score of AOP by QWOE was 69, demonstrating a moderate confidence and providing clues on cardiotoxicity-assessment procedure and further studies on BPA.
Collapse
Affiliation(s)
- Leyan Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Baofang Liang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Liang Wang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Shuzhen Huang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yun Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
7
|
Cui K, Li L, Li K, Xiao W, Wang Q. AOP-based framework for predicting the joint action mode of di-(2-ethylhexyl) phthalate and bisphenol A co-exposure on autism spectrum disorder. Neurotoxicology 2024; 104:75-84. [PMID: 39084265 DOI: 10.1016/j.neuro.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Autism spectrum disorder (ASD), also known as autism, is a common, highly hereditary and heterogeneous neurodevelopmental disorder. The global prevalence of ASD among children continues to rise significantly, which is partially attributed to environmental pollution. It has been reported that pre- or post-natal exposure to di-(2-ethylhexyl) phthalate (DEHP) or bisphenol A (BPA), two prevalent environmental endocrine disruptors, increases the risk of ASD in offspring. Yet, the joint action mode linking DEHP and BPA with ASD is incompletely understood. This study aims to unravel the joint action mode of DEHP and BPA co-exposure on the development of ASD. An adverse outcome pathway (AOP) framework was employed to integrate data from multiple public database and construct chemical-gene-phenotype-disease networks (CGPDN) for DEHP- and BPA-related ASD. Topological analysis and comprehensive literature exploration of the CGPDN were performed to build the AOP. By analysis of shared key events (KEs) or phenotypes within the AOP or the CGPDN, we uncovered two AOPs, decreased N-methyl-D-aspartate receptor (NMDAR) and estrogen antagonism that were likely linked to ASD, both with moderate confidence. Our analysis further predicted that the joint action mode of DEHP and BPA related ASD was possibly an additive or synergistic action. Thus, we propose that the co-exposure to BPA and DEHP perhaps additively or synergistically increases the risk of ASD.
Collapse
Affiliation(s)
- Kanglong Cui
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Kai Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
8
|
Huang H, Lv Y, Chen Q, Huang X, Qin J, Liu Y, Liao Q, Xing X, Chen L, Liu Q, Li S, Long Z, Wang Q, Chen W, Wei Q, Hou M, Hu Q, Xiao Y. Empirical analysis of lead neurotoxicity mode of action and its application in health risk assessment. ENVIRONMENTAL RESEARCH 2024; 251:118708. [PMID: 38493858 DOI: 10.1016/j.envres.2024.118708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The mode of action (MOA) framework is proposed to inform a biological link between chemical exposures and adverse health effects. Despite a significant increase in knowledge and awareness, the application of MOA in human health risk assessment (RA) remains limited. This study aims to discuss the adoption of MOA for health RA within a regulatory context, taking our previously proposed but not yet validated MOA for lead neurotoxicity as an example. We first conducted a quantitative weight of evidence (qWOE) assessment, which revealed that the MOA has a moderate confidence. Then, targeted bioassays were performed within an in vitro blood-brain barrier (BBB) model to quantitatively validate the scientific validity of key events (KEs) in terms of essentiality and concordance of empirical support (dose/temporal concordance), which increases confidence in utilizing the MOA for RA. Building upon the quantitative validation data, we further conducted benchmark dose (BMD) analysis to map dose-response relationships for the critical toxicity pathways, and the lower limit of BMD at a 5% response (BMDL5) was identified as the point of departure (POD) value for adverse health effects. Notably, perturbation of the Aryl Hydrocarbon Receptor (AHR) signaling pathway exhibited the lowest POD value, measured at 0.0062 μM. Considering bioavailability, we further calculated a provisional health-based guidance value (HBGV) for children's lead intake, determining it to be 2.56 μg/day. Finally, the health risk associated with the HBGV was assessed using the hazard quotient (HQ) approach, which indicated that the HBGV established in this study is a relative safe reference value for lead intake. In summary, our study described the procedure for utilizing MOA in health RA and set an example for MOA-based human health risk regulation.
Collapse
Affiliation(s)
- Hehai Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Occupational Health, Public Health Service Center, Bao'an District, Shenzhen, 518126, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingfei Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaowei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jingyao Qin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mengjun Hou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Goetz A, Ryan N, Sauve-Ciencewicki A, Lord CC, Hilton GM, Wolf DC. Assessing human carcinogenicity risk of agrochemicals without the rodent cancer bioassay. FRONTIERS IN TOXICOLOGY 2024; 6:1394361. [PMID: 38933090 PMCID: PMC11200232 DOI: 10.3389/ftox.2024.1394361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The rodent cancer bioassays are conducted for agrochemical safety assessment yet they often do not inform regulatory decision-making. As part of a collaborative effort, the Rethinking Carcinogenicity Assessment for Agrochemicals Project (ReCAAP) developed a reporting framework to guide a weight of evidence (WOE)-based carcinogenicity assessment that demonstrates how to fulfill the regulatory requirements for chronic risk estimation without the need to conduct lifetime rodent bioassays. The framework is the result of a multi-stakeholder collaboration that worked through an iterative process of writing case studies (in the form of waivers), technical peer reviews of waivers, and an incorporation of key learnings back into the framework to be tested in subsequent case study development. The example waivers used to develop the framework were written retrospectively for registered agrochemical active substances for which the necessary data and information could be obtained through risk assessment documents or data evaluation records from the US EPA. This exercise was critical to the development of a framework, but it lacked authenticity in that the stakeholders reviewing the waiver already knew the outcome of the rodent cancer bioassay(s). Syngenta expanded the evaluation of the ReCAAP reporting framework by writing waivers for three prospective case studies for new active substances where the data packages had not yet been submitted for registration. The prospective waivers followed the established framework considering ADME, potential exposure, subchronic toxicity, genotoxicity, immunosuppression, hormone perturbation, mode of action (MOA), and all relevant information available for read-across using a WOE assessment. The point of departure was estimated from the available data, excluding the cancer bioassay results, with a proposed use for the chronic dietary risk assessment. The read-across assessments compared data from reliable registered chemical analogues to strengthen the prediction of chronic toxicity and/or tumorigenic potential. The prospective case studies represent a range of scenarios, from a new molecule in a well-established chemical class with a known MOA to a molecule with a new pesticidal MOA (pMOA) and limited read-across to related molecules. This effort represents an important step in establishing criteria for a WOE-based carcinogenicity assessment without the rodent cancer bioassay(s) while ensuring a health protective chronic dietary risk assessment.
Collapse
Affiliation(s)
- Amber Goetz
- Syngenta Crop Protection LLCGreensboro, NC, United States
| | - Natalia Ryan
- Syngenta Crop Protection LLCGreensboro, NC, United States
| | | | - Caleb C. Lord
- Syngenta Crop Protection LLCGreensboro, NC, United States
| | - Gina M. Hilton
- PETA Science Consortium International e.V., Stuttgart, Germany
| | | |
Collapse
|
10
|
Verhoeven A, van Ertvelde J, Boeckmans J, Gatzios A, Jover R, Lindeman B, Lopez-Soop G, Rodrigues RM, Rapisarda A, Sanz-Serrano J, Stinckens M, Sepehri S, Teunis M, Vinken M, Jiang J, Vanhaecke T. A quantitative weight-of-evidence method for confidence assessment of adverse outcome pathway networks: A case study on chemical-induced liver steatosis. Toxicology 2024; 505:153814. [PMID: 38677583 DOI: 10.1016/j.tox.2024.153814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024]
Abstract
The field of chemical toxicity testing is undergoing a transition to overcome the limitations of in vivo experiments. This evolution involves implementing innovative non-animal approaches to improve predictability and provide a more precise understanding of toxicity mechanisms. Adverse outcome pathway (AOP) networks are pivotal in organizing existing mechanistic knowledge related to toxicological processes. However, these AOP networks are dynamic and require regular updates to incorporate the latest data. Regulatory challenges also persist due to concerns about the reliability of the information they offer. This study introduces a generic Weight-of-Evidence (WoE) scoring method, aligned with the tailored Bradford-Hill criteria, to quantitatively assess the confidence levels in key event relationships (KERs) within AOP networks. We use the previously published AOP network on chemical-induced liver steatosis, a prevalent form of human liver injury, as a case study. Initially, the existing AOP network is optimized with the latest scientific information extracted from PubMed using the free SysRev platform for artificial intelligence (AI)-based abstract inclusion and standardized data collection. The resulting optimized AOP network, constructed using Cytoscape, visually represents confidence levels through node size (key event, KE) and edge thickness (KERs). Additionally, a Shiny application is developed to facilitate user interaction with the dataset, promoting future updates. Our analysis of 173 research papers yielded 100 unique KEs and 221 KERs among which 72 KEs and 170 KERs, respectively, have not been previously documented in the prior AOP network or AOP-wiki. Notably, modifications in de novo lipogenesis, fatty acid uptake and mitochondrial beta-oxidation, leading to lipid accumulation and liver steatosis, garnered the highest KER confidence scores. In conclusion, our study delivers a generic methodology for developing and assessing AOP networks. The quantitative WoE scoring method facilitates in determining the level of support for KERs within the optimized AOP network, offering valuable insights into its utility in both scientific research and regulatory contexts. KERs supported by robust evidence represent promising candidates for inclusion in an in vitro test battery for reliably predicting chemical-induced liver steatosis within regulatory frameworks.
