1
|
Herman RA, Zhang JXQ, Roper JM. Slow alignment of GMO allergenicity regulations with science on protein digestibility. GM CROPS & FOOD 2022; 13:126-130. [PMID: 35762305 PMCID: PMC9245576 DOI: 10.1080/21645698.2022.2093552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The current science on food allergy supports the dual allergen exposure hypothesis where sensitization to allergenic proteins is favored by dermal and inhalation exposure, and tolerization against allergy is favored by exposure in the gut. This hypothesis is bolstered by the epidemiological evidence showing that regions where children are exposed early in life to allergenic foods have lower rates of allergy. This led medical experts to replace the previous recommendation to exclude commonly allergenic foods from the diets of young children with the current recommendation that such foods be introduced to children early in life. Past beliefs that lowering gut exposure would reduce the likelihood that a protein would be allergenic led regulators and risk assessors to consider digestively stable proteins to be of greater allergenic risk. This resulted in international guidance and government regulations for newly expressed proteins in genetically engineered crops that aligned with this belief. Despite empirical results showing that allergens are no more digestively stable than non-allergens, and that gut exposure favors tolerization over sensitization, regulations have not come into alignment with the current science prompting developers to continue to engineer proteins for increased digestibility. In some rare cases, this could potentially increase sensitization risk.
Collapse
Affiliation(s)
- Rod A Herman
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, Indiana, USA
| | - John X Q Zhang
- Regulatory and Stewardship, Corteva Agriscience, Johnston, Iowa, USA
| | - Jason M Roper
- Regulatory and Stewardship, Corteva Agriscience, Newark Delaware, USA
| |
Collapse
|
2
|
Herman RA, Zhang JXQ. Simulated gastric fluid assay for estimating the digestibility of newly expressed proteins in GE crops: Missteps in development and interpretation. Food Chem Toxicol 2022; 169:113436. [PMID: 36165819 DOI: 10.1016/j.fct.2022.113436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
Digestive stability of a food protein in simulated gastric fluid (SGF) continues to be considered a risk factor for allergy, even though the current science does not support this belief. Methodological shortcomings of the adaption of the SGF assay for use with purified proteins has been cited as a reason to discount results that do not conform to this belief. Missteps in conducting and interpreting the results of SGF assays are reviewed here. However, these methodological shortcomings do not invalidate the conclusion that allergenic proteins are not systematically more stable to digestion than non-allergens. The growing evidence for the dual allergen exposure hypothesis, whereby sensitization to food allergens is primarily caused by dermal and inhalation exposure to food dust, and tolerization against food allergy is primarily induced by gut exposure in food, likely explains why the digestive stability of a protein is not a risk factor for allergenicity.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, Regulatory and Stewardship, Indianapolis, IN, 46268, USA.
| | - John X Q Zhang
- Corteva Agriscience, Regulatory and Stewardship, Johnston, IA, USA
| |
Collapse
|
3
|
Herman RA, Roper JM. Erroneous Belief that Digestive Stability Predicts Allergenicity May Lead to Greater Risk for Novel Food Proteins. Front Bioeng Biotechnol 2021; 9:747490. [PMID: 34604192 PMCID: PMC8484781 DOI: 10.3389/fbioe.2021.747490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
There continues to be an erroneous belief that allergens (especially food allergens) are more resistant to gastrointestinal digestion than non-allergens. Government regulations based on this erroneous belief may result in technology developers altering the amino acid sequences of digestively stable native proteins to create digestively unstable modified versions for expression in genetically engineered crops. However, an investigation where a known stable allergen was modified to make it more digestible eliminated the protein’s ability to tolerize against allergy in a mouse model, which is consistent with the dual allergen exposure hypothesis. Thus, the false belief that digestive stability increases the allergenic risk of novel food proteins (e.g., such as expressed in genetically engineered crops) could, in some cases, lead to introduction of digestively unstable modified protein versions with greater sensitization risk. However, it is noteworthy that developers have historically been very effective at preventing allergens from being introduced into crops based on the other components of the weight-of-evidence assessment of allergenic risk such that no newly expressed protein in any commercialized genetically engineered crop has ever been documented to cause allergy in anyone.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, Indianapolis, IN, United States
