1
|
Stellatelli OA, Bonavita MI, Victorel C, Gómez Alés R, Moreno Azócar DL, Block C, Cruz FB. Thermo-physiological changes and reproductive investment in a liolaemid lizard at the extreme of the slow-fast continuum. J Exp Biol 2024; 227:jeb247506. [PMID: 38826150 DOI: 10.1242/jeb.247506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Gravid female lizards often experience reduced thermal preferences and impaired locomotor performance. These changes have been attributed to the physical burden of the clutch, but some authors have suggested that they may be due to physiological adjustments. We compared the thermal biology and locomotor performance of the lizard Liolaemus wiegmannii 1 week before and 1 week after oviposition. We found that gravid females had a thermal preference 1°C lower than that of non-gravid females. This was accompanied by a change in the thermal dependence of maximum running speed. The thermal optimum for locomotor performance was 2.6°C lower before oviposition than after. At relatively low temperatures (22 and 26°C), running speeds of females before oviposition were up to 31% higher than for females after oviposition. However, at temperatures above 26°C, females achieved similar maximum running speeds (∼1.5 m s-1) regardless of reproductive stage. The magnitude of the changes in thermal parameters and locomotor performance of L. wiegmannii females was independent of relative clutch mass (clutches weighed up to 89% of post-oviposition body mass). This suggests that the changes are not simply due to the clutch mass, but are also due to physiological adjustments. Liolaemus wiegmannii females simultaneously adjusted their own physiology in a short period in order to improve locomotor performance and allocated energy for embryonic development during late gravid stage. Our findings have implications for understanding the mechanisms underlying life histories of lizards on the fast extreme of the slow-fast continuum, where physiological exhaustion could play an important role.
Collapse
Affiliation(s)
- Oscar A Stellatelli
- Grupo Vertebrados, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, B7602AYJ Mar del Plata, Buenos Aires, Argentina
| | - Mauro I Bonavita
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y ́ Técnicas - Universidad Nacional del Comahue, 8400 San Carlos de Bariloche, Río Negro, Argentina
| | - Candela Victorel
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y ́ Técnicas - Universidad Nacional del Comahue, 8400 San Carlos de Bariloche, Río Negro, Argentina
| | - Rodrigo Gómez Alés
- Gabinete Diversidad y Biología de Vertebrados del Árido (DIBIOVA), Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, J5402DCS San Juan, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico CONICET San Juan, J5400ARL San Juan, San Juan, Argentina
| | - Débora L Moreno Azócar
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y ́ Técnicas - Universidad Nacional del Comahue, 8400 San Carlos de Bariloche, Río Negro, Argentina
| | - Carolina Block
- Grupo Vertebrados, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, B7602AYJ Mar del Plata, Buenos Aires, Argentina
| | - Félix B Cruz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y ́ Técnicas - Universidad Nacional del Comahue, 8400 San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
2
|
Britton S, Davidowitz G. The adaptive role of melanin plasticity in thermally variable environments. J Evol Biol 2023; 36:1811-1821. [PMID: 37916691 DOI: 10.1111/jeb.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
Understanding the evolution of adaptive plasticity is fundamental to our knowledge of how organisms interact with their environments and cope with environmental change. Plasticity in melanin pigmentation is common in response to variable environments, especially thermal environments. Yet, the adaptive significance of melanin plasticity in thermally variable environments is often assumed, but rarely explicitly tested. Furthermore, understanding the role of plasticity when a trait is responsive to multiple environmental stimuli and plays many functional roles remains poorly understood. We test the hypothesis that melanin plasticity is an adaptation for thermally variable environments using Hyles lineata, the white-lined sphinx moth, which shows plasticity in melanin pigmentation during the larval stage. Melanin pigmentation influences thermal traits in H. lineata, as melanic individuals had higher heating rates and reached higher body temperatures than non-melanic individuals. Importantly, melanin pigmentation has temperature specific fitness consequences. While melanic individuals had an advantage in cold temperatures, neither phenotype had a clear fitness advantage at warm temperatures. Thus, the costs associated with melanin production may be unrelated to thermal context. Our results highlight the importance of explicitly testing the adaptive role of plasticity and considering all the factors that influence costs and benefits of plastic phenotypes across environments.