Collapse
Affiliation(s)
- Anouk Verhoeven
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonas van Ertvelde
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joost Boeckmans
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alexandra Gatzios
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ramiro Jover
- Joint Research Unit in Experimental Hepatology, University of Valencia, Health Research Institute Hospital La Fe & CIBER of Hepatic and Digestive Diseases, Valencia, Spain
| | - Birgitte Lindeman
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Graciela Lopez-Soop
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Robim M Rodrigues
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anna Rapisarda
- Joint Research Unit in Experimental Hepatology, University of Valencia, Health Research Institute Hospital La Fe & CIBER of Hepatic and Digestive Diseases, Valencia, Spain
| | - Julen Sanz-Serrano
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marth Stinckens
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sara Sepehri
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marc Teunis
- Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, the Netherlands
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jian Jiang
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
11
|
Barnes DA, Firman JW, Belfield SJ, Cronin MTD, Vinken M, Janssen MJ, Masereeuw R. Development of an adverse outcome pathway network for nephrotoxicity. Arch Toxicol 2024; 98:929-942. [PMID: 38197913 PMCID: PMC10861692 DOI: 10.1007/s00204-023-03637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Adverse outcome pathways (AOPs) were introduced in modern toxicology to provide evidence-based representations of the events and processes involved in the progression of toxicological effects across varying levels of the biological organisation to better facilitate the safety assessment of chemicals. AOPs offer an opportunity to address knowledge gaps and help to identify novel therapeutic targets. They also aid in the selection and development of existing and new in vitro and in silico test methods for hazard identification and risk assessment of chemical compounds. However, many toxicological processes are too intricate to be captured in a single, linear AOP. As a result, AOP networks have been developed to aid in the comprehension and placement of associated events underlying the emergence of related forms of toxicity-where complex exposure scenarios and interactions may influence the ultimate adverse outcome. This study utilised established criteria to develop an AOP network that connects thirteen individual AOPs associated with nephrotoxicity (as sourced from the AOP-Wiki) to identify several key events (KEs) linked to various adverse outcomes, including kidney failure and chronic kidney disease. Analysis of the modelled AOP network and its topological features determined mitochondrial dysfunction, oxidative stress, and tubular necrosis to be the most connected and central KEs. These KEs can provide a logical foundation for guiding the selection and creation of in vitro assays and in silico tools to substitute for animal-based in vivo experiments in the prediction and assessment of chemical-induced nephrotoxicity in human health.
Collapse
Affiliation(s)
- D A Barnes
- Division of Pharmacology, Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - J W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - S J Belfield
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - M T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - M Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - M J Janssen
- Division of Pharmacology, Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - R Masereeuw
- Division of Pharmacology, Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Yu M, Yang Z, Zhou Y, Guo W, Tian L, Zhang L, Li X, Chen J. Mode of action exploration of reproductive toxicity induced by bisphenol S using human normal ovarian epithelial cells through ERβ-MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116037. [PMID: 38301581 DOI: 10.1016/j.ecoenv.2024.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND In the plastics production sector, bisphenol S (BPS) has gained popularity as a replacement for bisphenol A (BPA). However, the mode of action (MOA) of female reproductive toxicity caused by BPS remains unclear and the safety of BPS is controversial. METHODS Human normal ovarian epithelial cell line, IOSE80, were exposed to BPS at human-relevant levels for short-term exposure at 24 h or 48 h, or for long-term exposure at 28 days, either alone or together with five signaling pathway inhibitors: ICI 18,2780 (estrogen receptor [ER] antagonist), G15 (GPR30 specific inhibitor), U0126 (extracellular regulated protein kinase [ERK] 1/2 inhibitor), SP600125 (c-Jun N-terminal kinase [JNK] inhibitor) or SB203580 (p38 mitogen‑activated protein kinase [p38MAPK] inhibitor). MOA through ERβ-MAPK signaling pathway interruption was explored, and potential thresholds were estimated by the benchmark dose method. RESULTS For short-term exposure, BPS exposure at human-relevant levels elevated the ESR2 and MAPK8 mRNA levels, along with the percentage of the G0/G1 phase. For long-term exposure, BPS raised the MAPK1 and EGFR mRNA levels, the ERβ, p-ERK, and p-JNK protein levels, and the percentage of the G0/G1 phase, which was partly suppressed by U0126. The benchmark dose lower confidence limit (BMDL) of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 μM. CONCLUSIONS The MOA of female reproductive toxicity caused by BPS at human-relevant levels might involve: molecular initiating event (MIE)-BPS binding to ERβ receptor, key event (KE)1-the interrupted expression of GnRH, KE2-the activation of JNK (for short-term exposure) and ERK pathway (for long-term exposure), KE3-cell cycle arrest (the increased percentage of the G0/G1 phase), and KE4-interruption of cell proliferation (only for short-term exposure). The BMDL of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 μM.
Collapse
Affiliation(s)
- Mengqi Yu
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhirui Yang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wanqing Guo
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
13
|
Liang J, Wei HX, Zhou YY, Hao LL, Ning JY, Zhang L. Investigation on the potential adverse outcome pathway of the sensitive endpoint for nephrotoxicity induced by gardenia yellow based on an integrated strategy using bioinformatics analysis and in vitro testing validation. Food Chem Toxicol 2023:113930. [PMID: 37406755 DOI: 10.1016/j.fct.2023.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/17/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
To explore the potential the adverse outcome pathway of Gardenia Yellow (GY)-induced sensitive endpoint for nephrotoxicity, an integrated strategy was applied in the present study. Using bioinformatic analysis, based on the constructed Protein-protein interaction networks, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis on the core target network were performed to illustrate the potential gene targets and signal pathways. Then, the most enriched pathway was validated with Cell counting kit-8 assays and Western blot analysis in embryonic kidney epithelial 293 cell models. According to the findings, GY may interact with 321 targets related to the endpoint. The five targets on the top ranking in the PPI network were STAT3, SRC, HRAS, AKT1, EP300. Among them, PI3K/Akt was the most enriched pathway. In vitro testing showed that GY exerted a proliferative effect on the cell variability in a dose-dependent manner. GY at concentration of 1000 μg/ml and stimulation for 30 min can significantly enhance the expression of phosphorylated Akt. Thus, after the quantitative weight of evidence evaluation, Akt phosphorylation induced PI3K/Akt activation was speculated as a molecular initiating event leading to a proliferative and inflammatory response in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Jiang Liang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Hong-Xin Wei
- Beijing Centers for Disease Prevention and Control /Beijing Research Center for Prevention Medicine, Beijing Key Laboratory of Diagnostic and Tracebility Technologies for Food Poisoning, Beijing, 100013, China
| | - Ying-Ying Zhou
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Li-Li Hao
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Jun-Yu Ning
- Beijing Centers for Disease Prevention and Control /Beijing Research Center for Prevention Medicine, Beijing Key Laboratory of Diagnostic and Tracebility Technologies for Food Poisoning, Beijing, 100013, China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China.
| |
Collapse
|
14
|
Lafranconi M, Anderson J, Budinsky R, Corey L, Forsberg N, Klapacz J, LeBaron MJ. An integrated assessment of the 1,4-dioxane cancer mode of action and threshold response in rodents. Regul Toxicol Pharmacol 2023:105428. [PMID: 37277058 DOI: 10.1016/j.yrtph.2023.105428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
1,4-Dioxane is an environmental contaminant that has been shown to cause cancer in rodents after chronic high dose exposures. We reviewed and integrated information from recently published studies to update our understanding of the cancer mode of action of 1,4-dioxane. Tumor development in rodents from exposure to high doses of 1,4-dioxane is preceded by pre-neoplastic events including increased hepatic genomic signaling activity related to mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity. These events are followed by regenerative repair and proliferation and eventual development of tumors. Importantly, these events occur at doses that exceed the metabolic clearance of absorbed 1,4-dioxane in rats and mice resulting in elevated systemic levels of parent 1,4-dioxane. Consistent with previous reviews, we found no evidence of direct mutagenicity from exposure to 1,4-dioxane. We also found no evidence of CAR/PXR, AhR or PPARα activation resulting from exposure to 1,4-dioxane. This integrated assessment supports a cancer mode of action that is dependent on exceeding the metabolic clearance of absorbed 1,4-dioxane, direct mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity followed by sustained proliferation driven by regenerative repair and progression of heritable lesions to tumor development.
