1
|
Patil N, Howe O, Cahill P, Byrne HJ. Monitoring and modelling the dynamics of the cellular glycolysis pathway: A review and future perspectives. Mol Metab 2022; 66:101635. [PMID: 36379354 PMCID: PMC9703637 DOI: 10.1016/j.molmet.2022.101635] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The dynamics of the cellular glycolysis pathway underpin cellular function and dysfunction, and therefore ultimately health, disease, diagnostic and therapeutic strategies. Evolving our understanding of this fundamental process and its dynamics remains critical. SCOPE OF REVIEW This paper reviews the medical relevance of glycolytic pathway in depth and explores the current state of the art for monitoring and modelling the dynamics of the process. The future perspectives of label free, vibrational microspectroscopic techniques to overcome the limitations of the current approaches are considered. MAJOR CONCLUSIONS Vibrational microspectroscopic techniques can potentially operate in the niche area of limitations of other omics technologies for non-destructive, real-time, in vivo label-free monitoring of glycolysis dynamics at a cellular and subcellular level.
Collapse
Affiliation(s)
- Nitin Patil
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland; School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Orla Howe
- School of Biological and Health Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
2
|
Koley S, Chu KL, Gill SS, Allen DK. An efficient LC-MS method for isomer separation and detection of sugars, phosphorylated sugars, and organic acids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2938-2952. [PMID: 35560196 DOI: 10.1093/jxb/erac062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
Assessing central carbon metabolism in plants can be challenging due to the dynamic range in pool sizes, with low levels of important phosphorylated sugars relative to more abundant sugars and organic acids. Here, we report a sensitive liquid chromatography-mass spectrometry method for analysing central metabolites on a hybrid column, where both anion-exchange and hydrophilic interaction chromatography (HILIC) ligands are embedded in the stationary phase. The liquid chromatography method was developed for enhanced selectivity of 27 central metabolites in a single run with sensitivity at femtomole levels observed for most phosphorylated sugars. The method resolved phosphorylated hexose, pentose, and triose isomers that are otherwise challenging. Compared with a standard HILIC approach, these metabolites had improved peak areas using our approach due to ion enhancement or low ion suppression in the biological sample matrix. The approach was applied to investigate metabolism in high lipid-producing tobacco leaves that exhibited increased levels of acetyl-CoA, a precursor for oil biosynthesis. The application of the method to isotopologue detection and quantification was considered through evaluating 13C-labeled seeds from Camelina sativa. The method provides a means to analyse intermediates more comprehensively in central metabolism of plant tissues.
Collapse
Affiliation(s)
- Somnath Koley
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Kevin L Chu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Saba S Gill
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| |
Collapse
|
3
|
Bigard A, Cardinael P, Agasse V. Anion Exchange Chromatography Coupled to Electrospray-Mass Spectrometry: An Efficient Tool for Food, Environment, and Biological Analysis. Crit Rev Anal Chem 2022; 53:1591-1603. [PMID: 35147465 DOI: 10.1080/10408347.2022.2036942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
For over 50 years, ion chromatography has been demonstrated to be a successful technique used to quantify a wide range of ions and ionizable compounds, either organic or inorganic, in various matrices using conductimetric or electrochemical detection. It was only since 1996 that ion chromatography was coupled to electrospray-mass spectrometry, opening the field to new applications in complex matrices and the detection of compounds at trace levels. This review covers the recent developments of ion exchange chromatography and mass spectrometry. It focuses on the choice of mobile phases, column geometry, suppressors, make-up solvents and type of ionization sources reported in the literature. A brief overview of a large range of applications in food analysis, environmental analysis and bioanalysis is presented, and performances are discussed.
Collapse
Affiliation(s)
- Adeline Bigard
- Normandie Univ, Laboratoire SMS-EA3233, FR3038 INC3M, UNIROUEN, Mont-Saint-Aignan, France
| | - Pascal Cardinael
- Normandie Univ, Laboratoire SMS-EA3233, FR3038 INC3M, UNIROUEN, Mont-Saint-Aignan, France
| | - Valérie Agasse
- Normandie Univ, Laboratoire SMS-EA3233, FR3038 INC3M, UNIROUEN, Mont-Saint-Aignan, France
| |
Collapse
|
4
|
Fast Sampling of the Cellular Metabolome. Methods Mol Biol 2021. [PMID: 34718989 DOI: 10.1007/978-1-0716-1585-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Obtaining meaningful snapshots of the metabolome of microorganisms requires rapid sampling and immediate quenching of all metabolic activity, to prevent any changes in metabolite levels after sampling. Furthermore, a suitable extraction method is required ensuring complete extraction of metabolites from the cells and inactivation of enzymatic activity, with minimal degradation of labile compounds. Finally, a sensitive, high-throughput analysis platform is needed to quantify a large number of metabolites in a small amount of sample. An issue which has often been overlooked in microbial metabolomics is the fact that many intracellular metabolites are also present in significant amounts outside the cells and may interfere with the quantification of the endo metabolome. Attempts to remove the extracellular metabolites with dedicated quenching methods often induce release of intracellular metabolites into the quenching solution. For eukaryotic microorganisms, this release can be minimized by adaptation of the quenching method. For prokaryotic cells, this has not yet been accomplished, so the application of a differential method whereby metabolites are measured in the culture supernatant as well as in total broth samples, to calculate the intracellular levels by subtraction, seems to be the most suitable approach. Here we present an overview of different sampling, quenching, and extraction methods developed for microbial metabolomics, described in the literature. Detailed protocols are provided for rapid sampling, quenching, and extraction, for measurement of metabolites in total broth samples, washed cell samples, and supernatant, to be applied for quantitative metabolomics of both eukaryotic and prokaryotic microorganisms.
Collapse
|
5
|
Analytical Platforms for Mass Spectrometry-Based Metabolomics of Polar and Ionizable Metabolites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:215-242. [PMID: 34628634 DOI: 10.1007/978-3-030-77252-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Metabolomics studies rely on the availability of suitable analytical platforms to determine a vast collection of chemically diverse metabolites in complex biospecimens. Liquid chromatography-mass spectrometry operated under reversed-phase conditions is the most commonly used platform in metabolomics, which offers extensive coverage for nonpolar and moderately polar compounds. However, complementary techniques are required to obtain adequate separation of polar and ionic metabolites, which are involved in several fundamental metabolic pathways. This chapter focuses on the main mass-spectrometry-based analytical platforms used to determine polar and/or ionizable compounds in metabolomics (GC-MS, HILIC-MS, CE-MS, IPC-MS, and IC-MS). Rather than comprehensively describing recent applications related to GC-MS, HILIC-MS, and CE-MS, which have been covered in a regular basis in the literature, a brief discussion focused on basic principles, main strengths, limitations, as well as future trends is presented in this chapter, and only key applications with the purpose of illustrating important analytical aspects of each platform are highlighted. On the other hand, due to the relative novelty of IPC-MS and IC-MS in the metabolomics field, a thorough compilation of applications for these two techniques is presented here.