Collapse
Affiliation(s)
- Sarah Britton
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Goggy Davidowitz
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Entomology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Matthews G, Farquhar JE, White CR, Chapple DG. Does thermal biology differ between two colour pattern morphs of a widespread Australian lizard? J Therm Biol 2023; 114:103579. [PMID: 37344018 DOI: 10.1016/j.jtherbio.2023.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/23/2023]
Abstract
Alternative phenotypes allow individuals to pursue different adaptive pathways in response to the same selective challenge. Colour polymorphic species with geographically varying morph frequencies may reflect multiple adaptations to spatial variables such as temperature and climate. We examined whether thermal biology differed between colour morphs of an Australian lizard, the delicate skink, Lampropholis delicata. The delicate skink has two colour pattern morphs, with frequencies varying across latitude and sex: plain (darker, more common at temperate latitudes, more common in males) or striped (lighter, more common at lower latitudes, more common in females). We tested heating and cooling rate, sprint speed, thermal preference, field body temperature and metabolic rate in both morphs and sexes to determine any link between colour and morph frequency distribution. Plain individuals heated more quickly, but other thermal traits showed little variation among morphs. Lampropholis delicata colour influences rates of heat exchange, but the relationship does not appear to be adaptive, suggesting that behavioural thermoregulation homogenises body temperature in the field. While we find no substantial evidence of thermal differences between the two colour morphs, morph-specific behaviour may buffer against differences in heat exchange. Latitudinal variation in species colour may be driven by selection pressures other than temperature.
Collapse
Affiliation(s)
- Genevieve Matthews
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jules E Farquhar
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia; Centre for Geometric Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
4
|
Malik HR, Bertolesi GE, McFarlane S. TRPM8 thermosensation in poikilotherms mediates both skin colour and locomotor performance responses to cold temperature. Commun Biol 2023; 6:127. [PMID: 36721039 PMCID: PMC9889708 DOI: 10.1038/s42003-023-04489-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
Thermoregulation is a homeostatic process to maintain an organism's internal temperature within a physiological range compatible with life. In poikilotherms, body temperature fluctuates with that of the environment, with both physiological and behavioral responses employed to modify body temperature. Changing skin colour/reflectance and locomotor activity are both well-recognized temperature regulatory mechanisms, but little is known of the participating thermosensor/s. We find that Xenopus laevis tadpoles put in the cold exhibit a temperature-dependent, systemic, and rapid melanosome aggregation in melanophores, which lightens the skin. Cooling also induces a reduction in the locomotor performance. To identify the cold-sensor, we focus on transient receptor potential (trp) channel genes from a Trpm family. mRNAs for several Trpms are present in Xenopus tails, and Trpm8 protein is present in skin melanophores. Temperature-induced melanosome aggregation is mimicked by the Trpm8 agonist menthol (WS12) and blocked by a Trpm8 antagonist. The degree of skin lightening induced by cooling is correlated with locomotor performance, and both responses are rapidly regulated in a dose-dependent and correlated manner by the WS12 Trpm8 agonist. We propose that TRPM8 serves as a cool thermosensor in poikilotherms that helps coordinate skin lightening and behavioural locomotor performance as adaptive thermoregulatory responses to cold.