Collapse
|
15
|
Jensen MA, Blatz DJ, LaLone CA. Defining the Biologically Plausible Taxonomic Domain of Applicability of an Adverse Outcome Pathway: A Case Study Linking Nicotinic Acetylcholine Receptor Activation to Colony Death. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:71-87. [PMID: 36263952 PMCID: PMC10100214 DOI: 10.1002/etc.5501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
For the majority of developed adverse outcome pathways (AOPs), the taxonomic domain of applicability (tDOA) is typically narrowly defined with a single or a handful of species. Defining the tDOA of an AOP is critical for use in regulatory decision-making, particularly when considering protection of untested species. Structural and functional conservation are two elements that can be considered when defining the tDOA. Publicly accessible bioinformatics approaches, such as the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool, take advantage of existing and growing databases of protein sequence and structural information to provide lines of evidence toward structural conservation of key events (KEs) and KE relationships (KERs) of an AOP. It is anticipated that SeqAPASS results could readily be combined with data derived from empirical toxicity studies to provide evidence of both structural and functional conservation, to define the tDOA for KEs, KERs, and AOPs. Such data could be incorporated in the AOP-Wiki as lines of evidence toward biological plausibility for the tDOA. We present a case study describing the process of using bioinformatics to define the tDOA of an AOP using an AOP linking the activation of the nicotinic acetylcholine receptor to colony death/failure in Apis mellifera. Although the AOP was developed to gain a particular biological understanding relative to A. mellifera health, applicability to other Apis bees, as well as non-Apis bees, has yet to be defined. The present study demonstrates how bioinformatics can be utilized to rapidly take advantage of existing protein sequence and structural knowledge to enhance and inform the tDOA of KEs, KERs, and AOPs, focusing on providing evidence of structural conservation across species. Environ Toxicol Chem 2023;42:71-87. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Marissa A. Jensen
- Department of Biology, Swenson College of Science and EngineeringUniversity of Minnesota DuluthDuluthMinnesotaUSA
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | | | - Carlie A. LaLone
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| |
Collapse
|
16
|
Wang X, Li F, Teng Y, Ji C, Wu H. Potential adverse outcome pathways with hazard identification of organophosphate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158093. [PMID: 35985583 DOI: 10.1016/j.scitotenv.2022.158093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Data-driven analysis and pathway-based approaches contribute to reasonable arrangements of limited resources and laboratory tests for continuously emerging commercial chemicals, which provides opportunities to save time and effort for toxicity research. With the widespread usage of organophosphate esters (OPEs) on a global scale, the concentrations generally reached up to micromolar range in environmental media and even in organisms. However, potential adverse effects and toxicity pathways of OPEs have not been systematically assessed. Therefore, it is necessary to review the current situation, formulate the future research priorities, and characterize toxicity mechanisms via data-driven analysis. Results showed that the early toxicity studies focused on neurotoxicity, cytotoxicity, and metabolic disorders. Then the main focus shifted to the mechanisms of cardiotoxicity, endocrine disruption, hepatocytes, reproductive and developmental toxicity to vulnerable sub-populations, such as infants and embryos, affected by OPEs. In addition, several novel OPEs have been emerging, such as bis(2-ethylhexyl)-phenyl phosphate (HDEHP) and oxidation derivatives (OPAsO) generated from organophosphite antioxidants (OPAs), leading to multiple potential ecological and human health risks (neurotoxicity, hepatotoxicity, developmental toxicity, etc.). Notably, in-depth statistical analysis was promising in encapsulating toxicological information to develop adverse outcome pathways (AOPs) frameworks. Subsequently, network-centric analysis and quantitative weight-of-evidence (QWOE) approaches were utilized to construct and evaluate the putative AOPs frameworks of OPEs, showing the moderate confidences of the developed AOPs. In addition, frameworks demonstrated that several events, such as nuclear receptor activation, reactive oxygen species (ROS) production, oxidative stress, and DNA damage, were involved in multiple different adverse outcome (AO), and these AOs had certain degree of connectivity. This study brought new insights into facilitating the complement of AOP efficiently, as well as establishing toxicity pathways framework to inform risk assessment of emerging OPEs.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
17
|
Koterov AN. Causal Criteria in Medical and Biological Disciplines: History, Essence, and Radiation Aspect. Report 3, Part 2: Hill’s Last Four Criteria: Use and Limitations. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
18
|
Cronin MTD, Bauer FJ, Bonnell M, Campos B, Ebbrell DJ, Firman JW, Gutsell S, Hodges G, Patlewicz G, Sapounidou M, Spînu N, Thomas PC, Worth AP. A scheme to evaluate structural alerts to predict toxicity - Assessing confidence by characterising uncertainties. Regul Toxicol Pharmacol 2022; 135:105249. [PMID: 36041585 PMCID: PMC9585125 DOI: 10.1016/j.yrtph.2022.105249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
Structure-activity relationships (SARs) in toxicology have enabled the formation of structural rules which, when coded as structural alerts, are essential tools in in silico toxicology. Whilst other in silico methods have approaches for their evaluation, there is no formal process to assess the confidence that may be associated with a structural alert. This investigation proposes twelve criteria to assess the uncertainty associated with structural alerts, allowing for an assessment of confidence. The criteria are based around the stated purpose, description of the chemistry, toxicology and mechanism, performance and coverage, as well as corroborating and supporting evidence of the alert. Alerts can be given a confidence assessment and score, enabling the identification of areas where more information may be beneficial. The scheme to evaluate structural alerts was placed in the context of various use cases for industrial and regulatory applications. The analysis of alerts, and consideration of the evaluation scheme, identifies the different characteristics an alert may have, such as being highly specific or generic. These characteristics may determine when an alert can be used for specific uses such as identification of analogues for read-across or hazard identification. Structural alerts are useful tools for predictive toxicology. 12 criteria to evaluate structural alerts have been identified. A strategy to determine confidence of structural alerts is presented. Different use cases require different characteristics of structural alerts. A Scheme to Evaluate Structural Alerts to Predict Toxicity – Assessing Confidence By Characterising Uncertainties.
Collapse
Affiliation(s)
- Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Franklin J Bauer
- KREATiS SAS, 23 rue du Creuzat, ZAC de St-Hubert, 38080, L'Isle d'Abeau, France
| | - Mark Bonnell
- Science and Risk Assessment Directorate, Environment & Climate Change Canada, 351 St. Joseph Blvd, Gatineau, Quebec, K1A 0H3, Canada
| | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, MK44 1LQ, UK
| | - David J Ebbrell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, MK44 1LQ, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, MK44 1LQ, UK
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure (CCTE), US Environmental Protection Agency, 109 TW Alexander Dr, RTP, NC, 27709, USA
| | - Maria Sapounidou
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Nicoleta Spînu
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Paul C Thomas
- KREATiS SAS, 23 rue du Creuzat, ZAC de St-Hubert, 38080, L'Isle d'Abeau, France
| | - Andrew P Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
19
|
Higgins S, Pomeroy A, Bates LC, Paterson C, Barone Gibbs B, Pontzer H, Stoner L. Sedentary behavior and cardiovascular disease risk: An evolutionary perspective. Front Physiol 2022; 13:962791. [PMID: 35965885 PMCID: PMC9363656 DOI: 10.3389/fphys.2022.962791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 01/17/2023] Open
Abstract
A ubiquitous aspect of contemporary societies is sedentary behavior (SB), defined as low intensity activities in a seated, reclined, or supine posture. Leading public health agencies, including the World Health Organization, have recognized the strong association between SB and poor health outcomes, particularly cardiovascular disease. However, while public health agencies have begun to advocate for “reductions” in SB, the current US guidelines are typically vague and non-specific. There is good reasoning behind this non-committal advocacy—there is limited mechanistic and clinical evidence to support policy development. To guide SB policy development, it is important to first consider the origins and evolution of SB, including the following: 1) is SB really a novel/contemporary behavior? i.e., how has this behavior evolved? 2) how did our ancestors sit and in what contexts? 3) how does SB interact with 24-hour activity behaviors, including physical activity and sleep? 4) what other historical and contemporary facets of life interact with SB? and 5) in what context do these behaviors occur and how might they provide different evolutionarily novel stressors? This perspective article will synthesize the available evidence that addresses these questions and stimulate discussion pertaining to the lessons that we can learn from an historical and evolutionary perspective. Last, it will outline the gaps in current SB interruption literature that are hindering development of feasible SB reduction policy.