| | | |
Collapse
|
4
|
Herman RA, Bauman PA, Goodwin L, Islamovic E, Ma EH, Serrano H, Silvanovich A, Simmons AR, Song P, Tetteh AO, Wang R. Mass spectrometric analysis of digesta does not improve the allergenicity assessment of GM crops. Transgenic Res 2021; 30:283-288. [PMID: 33864193 PMCID: PMC8169501 DOI: 10.1007/s11248-021-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 11/23/2022]
Abstract
An investigation of the potential allergenicity of newly expressed proteins in genetically modified (GM) crops comprises part of the assessment of GM crop safety. However, allergenicity is not completely predictable from a definitive assay result or set of protein characteristics, and scientific opinions regarding the data that should be used to assess allergenicity are continuously evolving. Early studies supported a correlation between the stability of a protein exposed to digestive enzymes such as pepsin and the protein’s status as a potential allergen, but over time the conclusions of these earlier studies were not confirmed. Nonetheless, many regulatory authorities, including the European Food Safety Authority (EFSA), continue to require digestibility analyses as a component of GM crop risk assessments. Moreover, EFSA has recently investigated the use of mass spectrometry (MS), to make digestion assays more predictive of allergy risk, because it can detect and identify small undigested peptides. However, the utility of MS is questionable in this context, since known allergenic peptides are unlikely to exist in protein candidates intended for commercial development. These protein candidates are pre-screened by the same bioinformatics processes that are normally used to identify MS targets. Therefore, MS is not a standalone allergen identification method and also cannot be used to predict previously unknown allergenic epitopes. Thus, the suggested application of MS for analysis of digesta does not improve the poor predictive power of digestion assays in identifying allergenic risk.
Collapse
Affiliation(s)
| | | | | | | | - Eric H Ma
- Syngenta Crop Protection, LLC., Research Triangle Park, NC, USA
| | | | | | | | - Ping Song
- Corteva Agriscience, Indianapolis, IN, USA
| | | | - Rong Wang
- Bayer, Crop Science Division, Chesterfield, MO, USA
| |
Collapse
|
5
|
Herman RA, Hou Z, Mirsky H, Nelson ME, Mathesius CA, Roper JM. History of safe exposure and bioinformatic assessment of phosphomannose-isomerase (PMI) for allergenic risk. Transgenic Res 2021; 30:201-206. [PMID: 33761048 PMCID: PMC8026442 DOI: 10.1007/s11248-021-00243-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022]
Abstract
Newly expressed proteins in genetically engineered crops are evaluated for potential cross reactivity to known allergens as part of their safety assessment. This assessment uses a weight-of-evidence approach. Two key components of this allergenicity assessment include any history of safe human exposure to the protein and/or the source organism from which it was originally derived, and bioinformatic analysis identifying amino acid sequence relatedness to known allergens. Phosphomannose-isomerase (PMI) has been expressed in commercialized genetically engineered (GE) crops as a selectable marker since 2010 with no known reports of allergy, which supports a history of safe exposure, and GE events expressing the PMI protein have been approved globally based on expert safety analysis. Bioinformatic analyses identified an eight-amino-acid contiguous match between PMI and a frog parvalbumin allergen (CAC83047.1). While short amino acid matches have been shown to be a poor predictor of allergen cross reactivity, most regulatory bodies require such matches be assessed in support of the allergenicity risk assessment. Here, this match is shown to be of negligible risk of conferring cross reactivity with known allergens.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 47968, USA.