Collapse
|
6
|
Gajula SNR, Nadimpalli N, Sonti R. Drug metabolic stability in early drug discovery to develop potential lead compounds. Drug Metab Rev 2021; 53:459-477. [PMID: 34406889 DOI: 10.1080/03602532.2021.1970178] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of the metabolic stability of a new drug substance eliminated by biotransformation is essential for envisaging the pharmacokinetic parameters required for deciding drug dosing and frequency. Strategies aimed at modifying lead compounds may improve metabolic stability, thereby reducing the drug dosing frequency. Replacement of selective hydrogens with deuterium can effectively enhance the drug's metabolic stability by increasing the biological half-life. Further, cyclization, change in ring size, and chirality can substantially improve the metabolic stability of drugs. The microsomal t1/2 approach for measuring drug in vitro intrinsic clearance by automated LC-MS/MS offers sensitive high-throughput screens with reliable data. The obtained in vitro intrinsic clearance from metabolic stability data helps predict the drug's in vivo total clearance using different scaling factors and hepatic clearance models. This review summarizes all the recent approaches and technological advancements in metabolic stability studies for narrowing down the potential lead compounds in drug discovery. Further, we summarized the potential pitfalls and assumptions made during the in vivo intrinsic clearance estimation from in vitro intrinsic clearance.
Collapse
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nimisha Nadimpalli
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
7
|
Liu Y, Esen O, Pronk JT, van Gulik WM. Uncoupling growth and succinic acid production in an industrial Saccharomyces cerevisiae strain. Biotechnol Bioeng 2021; 118:1576-1586. [PMID: 33410171 PMCID: PMC8048565 DOI: 10.1002/bit.27672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
This study explores the relation between biomass‐specific succinic acid (SA) production rate and specific growth rate of an engineered industrial strain of Saccharomyces cerevisiae, with the aim to investigate the extent to which growth and product formation can be uncoupled. Ammonium‐limited aerobic chemostat and retentostat cultures were grown at different specific growth rates under industrially relevant conditions, that is, at a culture pH of 3 and with sparging of a 1:1 CO2–air mixture. Biomass‐specific SA production rates decreased asymptotically with decreasing growth rate. At near‐zero growth rates, the engineered strain maintained a stable biomass‐specific SA production rate for over 500 h, with a SA yield on glucose of 0.61 mol mol−1. These results demonstrate that uncoupling of growth and SA production could indeed be achieved. A linear relation between the biomass‐specific SA production rate and glucose consumption rate indicated the coupling of SA production rate and the flux through primary metabolism. The low culture pH resulted in an increased death rate, which was lowest at near‐zero growth rates. Nevertheless, a significant amount of non‐viable biomass accumulated in the retentostat cultures, thus underlining the importance of improving low‐pH tolerance in further strain development for industrial SA production with S. cerevisiae.
Collapse
Affiliation(s)
- Yaya Liu
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Osman Esen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Walter M van Gulik
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
8
|
Gelain L, Geraldo da Cruz Pradella J, Carvalho da Costa A, van der Wielen L, van Gulik WM. A possible influence of extracellular polysaccharides on the analysis of intracellular metabolites from Trichoderma harzianum grown under carbon-limited conditions. Fungal Biol 2020; 125:368-377. [PMID: 33910678 DOI: 10.1016/j.funbio.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/30/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022]
Abstract
Intracellular metabolites were evaluated during the continuous growth of Trichoderma harzianum P49P11 under carbon-limited conditions. Four different conditions in duplicate were investigated (10 and 20 g/L of glucose, 5.26/5.26 g/L of fructose/glucose and 10 g/L of sucrose in the feed). Differences in the values of some specific concentrations of intracellular metabolites were observed at steady-state for the duplicates. The presence of extracellular polysaccharide was confirmed in the supernatant of all conditions based on FT-IR and proton NMR. Fragments of polysaccharides from the cell wall could be released due to the shear stress and since the cells can consume them under carbon-limited conditions, this could create an unpredictable carbon flow rate into the cells. According to the values of the metabolite concentrations, it was considered that the consumption of those fragments was interfering with the analysis.
Collapse
Affiliation(s)
- Lucas Gelain
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629HZ, Delft, the Netherlands; University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Campinas, Brazil.
| | - José Geraldo da Cruz Pradella
- Federal University of São Paulo, Institute of Science and Technology, Av. Cesare Mansueto Giulio Lattes, 1201, S. J. Campos, Brazil
| | - Aline Carvalho da Costa
- University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Campinas, Brazil
| | - Luuk van der Wielen
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629HZ, Delft, the Netherlands; University of Limerick, Bernal Institute, V94 T9PX, Limerick, Ireland
| | - Walter M van Gulik
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629HZ, Delft, the Netherlands
| |
Collapse
|
9
|
Sailwal M, Das AJ, Gazara RK, Dasgupta D, Bhaskar T, Hazra S, Ghosh D. Connecting the dots: Advances in modern metabolomics and its application in yeast system. Biotechnol Adv 2020; 44:107616. [DOI: 10.1016/j.biotechadv.2020.107616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
|
10
|
Analysis of the proteins secreted by Trichoderma harzianum P49P11 under carbon-limited conditions. J Proteomics 2020; 227:103922. [DOI: 10.1016/j.jprot.2020.103922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
|
11
|
Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates. Appl Environ Microbiol 2019; 85:AEM.01161-19. [PMID: 31375494 DOI: 10.1128/aem.01161-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/27/2019] [Indexed: 01/07/2023] Open
Abstract
So far, the physiology of Saccharomyces cerevisiae at near-zero growth rates has been studied in retentostat cultures with a growth-limiting supply of the carbon and energy source. Despite its relevance in nature and industry, the near-zero growth physiology of S. cerevisiae under conditions where growth is limited by the supply of non-energy substrates remains largely unexplored. This study analyzes the physiology of S. cerevisiae in aerobic chemostat and retentostat cultures grown under either ammonium or phosphate limitation. To compensate for loss of extracellular nitrogen- or phosphorus-containing compounds, establishing near-zero growth rates (μ < 0.002 h-1) in these retentostats required addition of low concentrations of ammonium or phosphate to reservoir media. In chemostats as well as in retentostats, strongly reduced cellular contents of the growth-limiting element (nitrogen or phosphorus) and high accumulation levels of storage carbohydrates were observed. Even at near-zero growth rates, culture viability in non-energy-limited retentostats remained above 80% and ATP synthesis was still sufficient to maintain an adequate energy status and keep cells in a metabolically active state. Compared to similar glucose-limited retentostat cultures, the nitrogen- and phosphate-limited cultures showed aerobic fermentation and a partial uncoupling of catabolism and anabolism. The possibility to achieve stable, near-zero growth cultures of S. cerevisiae under nitrogen or phosphorus limitation offers interesting prospects for high-yield production of bio-based chemicals.IMPORTANCE The yeast Saccharomyces cerevisiae is a commonly used microbial host for production of various biochemical compounds. From a physiological perspective, biosynthesis of these compounds competes with biomass formation in terms of carbon and/or energy equivalents. Fermentation processes functioning at extremely low or near-zero growth rates would prevent loss of feedstock to biomass production. Establishing S. cerevisiae cultures in which growth is restricted by the limited supply of a non-energy substrate therefore could have a wide range of industrial applications but remains largely unexplored. In this work we accomplished near-zero growth of S. cerevisiae through limited supply of a non-energy nutrient, namely, the nitrogen or phosphorus source, and carried out a quantitative physiological study of the cells under these conditions. The possibility to achieve near-zero-growth S. cerevisiae cultures through limited supply of a non-energy nutrient may offer interesting prospects to develop novel fermentation processes for high-yield production of bio-based chemicals.