Collapse
Affiliation(s)
- Simon Higgins
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Simon Higgins,
| | - Alexander Pomeroy
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lauren C. Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig Paterson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Bethany Barone Gibbs
- Department of Epidemiology and Biostatistics, West Virginia University, Morgantown, WV, United States
| | - Herman Pontzer
- Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
20
|
Koterov AN, Ushenkova LN, Biryukov AP. Hill’s “Biological Plausibility” Criterion: Integration of Data from Various Disciplines for Epidemiology and Radiation Epidemiology. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Koterov AN, Ushenkova LN, Biryukov AP. Hill’s Criterion ‘Experiment’: The Counterfactual Approach in Non-Radiation and Radiation Sciences. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021120062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Felter SP, Bhat VS, Botham PA, Bussard DA, Casey W, Hayes AW, Hilton GM, Magurany KA, Sauer UG, Ohanian EV. Assessing chemical carcinogenicity: hazard identification, classification, and risk assessment. Insight from a Toxicology Forum state-of-the-science workshop. Crit Rev Toxicol 2022; 51:653-694. [DOI: 10.1080/10408444.2021.2003295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - David A. Bussard
- U.S. Environmental Protection Agency, Office of the Science Advisor, Policy and Engagement, Washington, DC, USA
| | - Warren Casey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - A. Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gina M. Hilton
- PETA Science Consortium International e.V., Stuttgart, Germany
| | | | | | - Edward V. Ohanian
- United States Environmental Protection Agency, Office of Water, Washington, DC, USA
| |
Collapse
|
23
|
Using adverse outcome pathways to contextualise (Q)SAR predictions for reproductive toxicity – A case study with aromatase inhibition. Reprod Toxicol 2022; 108:43-55. [DOI: 10.1016/j.reprotox.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022]
|
24
|
Brock TCM, Elliott KC, Gladbach A, Moermond C, Romeis J, Seiler T, Solomon K, Peter Dohmen G. Open Science in regulatory environmental risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:1229-1242. [PMID: 33913617 PMCID: PMC8596791 DOI: 10.1002/ieam.4433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 05/14/2023]
Abstract
A possible way to alleviate the public skepticism toward regulatory science is to increase transparency by making all data and value judgments used in regulatory decision making accessible for public interpretation, ideally early on in the process, and following the concepts of Open Science. This paper discusses the opportunities and challenges in strengthening Open Science initiatives in regulatory environmental risk assessment (ERA). In this discussion paper, we argue that the benefits associated with Open Science in regulatory ERA far outweigh its perceived risks. All stakeholders involved in regulatory ERA (e.g., governmental regulatory authorities, private sector, academia, and nongovernmental organizations), as well as professional organizations like the Society of Environmental Toxicology and Chemistry, can play a key role in supporting the Open Science initiative, by promoting the use of recommended reporting criteria for reliability and relevance of data and tools used in ERA, and by developing a communication strategy for both professionals and nonprofessionals to transparently explain the socioeconomic value judgments and scientific principles underlying regulatory ERA. Integr Environ Assess Manag 2021;17:1229-1242. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Kevin C. Elliott
- Department of Fisheries and WildlifeLyman Briggs College Department of PhilosophyMichigan State UniversityEast LansingMichiganUSA
- Department of PhilosophyLyman Briggs CollegeMichigan State UniversityEast LansingMichiganUSA
| | | | - Caroline Moermond
- National Institute for Public Health and the Environment (RIVM)UtrechtThe Netherlands
| | - Jörg Romeis
- Research Division Agroecology and EnvironmentAgroscopeZurichSwitzerland
| | - Thomas‐Benjamin Seiler
- Hygiene‐Institut des RuhrgebietsGelsenkirchenGermany
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | | | | |
Collapse
|
25
|
Stoner L, Barone Gibbs B, Meyer ML, Fryer S, Credeur D, Paterson C, Stone K, Hanson ED, Kowalsky RJ, Horiuchi M, Mack CP, Dave G. A Primer on Repeated Sitting Exposure and the Cardiovascular System: Considerations for Study Design, Analysis, Interpretation, and Translation. Front Cardiovasc Med 2021; 8:716938. [PMID: 34485414 PMCID: PMC8415972 DOI: 10.3389/fcvm.2021.716938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022] Open
Abstract
Sedentary behavior, particularly sitting, is ubiquitous in many contemporary societies. This is a major societal concern considering the evidence for a strong association between sitting behavior and cardiovascular disease morbidity and mortality. Unsurprisingly, leading public health agencies have begun to advocate “reduction” in sitting behavior. Though, the guidelines are typically vague and non-specific. The lack of specific guidelines for prolonged sitting is attributable to the absence of available evidence to facilitate guideline development. To inform policy, well-designed randomized controlled trials are required to test the efficacy of specific and translatable sitting reduction strategies. To guide the design of randomized controlled trials, this review postulates that several gaps in the literature first need to be filled. Following a general discussion of the importance of sitting behavior to contemporary societies, each of the following are discussed: (i) acute sitting exposure and systems physiology; (ii) recommendations for a systems physiology toolbox; (iii) study design considerations for acute sitting exposure; and (iv) translation of sitting-focused research.
Collapse
Affiliation(s)
- Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Bethany Barone Gibbs
- Department of Health and Human Development and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michelle L Meyer
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Simon Fryer
- School of Sport and Exercise, University of Gloucestershire, Gloucester, United Kingdom
| | - Daniel Credeur
- Department of Biology, Ave Maria University, Ave Maria, FL, United States
| | - Craig Paterson
- School of Sport and Exercise, University of Gloucestershire, Gloucester, United Kingdom
| | - Keeron Stone
- School of Sport and Exercise, University of Gloucestershire, Gloucester, United Kingdom
| | - Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert J Kowalsky
- Department of Health and Kinesiology, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Masahiro Horiuchi
- Division of Human Environmental Science, Mount Fuji Research Institute, Yamanashi, Japan
| | - Christopher P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gaurav Dave
- Division of General Medicine and Clinical Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
26
|
Zhang Y, Liu Z, He Q, Wu F, Xiao Y, Chen W, Jin Y, Yu D, Wang Q. Construction of Mode of Action for Cadmium-Induced Renal Tubular Dysfunction Based on a Toxicity Pathway-Oriented Approach. Front Genet 2021; 12:696892. [PMID: 34367254 PMCID: PMC8343180 DOI: 10.3389/fgene.2021.696892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
Although it is recognized that cadmium (Cd) causes renal tubular dysfunction, the mechanism of Cd-induced nephrotoxicity is not yet fully understood. Mode of action (MOA) is a developing tool for chemical risk assessment. To establish the mechanistic MOA of Cd-induced renal tubular dysfunction, the Comparative Toxicogenomics Database (CTD) was used to obtain genomics data of Cd-induced nephrotoxicity, and Ingenuity® Pathway Analysis (IPA) software was applied for bioinformatics analysis. Based on the perturbed toxicity pathways during the process of Cd-induced nephrotoxicity, we established the MOA of Cd-induced renal tubular dysfunction and assessed its confidence with the tailored Bradford Hill criteria. Bioinformatics analysis showed that oxidative stress, DNA damage, cell cycle arrest, and cell death were the probable key events (KEs). Assessment of the overall MOA of Cd-induced renal tubular dysfunction indicated a moderate confidence, and there are still some evidence gaps to be filled by rational experimental designs.