| | - Zhenglin Hou
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Henry Mirsky
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Mark E Nelson
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | | | - Jason M Roper
- Corteva Agriscience, P.O. Box 30, Newark, DE, 19714, USA
| |
Collapse
|
6
|
EFSA Panel on Genetically Modified Organisms (GMO), Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Dumont AF. Statement on in vitro protein digestibility tests in allergenicity and protein safety assessment of genetically modified plants. EFSA J 2021; 19:e06350. [PMID: 33473251 PMCID: PMC7801955 DOI: 10.2903/j.efsa.2021.6350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This statement supplements and updates the GMO Panel guidance document on allergenicity of genetically modified (GM) plants published in 2017. In that guidance document, the GMO Panel considered that additional investigations on in vitro protein digestibility were needed before providing any additional recommendations in the form of guidance to applicants. Thus, an interim phase was proposed to assess the utility of an enhanced in vitro digestion test, as compared to the classical pepsin resistance test. Historically, resistance to degradation by pepsin using the classical pepsin resistance test has been considered as additional information, in a weight-of-evidence approach, for the assessment of allergenicity and toxicity of newly expressed proteins in GM plants. However, more recent evidence does not support this test as a good predictor of allergenic potential for hazard. Furthermore, there is a need for more reliable systems to predict the fate of the proteins in the gastrointestinal tract and how they interact with the relevant human cells. Nevertheless, the classical pepsin resistance test can still provide some information on the physicochemical properties of novel proteins relating to their stability under acidic conditions. But other methods can be used to obtain data on protein's structural and/or functional integrity. It is acknowledged that the classical pepsin resistance test is embedded into international guidelines, e.g. Codex Alimentarius and Regulation (EU) No 503/2013. For future development, a deeper understanding of protein digestion in the gastrointestinal tract could enable the framing of more robust strategies for the safety assessment of proteins. Given the high complexity of the digestion and absorption process of dietary proteins, it is needed to clarify and identify the aspects that could be relevant to assess potential risks of allergenicity and toxicity of proteins. To this end, a series of research questions to be addressed are also formulated in this statement.
Collapse
|
7
|
Wang R, Wang Y, Edrington TC, Liu Z, Lee TC, Silvanovich A, Moon HS, Liu ZL, Li B. Presence of small resistant peptides from new in vitro digestion assays detected by liquid chromatography tandem mass spectrometry: An implication of allergenicity prediction of novel proteins? PLoS One 2020; 15:e0233745. [PMID: 32542029 PMCID: PMC7295189 DOI: 10.1371/journal.pone.0233745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
The susceptibility of newly expressed proteins to digestion by gastrointestinal proteases (e.g., pepsin) has long been regarded as one of the important endpoints in the weight-of-evidence (WOE) approach to assess the allergenic risk of genetically modified (GM) crops. The European Food Safety Authority (EFSA) has suggested that current digestion study protocols used for this assessment should be modified to more accurately reflect the diverse physiological conditions encountered in human populations and that the post-digestion analysis should include analytical methods to detect small peptide digestion products.The susceptibility of two allergens (beta-lactoglobin (β-Lg) and alpha-lactalbumin (α-La)) and two non-allergens (hemoglobin (Hb) and phosphofructokinase (PFK)) to proteolytic degradation was investigated under two pepsin digestion conditions (optimal pepsin digestion condition: pH 1.2, 10 U pepsin/μg test protein; sub-optimal pepsin digestion condition: pH 5.0, 1 U pepsin/10 mg test protein), followed by 34.5 U trypsin/mg test protein and 0.4 U chymotrypsin/mg test protein digestion in the absence or presence of bile salts. All samples were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in conjunction with Coomassie Blue staining and, in parallel, liquid chromatography tandem mass spectrometry (LC-MS) detection. The results provide following insights: 1) LC-MS methodology does provide the detection of small peptides; 2) Peptides are detected in both allergens and non-allergens from all digestion conditions; 3) No clear differences among the peptides detected from allergen and non-allergens; 4) The differences observed in SDS-PAGE between the optimal and sub-optimal pepsin digestion conditions are expected and align with kinetics and properties of the specific enzymes; 5) The new methodology with new digestion conditions and LC-MS detection does not provide any differentiating information for prediction whether a protein is an allergen. The classic pepsin resistance assay remains the most useful assessment of the potential exposure of an intact newly expressed protein as part of product safety assessment within a WOE approach.
Collapse
Affiliation(s)
- Rong Wang
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | - Yanfei Wang
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | | | - Zhenjiu Liu
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | - Thomas C. Lee
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | | | - Hong S. Moon
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | - Zi L. Liu
- Bayer CropScience, Chesterfield, Missouri, United States of America
| | - Bin Li
- Bayer CropScience, Chesterfield, Missouri, United States of America
| |
Collapse
|
8
|
Herman RA, Roper JM, Zhang JXQ. Evidence runs contrary to digestive stability predicting protein allergenicity. Transgenic Res 2020; 29:105-107. [PMID: 31741205 PMCID: PMC7000492 DOI: 10.1007/s11248-019-00182-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
A dogma has persisted for over two decades that food allergens are more stable to digestion compared with non-allergenic proteins. This belief has become enshrined in regulations designed to assess the allergenic risk of novel food proteins. While the empirical evidence accumulated over the last 20+ years has largely failed to confirm a correlation between digestive stability and the allergenic status of proteins, even those who accept this finding often assert that this shortfall is the result of faulty assay design rather than lack of causality. Here, we outline why digestive stability may not in fact correlate with allergenic potential.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva™ Agriscience, 9330 Zionsville Road, Indianapolis, IN, 47968, USA.