Collapse
Affiliation(s)
- Hannan R. Malik
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Gabriel E. Bertolesi
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Sarah McFarlane
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| |
Collapse
|
5
|
González-Morales JC, Rivera-Rea J, Moreno-Rueda G, Bastiaans E, Castro-López M, Fajardo V. Fast and dark: The case of Mezquite lizards at extreme altitude. J Therm Biol 2021; 102:103115. [PMID: 34863479 DOI: 10.1016/j.jtherbio.2021.103115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/17/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Sprint speed is a major performance trait in animal fitness involved in escaping from predators, obtaining food, and defending territory. Biotic and abiotic factors may influence sprint speed in lizards. Temperature decreases at higher altitude. Therefore, lizards at high elevations may require longer basking times to reach optimal body temperatures, increasing their vulnerability to predation and decreasing their time for other activities such as foraging or reproduction. Here, we tested whether the maximum sprint speed of a lizard that shows conservative thermal ecology varied along an altitudinal gradient comprising low (2500 m), middle (3400 m) and high-altitude (4300 m) populations. We also tested whether sprint speed was related to dorsal reflectance at different ecologically relevant temperatures. Given that the lizard Sceloporus grammicus shows conservative thermal ecology with altitude, we expected that overall average sprint speed would not vary with altitude. However, given that darker lizards heat up quicker, we expected that darker lizards would be faster than lighter lizards. Our results suggest that S. grammicus at high altitude are faster and darker at 30 °C, while lizards from low and middle altitude are faster and lighter in color at 20 °C than high altitude lizards. Also, our results suggest a positive relationship between sprint speed and dorsal skin reflectance at 10 and 20 °C. Sprint speed was also affected by snout-vent length, leg length, and leg thickness at 10 °C. These results suggest that, even though predation pressure is lower at extreme altitudes, other factors such as vegetation cover or foraging mode have influenced sprint speed.
Collapse
Affiliation(s)
- Juan Carlos González-Morales
- Posgrado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Km 1.5 Carretera Tlaxcala-Puebla S/N, AP 262, Tlaxcala, Mexico; Instituto para la Conservación de la Cordillera Neovolcánica ante al Cambio Climático, Lago Atitlán No. 502B, Colonia Nueva Oxtotitlán, Toluca, Estado de México, C.P. 50100, México
| | - Jimena Rivera-Rea
- Instituto para la Conservación de la Cordillera Neovolcánica ante al Cambio Climático, Lago Atitlán No. 502B, Colonia Nueva Oxtotitlán, Toluca, Estado de México, C.P. 50100, México; Posgrado en Ciencias Agropecuarias y Recursos Naturales, Universidad Autónoma del Estado de México, México, Instituto Literario No. 100, Colonia Centro, Toluca, Estado de México, C.P. 50000, Mexico
| | - Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva S/N, E-18071, Granada, Spain
| | - Elizabeth Bastiaans
- Biology Department, State University of New York College at Oneonta, 108 Ravine Parkway, Oneonta, NY, 13820, USA
| | - Meily Castro-López
- Universidad del Istmo, Campus Juchitán, Carretera Transísmica Juchitán-La ventosa Km. 14, La ventosa, Oaxaca, AP 70102, México
| | - Víctor Fajardo
- Instituto para la Conservación de la Cordillera Neovolcánica ante al Cambio Climático, Lago Atitlán No. 502B, Colonia Nueva Oxtotitlán, Toluca, Estado de México, C.P. 50100, México.