Collapse
Affiliation(s)
- Yangchun Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qianmei He
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fei Wu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Goyak KO, Lewis RJ. Application of adverse outcome pathway networks to integrate mechanistic data informing the choice of a point of departure for hydrogen sulfide exposure limits. Crit Rev Toxicol 2021; 51:193-208. [PMID: 33905294 DOI: 10.1080/10408444.2021.1897085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Acute exposure to hydrogen sulfide initiates a series of hallmark biological effects that occur progressively at increasing exposure levels: odor perception, conjunctivitis, olfactory paralysis, "knockdown," pulmonary edema, and apnea. Although effects of exposure to high concentrations of hydrogen sulfide are clear, effects associated with chronic, low-level exposure in humans is under debate, leading to uncertainty in the critical effect used in regulatory risk assessments addressing low dose exposures. This study integrates experimental animal, observational epidemiology, and occupational exposure evidence by applying a pathway-based approach. A hypothesized adverse outcome pathway (AOP) network was developed from 34 studies, composed of 4 AOPs sharing 1 molecular initiating events (MIE) and culminating in 4 adverse outcomes. A comparative assessment of effect levels and weight of evidence identified an AOP leading to a biologically-plausible, low-dose outcome relative to the other outcomes (nasal lesions, 30 ppm versus olfactory paralysis, >100 ppm; neurological effects, >80 ppm; pulmonary edema, >80 ppm). This AOP (i.e. AOP1) consists of the following key events: cytochrome oxidase inhibition (>10 ppm), neuronal cell loss (>30 ppm), and olfactory nasal lesions (defined as both neuronal cell loss and basal cell hyperplasia; >30 ppm) in rodents. The key event relationships in this pathway were supported by moderate empirical evidence and have high biological plausibility due to known mechanistic understanding and consistency in observations for diverse chemicals.
Collapse
Affiliation(s)
- Katy O Goyak
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, USA
| | | |
Collapse
|
28
|
Li X, Ni M, Yang Z, Chen X, Zhang L, Chen J. Bioinformatics analysis and quantitative weight of evidence assessment to map the potential mode of actions of bisphenol A. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116469. [PMID: 33460868 DOI: 10.1016/j.envpol.2021.116469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a classical chemical contaminant in food, and the mode of action (MOA) of BPA remains unclear, constraining the progress of risk assessment. This study aims to assess the potential MOAs of BPA regarding reproductive/developmental toxicity, neurological toxicity, and proliferative effects on the mammary gland and the prostate potentially related to carcinogenesis by using the Comparative Toxicogenomics Database (CTD)-based bioinformatics analysis and the quantitative weight of evidence (QWOE) approach on the basis of the principles of Toxicity Testing in the 21st Century. The CTD-based bioinformatics analysis results showed that estrogen receptor 1, estrogen receptor 2, mitogen-activated protein kinase (MAPK) 1, MAPK3, BCL2 apoptosis regulator, caspase 3, BAX, androgen receptor, and AKT serine/threonine kinase 1 could be the common target genes, and the apoptotic process, cell proliferation, testosterone biosynthetic process, and estrogen biosynthetic process might be the shared phenotypes for different target organs. In addition, the KEGG pathways of the BPA-induced action might involve the estrogen signaling pathway and pathways in cancer. After the QWOE evaluation, two potential estrogen receptor-related MOAs of BPA-induced testis dysfunction and learning-memory deficit were proposed. However, the confidence and the human relevance of the two MOAs were moderate, prompting studies to improve the MOA-based risk assessment of BPA.
Collapse
Affiliation(s)
- Xiaomeng Li
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Mengmei Ni
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Zhirui Yang
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Xuxi Chen
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Halappanavar S, Ede JD, Mahapatra I, Krug HF, Kuempel ED, Lynch I, Vandebriel RJ, Shatkin JA. A methodology for developing key events to advance nanomaterial-relevant adverse outcome pathways to inform risk assessment. Nanotoxicology 2020; 15:289-310. [PMID: 33317378 DOI: 10.1080/17435390.2020.1851419] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant advances have been made in the development of Adverse Outcome Pathways (AOPs) over the last decade, mainly focused on the toxicity mechanisms of chemicals. These AOPs, although relevant to manufactured nanomaterials (MNs), do not currently capture the reported roles of size-associated properties of MNs on toxicity. Moreover, some AOs of relevance to airborne exposures to MNs such as lung inflammation and fibrosis shown in animal studies may not be targeted in routine regulatory decision making. The primary objective of the present study was to establish an approach to advance the development of AOPs of relevance to MNs using existing, publicly available, nanotoxicology literature. A systematic methodology was created for curating, organizing and applying the available literature for identifying key events (KEs). Using a case study approach, the study applied the available literature to build the biological plausibility for 'tissue injury', a KE of regulatory relevance to MNs. The results of the analysis reveal the various endpoints, assays and specific biological markers used for assessing and reporting tissue injury. The study elaborates on the limitations and opportunities of the current nanotoxicology literature and provides recommendations for the future reporting of nanotoxicology results that will expedite not only the development of AOPs for MNs but also aid in application of existing data for decision making.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Indrani Mahapatra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Harald F Krug
- Retired International Research Cooperation Manager, Empa - Swiss Federal Laboratories for Science and Materials Technology, St. Gallen, Switzerland.,NanoCASE GmbH, Engelburg, Switzerland
| | - Eileen D Kuempel
- National Institute for Occupational Safety and Health, Nanotechnology Research Center, Cincinnati, OH, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Rob J Vandebriel
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | |
Collapse
|
30
|
Bhat VS, Cohen SM, Gordon EB, Wood CE, Cullen JM, Harris MA, Proctor DM, Thompson CM. An adverse outcome pathway for small intestinal tumors in mice involving chronic cytotoxicity and regenerative hyperplasia: a case study with hexavalent chromium, captan, and folpet. Crit Rev Toxicol 2020; 50:685-706. [PMID: 33146058 DOI: 10.1080/10408444.2020.1823934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small intestinal (SI) tumors are relatively uncommon outcomes in rodent cancer bioassays, and limited information regarding chemical-induced SI tumorigenesis has been reported in the published literature. Herein, we propose a cytotoxicity-mediated adverse outcome pathway (AOP) for SI tumors by leveraging extensive target species- and site-specific molecular, cellular, and histological mode of action (MOA) research for three reference chemicals, the fungicides captan and folpet and the transition metal hexavalent chromium (Cr(VI)). The gut barrier functions through highly efficient homeostatic regulation of SI epithelial cell sloughing, regenerative proliferation, and repair, which involves the replacement of up to 1011 cells per day. This dynamic turnover in the SI provides a unique local environment for a cytotoxicity mediated AOP/MOA. Upon entering the duodenum, cytotoxicity to the villous epithelium is the molecular initiating event, as indicated by crypt elongation, villous atrophy/blunting, and other morphologic changes. Over time, the regenerative capacity of the gut epithelium to compensate declines as epithelial loss accelerates, especially at higher exposures. The first key event (KE), sustained regenerative crypt proliferation/hyperplasia, requires sufficient durations, likely exceeding 6 or 12 months, due to extensive repair capacity, to create more opportunities for the second KE, spontaneous mutation/transformation, ultimately leading to proximal SI tumors. Per OECD guidance, biological plausibility, essentiality, and empirical support were assessed using modified Bradford Hill considerations. The weight-of-evidence also included a lack of induced mutations in the duodenum after up to 90 days of Cr(VI) or captan exposure. The extensive evidence for this AOP, along with the knowledge that human exposures are orders of magnitude below those associated with KEs in this AOP, supports its use for regulatory applications, including hazard identification and risk assessment.
Collapse
Affiliation(s)
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Charles E Wood
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - John M Cullen
- North Carolina State University, Raleigh, NC, USA.,EPL, Inc., Sterling, VA, USA
| | | | | | | |
Collapse
|
31
|
Wikoff D, Lewis RJ, Erraguntla N, Franzen A, Foreman J. Facilitation of risk assessment with evidence-based methods - A framework for use of systematic mapping and systematic reviews in determining hazard, developing toxicity values, and characterizing uncertainty. Regul Toxicol Pharmacol 2020; 118:104790. [PMID: 33038430 DOI: 10.1016/j.yrtph.2020.104790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 01/08/2023]
Abstract
Systematic review tools and approaches developed for clinical medicine are often difficult to apply "off the shelf" in order to meet the needs of chemical risk assessments. To address such, we propose an approach that can be used by practitioners for using evidence-based methods to facilitate the risk assessment process. The framework builds on and combines efforts conducted to date by a number of agencies and researchers; the novelty is in combining these efforts with a practical understanding of risk assessment, and translating such into a 'step-by-step' guide. The approach relies on three key components: problem formulation, systematic evidence mapping, and systematic review, applied using a stepwise approach. Unique to this framework is the consideration of exposure in selecting, prioritizing, and evaluating data (e.g., dose-relevance, routes of exposure, etc.). Using the proposed step-by-step process, critical appraisal of individual studies (e.g., formal and structured assessment of both relevance and reliability) and integration efforts are considered in context of specified risk assessment objectives (e.g., mode of action, dose-response) as well as chemical-specific considerations. The resulting framework provides a logical approach of how evidence-based methods can be used to facilitate risk assessment, and elevates the use of systematic methods beyond hazard identification to directly facilitating transparent and objective selection of candidate studies and/or datasets used to quantitatively characterize risk, and to better use the underlying process to inform the approaches used to develop toxicity values.