Collapse
|
12
|
Liu X, Wang T, Sun X, Wang Z, Tian X, Zhuang Y, Chu J. Optimized sampling protocol for mass spectrometry-based metabolomics in Streptomyces. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0269-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
In quantitative metabolomics studies, the most crucial step was arresting snapshots of all interesting metabolites. However, the procedure customized for Streptomyces was so rare that most studies consulted the procedure from other bacteria even yeast, leading to inaccurate and unreliable metabolomics analysis. In this study, a base solution (acetone: ethanol = 1:1, mol/mol) was added to a quenching solution to keep the integrity of the cell membrane. Based on the molar transition energy (ET) of the organic solvents, five solutions were used to carry out the quenching procedures. These were acetone, isoamylol, propanol, methanol, and 60% (v/v) methanol. To the best of our knowledge, this is the first report which has utilized a quenching solution with ET values. Three procedures were also adopted for extraction. These were boiling, freezing–thawing, and grinding ethanol. Following the analysis of the mass balance, amino acids, organic acids, phosphate sugars, and sugar alcohols were measured using gas chromatography with an isotope dilution mass spectrometry. It was found that using isoamylol with a base solution (5:1, v/v) as a quenching solution and that freezing–thawing in liquid nitrogen within 50% (v/v) methanol as an extracting procedure were the best pairing for the quantitative metabolomics of Streptomyces ZYJ-6, and resulted in average recoveries of close to 100%. The concentration of intracellular metabolites obtained from this new quenching solution was between two and ten times higher than that from 60% (v/v) methanol, which until now has been the most commonly used solution. Our findings are the first systematic quantitative metabolomics tools for Streptomyces ZYJ-6 and, therefore, will be important references for research in fields such as 13C based metabolic flux analysis, multi-omic research and genome-scale metabolic model establishment, as well as for other Streptomyces.
Collapse
|
13
|
Fabino Carr A, Patel DC, Lopez D, Armstrong DW, Ryzhov V. Comparison of reversed-phase, anion-exchange, and hydrophilic interaction HPLC for the analysis of nucleotides involved in biological enzymatic pathways. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1587622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Allison Fabino Carr
- Department of Chemistry and Biochemistry, Northern Illinois University, Dekalb, IL, USA
| | - Darshan C. Patel
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
- Process Research & Development, AbbVie Inc, North Chicago, IL, USA
| | - Diego Lopez
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
- AZYP LLC, Arlington, TX, USA
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, Dekalb, IL, USA
| |
Collapse
|
14
|
Patacq C, Chaudet N, Létisse F. Absolute Quantification of ppGpp and pppGpp by Double-Spike Isotope Dilution Ion Chromatography-High-Resolution Mass Spectrometry. Anal Chem 2018; 90:10715-10723. [PMID: 30110552 DOI: 10.1021/acs.analchem.8b00829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) play a central role in the adaptation of bacterial and plant cells to nutritional and environmental stresses and in bacterial resistance to antibiotics. These compounds have historically been detected and quantified by two-dimensional thin-layer chromatography of 32P-radiolabeled nucleotides. We report a new method to quantify ppGpp and pppGpp in complex biochemical matrix using ion chromatography coupled to high-resolution mass spectrometry. The method is based on isotopic dilution mass spectrometry (IDMS) using 13C to accurately quantify the nucleotides. However, the loss of a phosphate group from pppGpp during the sample preparation process results in the erroneous quantification of ppGpp. This bias was corrected by adding an extra 15N isotope dilution dimension. This double-spike IDMS method was applied to quantify the ppGpp and pppGpp in Escherichia coli and in a mutant strain deleted for gppA (encoding the ppGpp phosphohydrolase) before and after exposure of both strains to serine hydroxamate, known to trigger the accumulation of these nucleotides.
Collapse
Affiliation(s)
- Clément Patacq
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse , CNRS, INRA, INSA, 31077 Toulouse , France.,Département de Bioprocédés R&D , Sanofi Pasteur , 69280 Marcy-L'Etoile , France
| | - Nicolas Chaudet
- Département de Bioprocédés R&D , Sanofi Pasteur , 69280 Marcy-L'Etoile , France
| | - Fabien Létisse
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse , CNRS, INRA, INSA, 31077 Toulouse , France.,Université Paul Sabatier, Université de Toulouse , 31330 Toulouse , France
| |
Collapse
|
15
|
Optimization of the quenching and extraction procedures for a metabolomic analysis of Lactobacillus plantarum. Anal Biochem 2018; 557:62-68. [DOI: 10.1016/j.ab.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
|
16
|
Schwaiger M, Rampler E, Hermann G, Miklos W, Berger W, Koellensperger G. Anion-Exchange Chromatography Coupled to High-Resolution Mass Spectrometry: A Powerful Tool for Merging Targeted and Non-targeted Metabolomics. Anal Chem 2017; 89:7667-7674. [PMID: 28581703 DOI: 10.1021/acs.analchem.7b01624] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, simultaneous targeted metabolic profiling by isotope dilution and non-targeted fingerprinting is proposed for cancer cell studies. The novel streamlined metabolomics workflow was established using anion-exchange chromatography (IC) coupled to high-resolution mass spectrometry (MS). The separation time of strong anion-exchange (2 mm column, flow rate 380 μL min-1, injection volume 5 μL) could be decreased to 25 min for a target list comprising organic acids, sugars, sugar phosphates, and nucleotides. Internal standardization by fully 13C labeled Pichia pastoris extracts enabled absolute quantification of the primary metabolites in adherent cancer cell models. Limits of detection (LODs) in the low nanomolar range and excellent intermediate precisions of the isotopologue ratios (on average <5%, N = 5, over 40 h) were observed. As a result of internal standardization, linear dynamic ranges over 4 orders of magnitude (5 nM-50 μM, R2 > 0.99) were obtained. Experiments on drug-sensitive versus resistant SW480 cancer cells showed the feasibility of merging analytical tasks into one analytical run. Comparing fingerprinting with and without internal standard proved that the presence of the 13C labeled yeast extract required for absolute quantification was not detrimental to non-targeted data evaluation. Several interesting metabolites were discovered by accurate mass and comparing MS2 spectra (acquired in ddMS2 mode) with spectral libraries. Significant differences revealed distinct metabolic phenotypes of drug-sensitive and resistant SW480 cells.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Waehringer Strasse 38, 1090 Vienna, Austria
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Waehringer Strasse 38, 1090 Vienna, Austria
| | - Gerrit Hermann
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Waehringer Strasse 38, 1090 Vienna, Austria.,ISOtopic Solutions , Waehringerstrasse 38, 1090 Vienna, Austria
| | - Walter Miklos
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna , Borschkegasse 8a, 1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna , Borschkegasse 8a, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Waehringer Strasse 38, 1090 Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
17
|
Wahl SA, Bernal Martinez C, Zhao Z, van Gulik WM, Jansen MLA. Intracellular product recycling in high succinic acid producing yeast at low pH. Microb Cell Fact 2017; 16:90. [PMID: 28535757 PMCID: PMC5442661 DOI: 10.1186/s12934-017-0702-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metabolic engineering of Saccharomyces cerevisiae for the production of succinic acid has progressed dramatically, and a series of high-producing hosts are available. At low cultivation pH and high titers, the product transport can become bidirectional, i.e. the acid is reentering the cell and is again exported or even catabolized. Here, a quantitative approach for the identification of product recycling fluxes is developed. RESULTS The metabolic flux distributions at two time-points of the fermentation process were analyzed. 13C labeled succinic acid was added to the extracellular space and intracellular enrichments were measured and subsequently used for the estimation of metabolic fluxes. The labeling was introduced by a labeling switch experiment, leading to an immediate labeling of about 85% of the acid while keeping the total acid concentration constant. Within 100 s significant labeling enrichment of the TCA cycle intermediates fumarate, iso-citrate and α-ketoglutarate was observed, while no labeling was detected for malate and citrate. These findings suggest that succinic acid is rapidly exchanged over the cellular membrane and enters the oxidative TCA cycle. Remarkably, in the oxidative direction malate 13C enrichment was not detected, indicating that there is no flux going through this metabolite pool. Using flux modeling and thermodynamic assumptions on compartmentation it was concluded that malate must be predominantly cytosolic while fumarate and iso-citrate were more dominant in the mitochondria. CONCLUSIONS Adding labeled product without changing the extracellular environment allowed to quantify intracellular metabolic fluxes under high producing conditions and identify product degradation cycles. In the specific case of succinic acid production, compartmentation was found to play a major role, i.e. the presence of metabolic activity in two different cellular compartments lead to intracellular product degradation reducing the yield. We also observed that the flux from glucose to succinic acid branches at two points in metabolism: (1) At the level of pyruvate, and (2) at cytosolic malate which was not expected.