| |
Collapse
|
6
|
Correspondence between thermal biology and locomotor performance in a liolaemid lizard from the southeastern coastal Pampas of Argentina. J Therm Biol 2021; 105:103173. [DOI: 10.1016/j.jtherbio.2021.103173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
|
7
|
Stellatelli OA, Vega LE, Block C, Rocca C, Bellagamba P, Dajil JE, Cruz FB. Latitudinal pattern of the thermal sensitivity of running speed in the endemic lizard Liolaemus multimaculatus. Integr Zool 2021; 17:619-637. [PMID: 34496145 DOI: 10.1111/1749-4877.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Physiological performance in lizards may be affected by climate across latitudinal or altitudinal gradients. In the coastal dune barriers in central-eastern Argentina, the annual maximum environmental temperature decreases up to 2°C from low to high latitudes, while the mean relative humidity of the air decreases from 50% to 25%. Liolaemus multimaculatus, a lizard in the family Liolaemidae, is restricted to these coastal dunes. We investigated the locomotor performance of the species at 6 different sites distributed throughout its range in these dune barriers. We inquired whether locomotor performance metrics were sensitive to the thermal regime attributable to latitude. The thermal performance breadth increased from 7% to 82% with latitude, due to a decrease in its critical thermal minimum of up to 5°C at higher latitudes. Lizards from high latitude sites showed a thermal optimum, that is, the body temperature at which maximum speed is achieved, up to 4°C lower than that of lizards from the low latitude. At relatively low temperatures, the maximum running speed of high-latitude individuals was faster than that of low-latitude ones. Thermal parameters of locomotor performance were labile, decreasing as a function of latitude. These results show populations of L. multimaculatus adjust thermal physiology to cope with local climatic variations. This suggests that thermal sensitivity responds to the magnitude of latitudinal fluctuations in environmental temperature.
Collapse
Affiliation(s)
- Oscar Aníbal Stellatelli
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Laura E Vega
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Carolina Block
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Camila Rocca
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | | | - Juan Esteban Dajil
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Félix Benjamín Cruz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue - CONICET, San Carlos de Bariloche, Argentina
| |
Collapse
|
8
|
Ibargüengoytía NR, Medina M, Laspiur A, Qu YF, Peralta CAR, Sinervo B, Miles DB. Looking at the past to infer into the future: Thermal traits track environmental change in Liolaemidae. Evolution 2021; 75:2348-2370. [PMID: 33939188 DOI: 10.1111/evo.14246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Abstract
The diversity of habitats generated by the Andes uplift resulted a mosaic of heterogeneous environments in South America for species to evolve a variety of ecological and physiological specializations. Species in the lizard family Liolaemidae occupy a myriad of habitats in the Andes. Here, we analyze the tempo and mode of evolution in the thermal biology of liolaemids. We assessed whether there is evidence of local adaptation (lability) or conservatism (stasis) in thermal traits. We tested the hypothesis that abiotic factors (e.g., geography, climate) rather than intrinsic factors (egg-laying [oviparous] or live-bearing [viviparous], substrate affinity) explain variation in field active body temperature (Tb ), preferred temperature (Tp ), hours of restriction of activity, and potential hours of activity. Although most traits exhibited high phylogenetic signal, we found variation in thermal biology was shaped by geography, climate, and ecological diversity. Ancestral character reconstruction showed shifts in Tb tracked environmental change in the past ∼20,000 years. Thermal preference is 3°C higher than Tb , yet exhibited a lower rate of evolution than Tb and air temperature. Viviparous Liolaemus have lower Tb s than oviparous species, whereas Tp is high for both modes of reproduction, a key difference that results in a thermal buffer for viviparous species to cope with global warming. The rapid increase in environmental temperatures expected in the next 50-80 years in combination with anthropogenic loss of habitats are projected to cause extirpations and extinctions in oviparous species.
Collapse
Affiliation(s)
- Nora Ruth Ibargüengoytía
- Ecophysiology and Life History of Reptiles: Research Laboratory. Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas (INIBIOMA, CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche, Río Negro, Argentina
| | - Marlin Medina
- CIEMEP, CONICET. Universidad Nacional de la Patagonia San Juan Bosco sede Esquel, Esquel, Chubut, Argentina
| | - Alejandro Laspiur
- Ecophysiology and Life History of Reptiles: Research Laboratory. Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas (INIBIOMA, CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche, Río Negro, Argentina
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | | | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, Coastal Sciences Building, 130, McAllister Way, University of California, Santa Cruz, CA, 95065, USA.,Deceased
| | - Donald B Miles
- Department of Biological Sciences, 131 Life Sciences Building, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|