Collapse
Affiliation(s)
- Daniele Wikoff
- 31 College Place, Suite B118, Asheville, NC, 28801, USA.
| | - R Jeffrey Lewis
- ExxonMobil Biomedical Sciences, Inc., 1545 US Highway 22 East, Room CC291, Annandale, NJ, 08801-3059, USA.
| | | | - Allison Franzen
- ToxStrategies, Inc, 1800 Forsythe Ave., Suite 2 #148, Monroe, LA, 71201, USA.
| | - Jennifer Foreman
- ExxonMobil Chemical Company, Energy 4, E4.3A.478 22777 Springwoods Village Parkway, Spring, TX, 77389, USA.
| |
Collapse
|
32
|
Colnot T, Melching-Kollmuß S, Semino G, Dekant W. A flow scheme for cumulative assessment of pesticides for adverse liver effects. Regul Toxicol Pharmacol 2020; 116:104694. [PMID: 32621977 DOI: 10.1016/j.yrtph.2020.104694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022]
Abstract
The European Food Safety Authority (EFSA) is developing approaches to cumulative risk assessment by assigning pesticides to cumulative assessment groups (CAGs). For assignment to CAGs, EFSA relies on common toxic effects (CTEs) on the target system. The developed flow scheme for assignment to liver CAGs sequentially assesses the consistency of the CTE, its adversity, its potential to be secondary to other toxicities, its human relevance, and the relation of the NOAEL for the CTE to the overall NOAEL. If the responses to all questions are "yes", allocation to a CAG is supported; "no" stops the process.
Collapse
Affiliation(s)
| | | | | | - Wolfgang Dekant
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany.
| |
Collapse
|
33
|
Cohen SM, Zhongyu Y, Bus JS. Relevance of mouse lung tumors to human risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:214-241. [PMID: 32452303 DOI: 10.1080/10937404.2020.1763879] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mouse lung is a common site for chemical tumorigenicity, but the relevance to human risk remains debated. Long-term bioassays need to be assessed for appropriateness of the dose, neither exceeding Maximum Tolerated Dose (MTD) nor Kinetically based Maximum Dose (KMD). An example of the KMD issue is 1,3-dichloropropene (1,3-D), which only produced an increased incidence of lung tumors at a dose exceeding the KMD. In addition, since mouse lung tumors are common (>1% incidence), the appropriate statistical significance is p < .01. Numerous differences exist for mouse lung and tumors compared to humans, including anatomy, respiratory rate, metabolism, tumor histogenesis, and metastatic frequency. The recent demonstration of the critical role of mouse lung specific Cyp2 F2 metabolism in mouse lung carcinogenicity including styrene or fluensulfone indicates that this tumor response is not qualitatively or quantitatively relevant to humans. For non-DNA reactive and non-mutagenic carcinogens, the mode of action involves direct mitogenicity such as for isoniazid, styrene, fluensulfone, permethrin or cytotoxicity with regeneration such as for naphthalene. However, the possibility of mixed mitogenic and cytotoxic modes of action cannot always be excluded. The numerous differences between mouse and human, combined with epidemiologic evidence of no increased cancer risk for several of these chemicals make the relevance of mouse lung tumors for human cancer risk dubious.
Collapse
Affiliation(s)
- Samuel M Cohen
- Havlik-Wall Professor of Oncology, University of Nebraska Medical Center , Omaha, NE, USA
- University of Nebraska Medical Center , Omaha, NE, USA
| | | | | |
Collapse
|
34
|
Spinu N, Cronin MTD, Enoch SJ, Madden JC, Worth AP. Quantitative adverse outcome pathway (qAOP) models for toxicity prediction. Arch Toxicol 2020; 94:1497-1510. [PMID: 32424443 PMCID: PMC7261727 DOI: 10.1007/s00204-020-02774-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023]
Abstract
The quantitative adverse outcome pathway (qAOP) concept is gaining interest due to its potential regulatory applications in chemical risk assessment. Even though an increasing number of qAOP models are being proposed as computational predictive tools, there is no framework to guide their development and assessment. As such, the objectives of this review were to: (i) analyse the definitions of qAOPs published in the scientific literature, (ii) define a set of common features of existing qAOP models derived from the published definitions, and (iii) identify and assess the existing published qAOP models and associated software tools. As a result, five probabilistic qAOPs and ten mechanistic qAOPs were evaluated against the common features. The review offers an overview of how the qAOP concept has advanced and how it can aid toxicity assessment in the future. Further efforts are required to achieve validation, harmonisation and regulatory acceptance of qAOP models.
Collapse
Affiliation(s)
- Nicoleta Spinu
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Steven J Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Andrew P Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
35
|
Goodman JE, Mayfield DB, Becker RA, Hartigan SB, Erraguntla NK. Recommendations for further revisions to improve the International Agency for Research on Cancer (IARC) Monograph program. Regul Toxicol Pharmacol 2020; 113:104639. [PMID: 32147291 DOI: 10.1016/j.yrtph.2020.104639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
Abstract
In 2019, the International Agency for Research on Cancer (IARC) "Preamble to the IARC Monographs" expanded guidance regarding the scientific approaches that should be employed in its monographs. These amendments to the monograph development process are an improvement but still fall short in several areas. While the revised Preamble lays out broad methods and approaches to evaluate scientific evidence, there is a lack of specificity with regard to how IARC Working Groups will conduct consistent evaluations in a standardized, objective, and transparent manner; document systematic review and evidence integration actions, and substantiate how these actions and decisions inform the ultimate classifications. Furthermore, no guidance is provided to ensure Working Groups consistently incorporate mechanistic evidence in a robust manner using a defined approach in the context of 21st century knowledge of modes of action. Nor are the conclusions of the working groups subjected to outside, independent scientific peer review. Continued improvements and modernization of the procedures for evaluating, presenting, and communicating study quality, and in the methods used to conduct and peer-review evidence-based decision making will benefit the Working Group members, the IARC Monographs Programme overall, and the international regulatory community and public who rely upon the monographs.
Collapse
Affiliation(s)
- Julie E Goodman
- Gradient, One Beacon Street, 17th Floor, Boston, MA, 02108, USA.
| | - David B Mayfield
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA.
| | - Richard A Becker
- American Chemistry Council, 700 2nd Street NE, Washington, DC, 20002, USA.
| | - Suzanne B Hartigan
- American Chemistry Council, 700 2nd Street NE, Washington, DC, 20002, USA.
| | | |
Collapse
|
36
|
Hanson ML, Solomon KR, Van Der Kraak GJ, Brian RA. Effects of atrazine on fish, amphibians, and reptiles: update of the analysis based on quantitative weight of evidence. Crit Rev Toxicol 2020; 49:670-709. [DOI: 10.1080/10408444.2019.1701985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mark L. Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Keith R. Solomon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
37
|
Klapacz J, Gollapudi BB. Considerations for the Use of Mutation as a Regulatory Endpoint in Risk Assessment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:84-93. [PMID: 31301246 DOI: 10.1002/em.22318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Assessment of a chemical's potential to cause permanent changes in the genetic code has been a common practice in the industry and regulatory settings for decades. Furthermore, the genetic toxicity battery of tests has typically been employed during the earliest stages of the research and development programs of new product development. A positive outcome from such battery has a major impact on the chemical's utility, industrial hygiene, product stewardship practices, and product life cycle analysis, among many other decisions that need to be taken by the industry, even before the registration of a chemical is undertaken. Under the prevailing regulatory paradigm, the dichotomous (yes/no) evaluation of the chemical's genotoxic potential leads to a conservative, linear no-threshold (LNT) risk assessment, unless compelling and undeniable data to the contrary can be provided to satisfy regulators, typically in a number of different global jurisdictions. With the current advent of predictive methods, new testing paradigms, mode-of-action/adverse outcome pathways, and quantitative risk assessment approaches, various stakeholders are starting to employ these state-of-the-science methodologies to further the conversation on decision making and advance the regulatory paradigm beyond the dominant LNT status quo. This commentary describes these novel methodologies, relevant biological responses, and how these can affect internal and regulatory risk assessment approaches. Environ. Mol. Mutagen. 61:84-93, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna Klapacz
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| | | |
Collapse
|
38
|
Vincent MJ, Kozal JS, Thompson WJ, Maier A, Dotson GS, Best EA, Mundt KA. Ethylene Oxide: Cancer Evidence Integration and Dose-Response Implications. Dose Response 2019; 17:1559325819888317. [PMID: 31853235 PMCID: PMC6906442 DOI: 10.1177/1559325819888317] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022] Open
Abstract
The International Agency for Research on Cancer (IARC) and the United States
Environmental Protection Agency (USEPA) classified ethylene oxide (EtO) as a
known human carcinogen. Critically, both noted that the epidemiological evidence
based on lymphoid and breast cancers was “limited,” but that the evidence in
animal studies was “sufficient” and “extensive” (respectively) and that EtO is
genotoxic. The USEPA derived one of the highest published inhalation unit risk
(IUR) values (3 × 10−3 per [µg/m3 EtO]), based on results
from 2 epidemiological studies. We performed focused reviews of the
epidemiological and toxicological evidence on the carcinogenicity of EtO and
considered the USEPA’s reliance on a genotoxic mode of action to establish EtO’s
carcinogenicity and to determine likely dose–response patterns. Higher quality
epidemiological studies demonstrated no increased risk of breast cancers or
lymphohematopoietic malignancies (LHM). Similarly, toxicological studies and
studies of early effect biomarkers in animals and humans provided no strong
indication that EtO causes LHM or mammary cancers. Ultimately, animal data are
inadequate to define the actual dose–response shape or predict tumor response at
very low doses with any confidence. We conclude that the IARC and USEPA
classification of EtO as a known human carcinogen overstates the underlying
evidence and that the IUR derived by USEPA grossly overestimates risk.