Collapse
Affiliation(s)
- S Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Cristina Bernal Martinez
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Applikon Biotechnology B.V., Heertjeslaan 2, 2629 JG, Delft, The Netherlands
| | - Zheng Zhao
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Walter M van Gulik
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Mickel L A Jansen
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| |
Collapse
|
18
|
Ntushelo K. Effect of Salicylic Acid on the Growth and Chemical Responses of Pectobacterium carotovorum subsp. carotovorum. Pak J Biol Sci 2017; 20:278-288. [PMID: 29023052 DOI: 10.3923/pjbs.2017.278.288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Salicylic acid is a signal molecule which activates plant defense against plant pathogens such as the soft rot enterobacterium Pectobacterium carotovorum subsp. carotovorum. The objectives of study were to determine bactericidal effects of salicylic acid on the growth of P. carotovorum subsp. carotovorum and secondly, assess chemical responses of P. carotovorum subsp. carotovorum to salicylic acid. MATERIALS AND METHODS Pectobacterium carotovorum subsp. carotovorum was grown in lysogeny broth amended with salicylic acid at concentrations of 0, 100, 200, 400, 800 and 1200 mg L-1. The P. carotovorum subsp. carotovorum cultures were incubated at 25°C and sampled at two time points, 0 h (sampled before incubation) and 24 h. Bacterial counts were done at the onset of the incubation (0 h) and after the 24 h incubation. The set which was incubated for 24 h was split into two, one subset was centrifuged and the other was not. From the centrifuged subset the supernatant was recovered and was, together with all the other samples (0 and 24 h not centrifuged), analyzed with1H nuclear magnetic resonance and gas chromatography. RESULTS Bacterial counts done before and after incubation showed that the lower concentrations of salicylic acid, 0, 100, 200 and 400 mg L-1, supported the growth of P. carotovorum subsp. carotovorum whereas the higher concentrations of 800 and 1200 mg L-1 inhibited the growth of the bacterium completely. Nuclear magnetic resonance results showed either slight or no differences in the metabolite profiles and gas chromatography showed different responses without a clearly defined pattern among the experimental treatments. However, methanethiol was detected by both nuclear magnetic resonance and gas chromatography in all the treatments and was probably formed as a result of the breakdown of lysogeny broth. CONCLUSION From the results obtained it was concluded that salicylic acid promotes the growth of P. carotovorum subsp. carotovorum at lower concentrations of 0-400 mg L-1 but higher concentrations of salicylic acid of 800 and 1200 mg L-1 inhibit bacterial growth. All the tested salicylic acid concentrations (0-1200 mg L-1) cause only slight chemical shifts in the bacterial culture. Methanethiol was detected in all treatments and it is probably formed from the breakdown of lysogeny broth.
Collapse
Affiliation(s)
- Khayalethu Ntushelo
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Corner Christian De Wet and Pioneer Avenue, Private Bag X6, 1710 Florida, South Africa
| |
Collapse
|
19
|
Hoekstra AS, de Graaff MA, Briaire-de Bruijn IH, Ras C, Seifar RM, van Minderhout I, Cornelisse CJ, Hogendoorn PCW, Breuning MH, Suijker J, Korpershoek E, Kunst HPM, Frizzell N, Devilee P, Bayley JP, Bovée JVMG. Inactivation of SDH and FH cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors. Oncotarget 2016; 6:38777-88. [PMID: 26472283 PMCID: PMC4770736 DOI: 10.18632/oncotarget.6091] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/26/2015] [Indexed: 12/27/2022] Open
Abstract
Succinate dehydrogenase (SDH) and fumarate hydratase (FH) are tricarboxylic acid (TCA) cycle enzymes and tumor suppressors. Loss-of-function mutations give rise to hereditary paragangliomas/pheochromocytomas and hereditary leiomyomatosis and renal cell carcinoma. Inactivation of SDH and FH results in an abnormal accumulation of their substrates succinate and fumarate, leading to inhibition of numerous α-ketoglutarate dependent dioxygenases, including histone demethylases and the ten-eleven-translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. To evaluate the distribution of DNA and histone methylation, we used immunohistochemistry to analyze the expression of 5mC, 5-hydroxymethylcytosine (5hmC), TET1, H3K4me3, H3K9me3, and H3K27me3 on tissue microarrays containing paragangliomas/pheochromocytomas (n = 134) and hereditary and sporadic smooth muscle tumors (n = 56) in comparison to their normal counterparts. Our results demonstrate distinct loss of 5hmC in tumor cells in SDH- and FH-deficient tumors. Loss of 5hmC in SDH-deficient tumors was associated with nuclear exclusion of TET1, a known regulator of 5hmC levels. Moreover, increased methylation of H3K9me3 occurred predominantly in the chief cell component of SDH mutant tumors, while no changes were seen in H3K4me3 and H3K27me3, data supported by in vitro knockdown of SDH genes. We also show for the first time that FH-deficient smooth muscle tumors exhibit increased H3K9me3 methylation compared to wildtype tumors. Our findings reveal broadly similar patterns of epigenetic deregulation in both FH- and SDH-deficient tumors, suggesting that defects in genes of the TCA cycle result in common mechanisms of inhibition of histone and DNA demethylases.