| | - Jason M Roper
- Corteva™ Agriscience, P.O. Box 30, Newark, DE, 19714, USA
| | - John X Q Zhang
- Corteva™ Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| |
Collapse
|
9
|
Abstract
Bioinformatic amino acid sequence searches are used, in part, to assess the potential allergenic risk of newly expressed proteins in genetically engineered crops. Previous work has demonstrated that the searches required by government regulatory agencies falsely implicate many proteins from rarely allergenic crops as an allergenic risk. However, many proteins are found in crops at concentrations that may be insufficient to cause allergy. Here we used a recently developed set of high-abundance non-allergenic proteins to determine the false-positive rates for several algorithms required by regulatory bodies, and also for an alternative 1:1 FASTA approach previously found to be equally sensitive to the official sliding-window method, but far more selective. The current investigation confirms these earlier findings while addressing dietary exposure.
Collapse
Affiliation(s)
- Rod A Herman
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, IN, USA
| | - Ping Song
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, IN, USA
| |
Collapse
|
10
|
Di Stasio L, Tranquet O, Picariello G, Ferranti P, Morisset M, Denery-Papini S, Mamone G. Comparative analysis of eliciting capacity of raw and roasted peanuts: the role of gastrointestinal digestion. Food Res Int 2020; 127:108758. [DOI: 10.1016/j.foodres.2019.108758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/06/2023]
|
11
|
Krutz NL, Winget J, Ryan CA, Wimalasena R, Maurer-Stroh S, Dearman RJ, Kimber I, Gerberick GF. Proteomic and Bioinformatic Analyses for the Identification of Proteins With Low Allergenic Potential for Hazard Assessment. Toxicol Sci 2019; 170:210-222. [DOI: 10.1093/toxsci/kfz078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Nora L Krutz
- NV Procter & Gamble Services Company SA, Strombeek-Bever, Belgium
| | | | | | | | - Sebastian Maurer-Stroh
- Department of Biological Sciences, Bioinformatics Institute, Agency for Science, Technology and Research, National University of Singapore,Singapore
| | - Rebecca J Dearman
- The Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ian Kimber
- The Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - G Frank Gerberick
- The Procter & Gamble Company, Mason, Ohio
- GF3 Consultancy LLC, West Chester, OH
| |
Collapse
|
12
|
Herman RA, Zhuang M, Storer NP, Cnudde F, Delaney B. Risk-Only Assessment of Genetically Engineered Crops Is Risky. TRENDS IN PLANT SCIENCE 2019; 24:58-68. [PMID: 30385102 DOI: 10.1016/j.tplants.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
The risks of not considering benefits in risk assessment are often overlooked. Risks are also often evaluated without consideration of the broader context. We discuss these two concepts in relation to genetically engineered (GE) crops. The health, environmental, and economic risks and benefits of GE crops are exemplified and presented in the context of modern agriculture. Misattribution of unique risks to GE crops are discussed. It is concluded that the scale of modern agriculture is its distinguishing characteristic and that the greater knowledge around GE crops allows for a more thorough characterization of risk. By considering the benefits and risks in the context of modern agriculture, society will be better served and benefits will be less likely to be forgone.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience™, Agriculture Division of DowDuPont TM, 9330 Zionsville Road, Indianapolis, IN 46268, USA.
| | - Meibao Zhuang
- Corteva Agriscience™, Agriculture Division of DowDuPont TM, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Nicholas P Storer
- Corteva Agriscience™, Agriculture Division of DowDuPont TM, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Filip Cnudde
- Corteva Agriscience™, Agriculture Division of DowDuPont TM, Avenue des Arts 44 1040, Brussels, Belgium
| | - Bryan Delaney
- Corteva Agriscience™, Agriculture Division of DowDuPont TM, 7100 NW 62nd Avenue, Johnston, IA, 50131, USA
| |
Collapse
|