Collapse
|
39
|
Dekant W. Tetrahydrofuran-induced tumors in rodents are not relevant to humans: Quantitative weight of evidence analysis of mode of action information does not support classification of tetrahydrofuran as a possible human carcinogen. Regul Toxicol Pharmacol 2019; 109:104499. [DOI: 10.1016/j.yrtph.2019.104499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 02/05/2023]
|
40
|
Chappell GA, Borghoff SJ, Pham LL, Doepker CL, Wikoff DS. Lack of potential carcinogenicity for sucralose - Systematic evaluation and integration of mechanistic data into the totality of the evidence. Food Chem Toxicol 2019; 135:110898. [PMID: 31654706 DOI: 10.1016/j.fct.2019.110898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Sucralose is widely used as a sugar substitute. Many studies and authoritative reviews have concluded that sucralose is non-carcinogenic, based primarily on animal cancer bioassays and genotoxicity data. To add to the body of knowledge on the potential carcinogenicity of sucralose, a systematic assessment of mechanistic data was conducted. This entailed using a framework developed for the quantitative integration of data related to the proposed key characteristics of carcinogens (KCCs). Data from peer-reviewed literature and the ToxCast/Tox21 database were evaluated using an algorithm that weights data for quality and relevance. The resulting integration demonstrated an overall lack of activity for sucralose across the KCCs, with no "strong" activity observed for any KCC. Almost all data collected demonstrated inactivity, including those conducted in human models. The overall lack of activity in mechanistic data is consistent with findings from animal cancer bioassays. The few instances of activity across the KCC were generally accompanied by limitations in study design in the context of either quality and/or dose and model relevance, highlighted upon integration of the totality of the evidence. The findings from this comprehensive and integrative evaluation of mechanistic data support prior conclusions that sucralose is unlikely to be carcinogenic in humans.
Collapse
Affiliation(s)
| | | | - L L Pham
- ToxStrategies, Inc., Asheville, NC, USA
| | | | | |
Collapse
|
41
|
Perkins EJ, Ashauer R, Burgoon L, Conolly R, Landesmann B, Mackay C, Murphy CA, Pollesch N, Wheeler JR, Zupanic A, Scholz S. Building and Applying Quantitative Adverse Outcome Pathway Models for Chemical Hazard and Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1850-1865. [PMID: 31127958 PMCID: PMC6771761 DOI: 10.1002/etc.4505] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 05/21/2019] [Indexed: 05/20/2023]
Abstract
An important goal in toxicology is the development of new ways to increase the speed, accuracy, and applicability of chemical hazard and risk assessment approaches. A promising route is the integration of in vitro assays with biological pathway information. We examined how the adverse outcome pathway (AOP) framework can be used to develop pathway-based quantitative models useful for regulatory chemical safety assessment. By using AOPs as initial conceptual models and the AOP knowledge base as a source of data on key event relationships, different methods can be applied to develop computational quantitative AOP models (qAOPs) relevant for decision making. A qAOP model may not necessarily have the same structure as the AOP it is based on. Useful AOP modeling methods range from statistical, Bayesian networks, regression, and ordinary differential equations to individual-based models and should be chosen according to the questions being asked and the data available. We discuss the need for toxicokinetic models to provide linkages between exposure and qAOPs, to extrapolate from in vitro to in vivo, and to extrapolate across species. Finally, we identify best practices for modeling and model building and the necessity for transparent and comprehensive documentation to gain confidence in the use of qAOP models and ultimately their use in regulatory applications. Environ Toxicol Chem 2019;38:1850-1865. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Edward J. Perkins
- US Army Engineer Research and Development CenterVicksburgMississippiUSA
| | - Roman Ashauer
- Environment DepartmentUniversity of York, HeslingtonYorkUK
- ToxicodynamicsYorkUK
| | - Lyle Burgoon
- US Army Engineer Research and Development CenterVicksburgMississippiUSA
| | - Rory Conolly
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and DevelopmentUS Environmental Protection Agency, Research Triangle ParkNorth CarolinaUSA
| | | | - Cameron Mackay
- Unilever Safety and Environmental Assurance Centre, SharnbrookBedfordUK
| | - Cheryl A. Murphy
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichiganUSA
| | - Nathan Pollesch
- Mid‐Continent Ecology Division, National Health and Environmental Effects Laboratory, Office of Research and DevelopmentUS Environmental Protection AgencyDuluthMinnesotaUSA
| | | | - Anze Zupanic
- Department of Environmental ToxicologySwiss Federal Institute for Aquatic Science and TechnologyDübendorfSwitzerland
| | - Stefan Scholz
- Department of Bioanalytical EcotoxicologyHelmholtz Centre for Environmental Research‐UFZLeipzigGermany
| |
Collapse
|
42
|
Spinu N, Bal-Price A, Cronin MTD, Enoch SJ, Madden JC, Worth AP. Development and analysis of an adverse outcome pathway network for human neurotoxicity. Arch Toxicol 2019; 93:2759-2772. [DOI: 10.1007/s00204-019-02551-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022]
|
43
|
Banton MI, Bus JS, Collins JJ, Delzell E, Gelbke HP, Kester JE, Moore MM, Waites R, Sarang SS. Evaluation of potential health effects associated with occupational and environmental exposure to styrene - an update. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:1-130. [PMID: 31284836 DOI: 10.1080/10937404.2019.1633718] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential chronic health risks of occupational and environmental exposure to styrene were evaluated to update health hazard and exposure information developed since the Harvard Center for Risk Analysis risk assessment for styrene was performed in 2002. The updated hazard assessment of styrene's health effects indicates human cancers and ototoxicity remain potential concerns. However, mechanistic research on mouse lung tumors demonstrates these tumors are mouse-specific and of low relevance to human cancer risk. The updated toxicity database supports toxicity reference levels of 20 ppm (equates to 400 mg urinary metabolites mandelic acid + phenylglyoxylic acid/g creatinine) for worker inhalation exposure and 3.7 ppm and 2.5 mg/kg bw/day, respectively, for general population inhalation and oral exposure. No cancer risk value estimates are proposed given the established lack of relevance of mouse lung tumors and inconsistent epidemiology evidence. The updated exposure assessment supports inhalation and ingestion routes as important. The updated risk assessment found estimated risks within acceptable ranges for all age groups of the general population and workers with occupational exposures in non-fiber-reinforced polymer composites industries and fiber-reinforced polymer composites (FRP) workers using closed-mold operations or open-mold operations with respiratory protection. Only FRP workers using open-mold operations not using respiratory protection have risk exceedances for styrene and should be considered for risk management measures. In addition, given the reported interaction of styrene exposure with noise, noise reduction to sustain levels below 85 dB(A) needs be in place.