Collapse
Affiliation(s)
- Attje S Hoekstra
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke A de Graaff
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Cor Ras
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Reza Maleki Seifar
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Ivonne van Minderhout
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees J Cornelisse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martijn H Breuning
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johnny Suijker
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Esther Korpershoek
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henricus P M Kunst
- Department of Otorhinolaryngology, Head and Neck Surgery, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Pierre Bayley
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Kuang MC, Hutchins PD, Russell JD, Coon JJ, Hittinger CT. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network. eLife 2016; 5:e19027. [PMID: 27690225 PMCID: PMC5089864 DOI: 10.7554/elife.19027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/28/2016] [Indexed: 12/23/2022] Open
Abstract
The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of the GALactose sugar utilization network in two yeast species. We show that the Saccharomyces uvarum network is more active, even as over-induction is prevented by a second co-repressor that the model yeast Saccharomyces cerevisiae lacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. We further show that S. cerevisiae experiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. These results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation.
Collapse
Affiliation(s)
- Meihua Christina Kuang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
- JF Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Madison, United States
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
| | - Paul D Hutchins
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
| | - Jason D Russell
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
- Metabolism Research Group, Morgridge Institute for Research, Madison, United States
| | - Joshua J Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
- Metabolism Research Group, Morgridge Institute for Research, Madison, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
- JF Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Madison, United States
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
21
|
Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. MASS SPECTROMETRY REVIEWS 2016; 35:620-49. [PMID: 25589422 DOI: 10.1002/mas.21449] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 05/08/2023]
Abstract
Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.
Collapse
Affiliation(s)
- Tiago F Jorge
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade Nova de Lisboa (ITQB-UNL), Avenida República, 2780-157, Oeiras, Portugal
| | - João A Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Camila Caldana
- Max-Planck-partner group at the Brazilian Bioethanol Science and Technology Laboratory/CNPEM, 13083-970, Campinas-SP, Brazil
| | - Romy Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Jane Thomas-Oates
- Jane Thomas-Oates, Centre of Excellence in Mass Spectrometry, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade Nova de Lisboa (ITQB-UNL), Avenida República, 2780-157, Oeiras, Portugal
| |
Collapse
|
22
|
GUO ML, LIU XY, HUANG MZ, LI MC, CHU J, ZHUANG YP, ZHANG SL. 13C-assisted Ultra-High Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry Method for Precise Determination of Intracellular Metabolites in Pichia pastoris. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60906-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Kozak BU, van Rossum HM, Niemeijer MS, van Dijk M, Benjamin K, Wu L, Daran JMG, Pronk JT, van Maris AJA. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase. FEMS Yeast Res 2016; 16:fow006. [PMID: 26818854 PMCID: PMC5815134 DOI: 10.1093/femsyr/fow006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/25/2016] [Indexed: 11/17/2022] Open
Abstract
In Saccharomyces cerevisiae ethanol dissimilation is initiated by its oxidation and activation to cytosolic acetyl-CoA. The associated consumption of ATP strongly limits yields of biomass and acetyl-CoA-derived products. Here, we explore the implementation of an ATP-independent pathway for acetyl-CoA synthesis from ethanol that, in theory, enables biomass yield on ethanol that is up to 40% higher. To this end, all native yeast acetaldehyde dehydrogenases (ALDs) were replaced by heterologous acetylating acetaldehyde dehydrogenase (A-ALD). Engineered Ald− strains expressing different A-ALDs did not immediately grow on ethanol, but serial transfer in ethanol-grown batch cultures yielded growth rates of up to 70% of the wild-type value. Mutations in ACS1 were identified in all independently evolved strains and deletion of ACS1 enabled slow growth of non-evolved Ald− A-ALD strains on ethanol. Acquired mutations in A-ALD genes improved affinity—Vmax/Km for acetaldehyde. One of five evolved strains showed a significant 5% increase of its biomass yield in ethanol-limited chemostat cultures. Increased production of acetaldehyde and other by-products was identified as possible cause for lower than theoretically predicted biomass yields. This study proves that the native yeast pathway for conversion of ethanol to acetyl-CoA can be replaced by an engineered pathway with the potential to improve biomass and product yields. This manuscript investigates a metabolic engineering strategy to improve the use of ethanol as a feedstock for production of bio-based fuels and chemicals with yeast.
Collapse
Affiliation(s)
- Barbara U Kozak
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Harmen M van Rossum
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Matthijs S Niemeijer
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Marlous van Dijk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Kirsten Benjamin
- Amyris Inc, 5885 Hollis Street, Ste. 100, Emeryville, CA94608, USA
| | - Liang Wu
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| |
Collapse
|
24
|
Wang X, Yang F, Zhang Y, Xu G, Liu Y, Tian J, Gao P. Evaluation and optimization of sample preparation methods for metabolic profiling analysis of Escherichia coli. Electrophoresis 2015; 36:2140-2147. [DOI: 10.1002/elps.201400567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 01/13/2023]
Abstract
In this study, exemplified by Escherichia coli, a sample preparation method was developed and evaluated with more concerns on cell pellets washing, disruption, and metabolite extraction for global metabolite profiling analysis using GC‐MS. We found that loss of some intracellular metabolites occurred inevitably, no matter which washing strategy was used. But PBS washing resulted in the least leakage of intercellular metabolites among the six tested methods. In addition, bead‐beating showed better repeatability and high throughput than sonication for cell pellet disruption. Total six extraction solvents, including chloroform/methanol/water (2:0.21:0.79, v/v/v), methyl tert‐butyl ether/methanol/water (2:0.21:0.79), acetonitrile/methanol/water (2:2:1), water/isopropanol/methanol (3:2:5), pure methanol, and methanol/water (1:1), were evaluated for metabolite extraction efficiency. We demonstrated that the numbers of extracted metabolites were almost the same, but methyl tert‐butyl ether/methanol/water and chloroform/methanol/water could achieve the best recoveries in view of MS intensities. This study implies the necessity to evaluate the potential effects of serial sample preparation procedures prior to metabolomic analysis.
Collapse
Affiliation(s)
- Xiyue Wang
- Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian P. R. China
| | - Fengxu Yang
- School of Bioengineering Dalian Polytechnic University Dalian P. R. China
| | - Yuansheng Zhang
- School of Bioengineering Dalian Polytechnic University Dalian P. R. China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian P. R. China
| | - Yang Liu
- Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian P. R. China
| | - Jing Tian
- School of Bioengineering Dalian Polytechnic University Dalian P. R. China
| | - Peng Gao
- Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian P. R. China
| |
Collapse
|
25
|
Nishino S, Okahashi N, Matsuda F, Shimizu H. Absolute quantitation of glycolytic intermediates reveals thermodynamic shifts in Saccharomyces cerevisiae strains lacking PFK1 or ZWF1 genes. J Biosci Bioeng 2015; 120:280-6. [DOI: 10.1016/j.jbiosc.2015.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/18/2014] [Accepted: 01/09/2015] [Indexed: 10/23/2022]
|
26
|
Zhang J, Pierick AT, van Rossum HM, Maleki Seifar R, Ras C, Daran JM, Heijnen JJ, Aljoscha Wahl S. Determination of the Cytosolic NADPH/NADP Ratio in Saccharomyces cerevisiae using Shikimate Dehydrogenase as Sensor Reaction. Sci Rep 2015; 5:12846. [PMID: 26243542 PMCID: PMC4525286 DOI: 10.1038/srep12846] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/14/2015] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic metabolism is organised in complex networks of enzyme catalysed reactions which are distributed over different organelles. To quantify the compartmentalised reactions, quantitative measurements of relevant physiological variables in different compartments are needed, especially of cofactors. NADP(H) are critical components in cellular redox metabolism. Currently, available metabolite measurement methods allow whole cell measurements. Here a metabolite sensor based on a fast equilibrium reaction is introduced to monitor the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae: NADP + shikimate ⇄ NADPH + H(+) + dehydroshikimate. The cytosolic NADPH/NADP ratio was determined by measuring the shikimate and dehydroshikimate concentrations (by GC-MS/MS). The cytosolic NADPH/NADP ratio was determined under batch and chemostat (aerobic, glucose-limited, D = 0.1 h(-1)) conditions, to be 22.0 ± 2.6 and 15.6 ± 0.6, respectively. These ratios were much higher than the whole cell NADPH/NADP ratio (1.05 ± 0.08). In response to a glucose pulse, the cytosolic NADPH/NADP ratio first increased very rapidly and restored the steady state ratio after 3 minutes. In contrast to this dynamic observation, the whole cell NADPH/NADP ratio remained nearly constant. The novel cytosol NADPH/NADP measurements provide new insights into the thermodynamic driving forces for NADP(H)-dependent reactions, like amino acid synthesis, product pathways like fatty acid production or the mevalonate pathway.
Collapse
Affiliation(s)
- Jinrui Zhang
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - Angela ten Pierick
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - Harmen M. van Rossum
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - Reza Maleki Seifar
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - Cor Ras
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - Joseph J. Heijnen
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| | - S. Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Delft, 2628BC, The Netherlands
| |
Collapse
|
27
|
Solis-Escalante D, Kuijpers NGA, Barrajon-Simancas N, van den Broek M, Pronk JT, Daran JM, Daran-Lapujade P. A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism. EUKARYOTIC CELL 2015; 14:804-16. [PMID: 26071034 PMCID: PMC4519752 DOI: 10.1128/ec.00064-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/26/2015] [Indexed: 01/13/2023]
Abstract
As a result of ancestral whole-genome and small-scale duplication events, the genomes of Saccharomyces cerevisiae and many eukaryotes still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. cerevisiae's current lifestyle favoring fermentative metabolism even in the presence of oxygen and characterized by a high glycolytic capacity. In modern S. cerevisiae strains, the 12 glycolytic reactions leading to the biochemical conversion from glucose to ethanol are encoded by 27 paralogs. In order to experimentally explore the physiological role of this genetic redundancy, a yeast strain with a minimal set of 14 paralogs was constructed (the "minimal glycolysis" [MG] strain). Remarkably, a combination of a quantitative systems approach and semiquantitative analysis in a wide array of growth environments revealed the absence of a phenotypic response to the cumulative deletion of 13 glycolytic paralogs. This observation indicates that duplication of glycolytic genes is not a prerequisite for achieving the high glycolytic fluxes and fermentative capacities that are characteristic of S. cerevisiae and essential for many of its industrial applications and argues against gene dosage effects as a means of fixing minor glycolytic paralogs in the yeast genome. The MG strain was carefully designed and constructed to provide a robust prototrophic platform for quantitative studies and has been made available to the scientific community.
Collapse
Affiliation(s)
| | - Niels G A Kuijpers
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
28
|
Chen MM, Li AL, Sun MC, Feng Z, Meng XC, Wang Y. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus. J Zhejiang Univ Sci B 2015; 15:333-42. [PMID: 24711354 DOI: 10.1631/jzus.b1300149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage.
Collapse
Affiliation(s)
- Ming-ming Chen
- MOE Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; School of Public Health, Jilin Medical College, Jilin 132013, China
| | | | | | | | | | | |
Collapse
|
29
|
Rye PT, LaMarr WA. Measurement of glycolysis reactants by high-throughput solid phase extraction with tandem mass spectrometry: Characterization of pyrophosphate-dependent phosphofructokinase as a case study. Anal Biochem 2015; 482:40-7. [PMID: 25849585 DOI: 10.1016/j.ab.2015.03.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/26/2015] [Accepted: 03/28/2015] [Indexed: 01/28/2023]
Abstract
Glycolysis is a 10-step metabolic pathway involved in producing cellular energy. Many tumors exhibit accelerated glycolytic rates, and enzymes that participate in this pathway are focal points of cancer research. Here, a novel method for the measurement of glycolysis reactants from in vitro samples is presented. Fast and direct measurement is achieved by an automated system that couples on-line solid phase extraction (SPE) with tandem mass spectrometry (MS/MS). The single analytical method enables multiple reactants to be measured concurrently, sustains a cycle time of 8s, and permits the measurement of up to 10,000 samples per day. Concentration-response curves were conducted using standards for 10 metabolic intermediates, and the results demonstrate that the detection strategy has excellent sensitivity (average limit of detection = 5.4 nM), dynamic range (nanomolar to micromolar), and linear response (average R(2) = 0.998). To test the analysis method on reactions, pyrophosphate-dependent phosphofructokinase (PPi-PFK) was used as a model system. Data that corroborate the activation and inhibition of PPi-PFK are presented, and the ways in which SPE-MS/MS simplifies experimental design and interpretation are highlighted. In summary, the method for measuring metabolic intermediates described here demonstrates unprecedented speed, performance, and versatility.
Collapse
Affiliation(s)
- Peter T Rye
- Agilent Technologies, Wakefield, MA 01880, USA.
| | | |
Collapse
|
30
|
Nielsen KF, Larsen TO. The importance of mass spectrometric dereplication in fungal secondary metabolite analysis. Front Microbiol 2015; 6:71. [PMID: 25741325 PMCID: PMC4330896 DOI: 10.3389/fmicb.2015.00071] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/20/2015] [Indexed: 11/13/2022] Open
Abstract
Having entered the Genomic Era, it is now evident that the biosynthetic potential of filamentous fungi is much larger than was thought even a decade ago. Fungi harbor many cryptic gene clusters encoding for the biosynthesis of polyketides, non-ribosomal peptides, and terpenoids - which can all undergo extensive modifications by tailoring enzymes - thus potentially providing a large array of products from a single pathway. Elucidating the full chemical profile of a fungal species is a challenging exercise, even with elemental composition provided by high-resolution mass spectrometry (HRMS) used in combination with chemical databases (e.g., AntiBase) to dereplicate known compounds. This has led to a continuous effort to improve chromatographic separation in conjunction with improvement in HRMS detection. Major improvements have also occurred with 2D chromatography, ion-mobility, MS/MS and MS(3), stable isotope labeling feeding experiments, classic UV/Vis, and especially automated data-mining and metabolomics software approaches as the sheer amount of data generated is now the major challenge. This review will focus on the development and implementation of dereplication strategies and will highlight the importance of each stage of the process from sample preparation to chromatographic separation and finally toward both manual and more targeted methods for automated dereplication of fungal natural products using state-of-the art MS instrumentation.