Collapse
Affiliation(s)
- M I Banton
- a Gorge View Consulting LLC , Hood River , OR , USA
| | - J S Bus
- b Health Sciences , Exponent , Midland , MI , USA
| | - J J Collins
- c Health Sciences , Saginaw Valley State University , Saginaw , MI , USA
| | - E Delzell
- d Private consultant , Birmingham , AL , USA
| | | | - J E Kester
- f Kester Consulting LLC , Wentzville , MO , USA
| | | | - R Waites
- h Sabic , Innovative Plastics US LLC , Mount Vernon , IN , USA
| | - S S Sarang
- i Shell Health , Shell International , Houston , TX , USA
| |
Collapse
|
44
|
Dailey J, Rosman L, Silbergeld EK. Evaluating biological plausibility in supporting evidence for action through systematic reviews in public health. Public Health 2018; 165:48-57. [PMID: 30368168 PMCID: PMC6289655 DOI: 10.1016/j.puhe.2018.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The objective of this research was to develop and test methods for accessing and evaluating information on the biological plausibility of observed associations between exposures or interventions and outcomes to generate scientific evidence for action consistent with practice in systematic reviews. STUDY DESIGN To undertake this research, we used the example of the observed associations between antimicrobial use in food animals and increased risks of human exposures to antimicrobial-resistant pathogens of zoonotic origin. METHODS We conducted a scoping search using terms related to biological plausibility or mechanism to identify key references. As recommended by these references, we also used expert consultation with researchers and a public health informationist. We used their recommendations, which included expert consultation, to identify mechanisms relevant to biological plausibility of the association we selected to test. We used the reviews conducted by the World Health Organization (WHO) Guidelines Development Group in support of reducing antimicrobial use in food animal production to populate our model for assessing biological plausibility. RESULTS We were able to develop a transparent model for biological plausibility based on the adverse outcome pathway used in toxicology and ecology. We were also able to populate this model using the WHO reviews. CONCLUSIONS This analysis of biological plausibility used transparent and validated methods to assess the evidence used in systematic reviews based on the observational studies accessed through searches of the scientific literature. Given the importance of this topic in systematic reviews and evidence-based decision-making, further research is needed to define and test the methodological approaches to access and properly evaluate information from the scientific literature.
Collapse
Affiliation(s)
- J Dailey
- Johns Hopkins University, Whiting School of Engineering, Department of Materials Science, USA.
| | - L Rosman
- Johns Hopkins University, Johns Hopkins School of Medicine, Welch Medical Library, USA.
| | - E K Silbergeld
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health and Engineering, USA.
| |
Collapse
|
45
|
Pecquet AM, Martinez JM, Vincent M, Erraguntla N, Dourson M. Derivation of a no-significant-risk-level for tetrabromobisphenol A based on a threshold non-mutagenic cancer mode of action. J Appl Toxicol 2018; 38:862-878. [PMID: 29441599 PMCID: PMC6099322 DOI: 10.1002/jat.3594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/16/2022]
Abstract
A no-significant-risk-level of 20 mg day-1 was derived for tetrabromobisphenol A (TBBPA). Uterine tumors (adenomas, adenocarcinomas, and malignant mixed Müllerian) observed in female Wistar Han rats from a National Toxicology Program 2-year cancer bioassay were identified as the critical effect. Studies suggest that TBBPA is acting through a non-mutagenic mode of action. Thus, the most appropriate approach to derivation of a cancer risk value based on US Environmental Protection Agency guidelines is a threshold approach, akin to a cancer safe dose (RfDcancer ). Using the National Toxicology Program data, we utilized Benchmark dose software to derive a benchmark dose lower limit (BMDL10 ) as the point of departure (POD) of 103 mg kg-1 day-1 . The POD was adjusted to a human equivalent dose of 25.6 mg kg-1 day-1 using allometric scaling. We applied a composite adjustment factor of 100 to the POD to derive an RfDcancer of 0.26 mg kg-1 day-1 . Based on a human body weight of 70 kg, the RfDcancer was adjusted to a no-significant-risk-level of 20 mg day-1 . This was compared to other available non-cancer and cancer risk values, and aligns well with our understanding of the underlying biology based on the toxicology data. Overall, the weight of evidence from animal studies indicates that TBBPA has low toxicity and suggests that high doses over long exposure durations are needed to induce uterine tumor formation. Future research needs include a thorough and detailed vetting of the proposed adverse outcome pathway, including further support for key events leading to uterine tumor formation and a quantitative weight of evidence analysis.
Collapse
Affiliation(s)
- Alison M. Pecquet
- Risk Science Center, Department of Environmental Health, College of MedicineUniversity of Cincinnati160 Panzeca WayCincinnatiOH45213USA
| | - Jeanelle M. Martinez
- Risk Science Center, Department of Environmental Health, College of MedicineUniversity of Cincinnati160 Panzeca WayCincinnatiOH45213USA
| | - Melissa Vincent
- Risk Science Center, Department of Environmental Health, College of MedicineUniversity of Cincinnati160 Panzeca WayCincinnatiOH45213USA
| | | | - Michael Dourson
- Risk Science Center, Department of Environmental Health, College of MedicineUniversity of Cincinnati160 Panzeca WayCincinnatiOH45213USA
| |
Collapse
|
46
|
Patlewicz G, Cronin MT, Helman G, Lambert JC, Lizarraga LE, Shah I. Navigating through the minefield of read-across frameworks: A commentary perspective. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.comtox.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Schaefer HR, Myers JL. Guidelines for performing systematic reviews in the development of toxicity factors. Regul Toxicol Pharmacol 2017; 91:124-141. [DOI: 10.1016/j.yrtph.2017.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 12/27/2022]
|
48
|
Dekant W, Bridges J, Scialli AR. A quantitative weight of evidence assessment of confidence in modes-of-action and their human relevance. Regul Toxicol Pharmacol 2017; 90:51-71. [DOI: 10.1016/j.yrtph.2017.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/01/2017] [Accepted: 08/19/2017] [Indexed: 11/27/2022]
|
49
|
Framework for the quantitative weight-of-evidence analysis of 'omics data for regulatory purposes. Regul Toxicol Pharmacol 2017; 91 Suppl 1:S46-S60. [PMID: 29037774 DOI: 10.1016/j.yrtph.2017.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
A framework for the quantitative weight-of-evidence (QWoE) analysis of 'omics data for regulatory purposes is presented. The QWoE framework encompasses seven steps to evaluate 'omics data (also together with non-'omics data): (1) Hypothesis formulation, identification and weighting of lines of evidence (LoEs). LoEs conjoin different (types of) studies that are used to critically test the hypothesis. As an essential component of the QWoE framework, step 1 includes the development of templates for scoring sheets that predefine scoring criteria with scores of 0-4 to enable a quantitative determination of study quality and data relevance; (2) literature searches and categorisation of studies into the pre-defined LoEs; (3) and (4) quantitative assessment of study quality and data relevance using the respective pre-defined scoring sheets for each study; (5) evaluation of LoE-specific strength of evidence based upon the study quality and study relevance scores of the studies conjoined in the respective LoE; (6) integration of the strength of evidence from the individual LoEs to determine the overall strength of evidence; (7) characterisation of uncertainties and conclusion on the QWoE. To put the QWoE framework in practice, case studies are recommended to confirm the relevance of its different steps, or to adapt them as necessary.
Collapse
|
50
|
Becker RA, Dreier DA, Manibusan MK, Cox LAT, Simon TW, Bus JS. How well can carcinogenicity be predicted by high throughput "characteristics of carcinogens" mechanistic data? Regul Toxicol Pharmacol 2017; 90:185-196. [PMID: 28866267 DOI: 10.1016/j.yrtph.2017.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/16/2022]
Abstract
IARC has begun using ToxCast/Tox21 data in efforts to represent key characteristics of carcinogens to organize and weigh mechanistic evidence in cancer hazard determinations and this implicit inference approach also is being considered by USEPA. To determine how well ToxCast/Tox21 data can explicitly predict cancer hazard, this approach was evaluated with statistical analyses and machine learning prediction algorithms. Substances USEPA previously classified as having cancer hazard potential were designated as positives and substances not posing a carcinogenic hazard were designated as negatives. Then ToxCast/Tox21 data were analyzed both with and without adjusting for the cytotoxicity burst effect commonly observed in such assays. Using the same assignments as IARC of ToxCast/Tox21 assays to the seven key characteristics of carcinogens, the ability to predict cancer hazard for each key characteristic, alone or in combination, was found to be no better than chance. Hence, we have little scientific confidence in IARC's inference models derived from current ToxCast/Tox21 assays for key characteristics to predict cancer. This finding supports the need for a more rigorous mode-of-action pathway-based framework to organize, evaluate, and integrate mechanistic evidence with animal toxicity, epidemiological investigations, and knowledge of exposure and dosimetry to evaluate potential carcinogenic hazards and risks to humans.
Collapse
Affiliation(s)
- Richard A Becker
- American Chemistry Council, 700 Second St., NE, Washington DC 20002, USA.
| | - David A Dreier
- Center for Environmental & Human Toxicology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|