Collapse
Affiliation(s)
- Kristian F Nielsen
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby Denmark
| | - Thomas O Larsen
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby Denmark
| |
Collapse
|
31
|
Zhang J, Sassen T, ten Pierick A, Ras C, Heijnen JJ, Wahl SA. A fast sensor for in vivo quantification of cytosolic phosphate in Saccharomyces cerevisiae. Biotechnol Bioeng 2015; 112:1033-46. [PMID: 25502731 DOI: 10.1002/bit.25516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 11/07/2022]
Abstract
Eukaryotic metabolism consists of a complex network of enzymatic reactions and transport processes which are distributed over different subcellular compartments. Currently, available metabolite measurement protocols allow to measure metabolite whole cell amounts which hinder progress to describe the in vivo dynamics in different compartments, which are driven by compartment specific concentrations. Phosphate (Pi) is an essential component for: (1) the metabolic balance of upper and lower glycolytic flux; (2) Together with ATP and ADP determines the phosphorylation energy. Especially, the cytosolic Pi has a critical role in disregulation of glycolysis in tps1 knockout. Here we developed a method that enables us to monitor the cytosolic Pi concentration in S. cerevisiae using an equilibrium sensor reaction: maltose + Pi < = > glucose + glucose-1-phosphate. The required enzyme, maltose phosphorylase from L. sanfranciscensis was overexpressed in S. cerevisiae. With this reaction in place, the cytosolic Pi concentration was obtained from intracellular glucose, G1P and maltose concentrations. The cytosolic Pi concentration was determined in batch and chemostat (D = 0.1 h(-1) ) conditions, which was 17.88 µmol/gDW and 25.02 µmol/gDW, respectively under Pi-excess conditions. Under Pi-limited steady state (D = 0.1 h(-1) ) conditions, the cytosolic Pi concentration dropped to only 17.7% of the cytosolic Pi in Pi-excess condition (4.42 µmol/gDW vs. 25.02 µmol/gDW). In response to a Pi pulse, the cytosolic Pi increased very rapidly, together with the concentration of sugar phosphates. Main sources of the rapid Pi increase are vacuolar Pi (and not the polyPi), as well as Pi uptake from the extracellular space. The temporal increase of cytosolic Pi increases the driving force of GAPDH reaction of the lower glycolytic reactions. The novel cytosol specific Pi concentration measurements provide new insight into the thermodynamic driving force for ATP hydrolysis, GAPDH reaction, and Pi transport over the plasma and vacuolar membranes.
Collapse
Affiliation(s)
- Jinrui Zhang
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, 2600 GA, Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Lameiras F, Heijnen JJ, van Gulik WM. Development of tools for quantitative intracellular metabolomics of Aspergillus niger chemostat cultures. Metabolomics 2015; 11:1253-1264. [PMID: 26366135 PMCID: PMC4559092 DOI: 10.1007/s11306-015-0781-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/27/2015] [Indexed: 11/25/2022]
Abstract
In view of the high citric acid production capacity of Aspergillus niger, it should be well suited as a cell factory for the production of other relevant acids as succinic, fumaric, itaconic and malic. Quantitative metabolomics is an important omics tool in a synthetic biology approach to develop A. niger for the production of these acids. Such studies require well defined and tightly controlled cultivation conditions and proper rapid sampling, sample processing and analysis methods. In this study we present the development of a chemostat for homogeneous steady state cultivation of A. niger, equipped with a new dedicated rapid sampling device. A quenching method for quantitative metabolomics in A. niger based on cold methanol was evaluated using balances and optimized with the aim of avoiding metabolite leakage during sample processing. The optimization was based on measurements of the intermediates of the glycolysis, TCA and PPP pathways and amino acids, using a balance approach. Leakage was found to be absent at -20 °C for a 40 % (v/v) methanol concentration in water. Under these conditions the average metabolite recovery was close to 100 %. When comparing A. niger and Penicillium chrysogenum metabolomes, under the same cultivation conditions, similar metabolite fingerprints were found in both fungi, except for the intracellular citrate level which is higher for A. niger.
Collapse
Affiliation(s)
- Francisca Lameiras
- Cell Systems Engineering Section, Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | - Joseph J. Heijnen
- Cell Systems Engineering Section, Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | - Walter M. van Gulik
- Cell Systems Engineering Section, Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| |
Collapse
|
33
|
Jung JY, Oh MK. Isotope labeling pattern study of central carbon metabolites using GC/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 974:101-8. [PMID: 25463204 DOI: 10.1016/j.jchromb.2014.10.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/17/2014] [Accepted: 10/26/2014] [Indexed: 12/31/2022]
Abstract
Determination of fluxes by (13)C tracer experiments depends on monitoring the (13)C labeling pattern of metabolites during isotope experiments. In metabolome-based (13)C metabolic flux analysis, liquid chromatography combined with mass spectrometry or tandem mass spectrometry (LC/MS or LC/MS/MS, respectively) has been mainly used as an analytical platform for isotope pattern studies of central carbon metabolites. However, gas chromatography with mass spectrometry (GC/MS) has several advantages over LC/MS, such as high sensitivity, low cost, ease of operation, and availability of mass spectra databases for comparison. In this study, analysis of isotope pattern for central carbon metabolites using GC/MS was demonstrated. First, a proper set of mass ions for central carbon metabolites was selected based on carbon backbone information and structural isomers of mass fragment ions. A total of 34 mass fragment ions was selected and used for the quantification of 25 central carbon metabolites. Then, to quantify isotope fractions, a natural mass isotopomer library for selected mass fragment ions was constructed and subtracted from isotopomer mass spectra data. The results revealed a surprisingly high abundance of partially labeled (13)C intermediates, such as 56.4% of fructose 6-phosphate and 47.6% of dihydroxyacetone phosphate at isotopic steady state, which were generated in the pentose phosphate pathway. Finally, dynamic changes of isotope fragments of central metabolites were monitored with a U-(13)C glucose stimulus response experiment in Kluyveromyces marxianus. With a comprehensive study of isotope patterns of central carbon metabolites using GC/MS, 25 central carbon metabolites and their isotopic fractions were successfully quantified. Dynamic and precise acquisition of isotope pattern can then be used in combination with proper kinetic models to calculate metabolic fluxes.
Collapse
Affiliation(s)
- Joon-Young Jung
- Systems Bioengineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul 136-701, Republic of Korea
| | - Min-Kyu Oh
- Systems Bioengineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
34
|
Assessment of capillary anion exchange ion chromatography tandem mass spectrometry for the quantitative profiling of the phosphometabolome and organic acids in biological extracts. J Chromatogr A 2014; 1370:70-9. [PMID: 25454131 DOI: 10.1016/j.chroma.2014.10.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/01/2014] [Accepted: 10/09/2014] [Indexed: 11/24/2022]
Abstract
Metabolic profiling has become an important tool in biological research, and the chromatographic separation of metabolites coupled with mass spectrometric detection is the most frequently used approach for such studies. The establishment of robust chromatographic methods for comprehensive coverage of the anionic metabolite pool is especially challenging. In this study, the development of a capillary ion exchange chromatography (capIC) - negative ESI tandem mass spectrometry (MS/MS) workflow for the quantitative profiling of the phosphometabolome (e.g., sugar phosphates and nucleotides) is presented. The chromatographic separation and MS/MS conditions were optimized, and the precision of repetitive injections and accuracy in terms of error percentage to true concentration were assessed. The precision is excellent for a capillary flow system with an average CV% of 8.5% for a 50-fmol standard injection and in the lower 2.4-4.4% range for higher concentrations (500-7,500 fmol). The limit of detection (LOD) ranges from 1 to 100 nM (5-500 fmol injected on column), and the limit of quantitation (LOQ) ranges from 1 to 500 nM (5-2,500 fmol injected on column). A fast gradient method with the injection of 50% methanol in water between analytical samples is needed to eliminate carry-over and ensure optimal re-equilibration of the column. Finally, the quantitative applicability of the system was tested on real biological matrices using the constant-volume standard addition method (SAM). Extracts of the human kidney Hek293 cell line were spiked with increasing concentrations of standards to determine the concentration of each metabolite in the sample. Forty-four metabolites were detected with an average uncertainty of 4.1%. Thus, the capIC-MS/MS method exhibits excellent selectivity, sensitivity and precision for the quantitative profiling of the phosphometabolome.
Collapse
|
35
|
Analysis of biologically-active, endogenous carboxylic acids based on chromatography-mass spectrometry. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Romagnoli G, Verhoeven MD, Mans R, Fleury Rey Y, Bel-Rhlid R, van den Broek M, Seifar RM, Ten Pierick A, Thompson M, Müller V, Wahl SA, Pronk JT, Daran JM. An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme. Mol Microbiol 2014; 93:369-89. [PMID: 24912400 PMCID: PMC4149782 DOI: 10.1111/mmi.12666] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2014] [Indexed: 11/26/2022]
Abstract
Most available knowledge on fungal arginine metabolism is derived from studies on Saccharomyces cerevisiae, in which arginine catabolism is initiated by releasing urea via the arginase reaction. Orthologues of the S. cerevisiae genes encoding the first three enzymes in the arginase pathway were cloned from Kluyveromyces lactis and shown to functionally complement the corresponding deletion in S. cerevisiae. Surprisingly, deletion of the single K. lactis arginase gene KlCAR1 did not completely abolish growth on arginine as nitrogen source. Growth rate of the deletion mutant strongly increased during serial transfer in shake-flask cultures. A combination of RNAseq-based transcriptome analysis and (13)C-(15)N-based flux analysis was used to elucidate the arginase-independent pathway. Isotopic (13)C(15)N-enrichment in γ-aminobutyrate revealed succinate as the entry point in the TCA cycle of the alternative pathway. Transcript analysis combined with enzyme activity measurements indicated increased expression in the Klcar1Δ mutant of a guanidinobutyrase (EC.3.5.3.7), a key enzyme in a new pathway for arginine degradation. Expression of the K. lactis KLLA0F27995g (renamed KlGBU1) encoding guanidinobutyrase enabled S. cerevisiae to use guanidinobutyrate as sole nitrogen source and its deletion in K. lactis almost completely abolish growth on this nitrogen source. Phylogenetic analysis suggests that this enzyme activity is widespread in fungi.
Collapse
Affiliation(s)
- G Romagnoli
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 4047, 2600 GA, Delft, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Romagnoli G, Knijnenburg TA, Liti G, Louis EJ, Pronk JT, Daran JM. Deletion of theSaccharomyces cerevisiae ARO8gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose. Yeast 2014; 32:29-45. [DOI: 10.1002/yea.3015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/18/2014] [Accepted: 04/04/2014] [Indexed: 11/11/2022] Open
Affiliation(s)
- Gabriele Romagnoli
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation; Delft The Netherlands
| | | | - Gianni Liti
- Centre for Genetics and Genomics, Queens Medical Centre; University of Nottingham; UK
- Institute for Research on Cancer and Ageing; CNRS UMR 7284-INSERM U 1081- UNS NICE; Nice France
| | - Edward J. Louis
- Centre for Genetics and Genomics, Queens Medical Centre; University of Nottingham; UK
- Centre for Genetic Architecture of Complex Traits, Department of Genetics; University of Leicester; UK
| | - Jack T. Pronk
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation; Delft The Netherlands
- Platform Green Synthetic Biology; Delft The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation; Delft The Netherlands
- Platform Green Synthetic Biology; Delft The Netherlands
| |
Collapse
|
38
|
Szoboszlai N, Guo X, Ozohanics O, Oláh J, Gömöry Á, Mihucz VG, Jeney A, Vékey K. Determination of energy metabolites in cancer cells by porous graphitic carbon liquid chromatography electrospray ionization mass spectrometry for the assessment of energy metabolism. Anal Chim Acta 2014; 819:108-15. [DOI: 10.1016/j.aca.2014.01.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 11/29/2022]
|
39
|
Liquid chromatography tandem mass spectrometry for measuring ¹³C-labeling in intermediates of the glycolysis and pentose phosphate pathway. Methods Mol Biol 2014; 1090:131-42. [PMID: 24222414 DOI: 10.1007/978-1-62703-688-7_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This chapter describes a procedure to analyze (13)C-labeled phosphorylated compounds by liquid chromatography tandem mass spectrometry. Phosphorylated compounds, intermediaries of the glycolysis and pentose phosphate pathway, are separated by anion exchange chromatography and their isotopic labeling is determined by mass spectrometry. A sensitivity in the fmole range is achieved using scheduled multiple reaction monitoring mode.
Collapse
|
40
|
Wahl SA, Seifar RM, Ten Pierick A, Ras C, van Dam JC, Heijnen JJ, van Gulik WM. Quantitative metabolomics using ID-MS. Methods Mol Biol 2014; 1191:91-105. [PMID: 25178786 DOI: 10.1007/978-1-4939-1170-7_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Quantitative intracellular metabolite measurements are essential for systems biology and modeling of cellular metabolism. The MS-based quantification is error prone because (1) several sampling processing steps have to be performed, (2) the sample contains a complex mixture of partly compounds with the same mass and similar retention time, and (3) especially salts influence the ionization efficiency. Therefore internal standards are required, best for each measured compound. The use of labeled biomass, (13)C extract, is a valuable tool, reducing the standard deviations of intracellular concentration measurements significantly (especially regarding technical reproducibility). Using different platforms, i.e., LC-MS and GC-MS, a large number of different metabolites can be quantified (currently about 110).
Collapse
Affiliation(s)
- S Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
41
|
Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran JMG, Pronk JT, van Maris AJA. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng 2013; 21:46-59. [PMID: 24269999 DOI: 10.1016/j.ymben.2013.11.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/03/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
Abstract
Cytosolic acetyl-coenzyme A is a precursor for many biotechnologically relevant compounds produced by Saccharomyces cerevisiae. In this yeast, cytosolic acetyl-CoA synthesis and growth strictly depend on expression of either the Acs1 or Acs2 isoenzyme of acetyl-CoA synthetase (ACS). Since hydrolysis of ATP to AMP and pyrophosphate in the ACS reaction constrains maximum yields of acetyl-CoA-derived products, this study explores replacement of ACS by two ATP-independent pathways for acetyl-CoA synthesis. After evaluating expression of different bacterial genes encoding acetylating acetaldehyde dehydrogenase (A-ALD) and pyruvate-formate lyase (PFL), acs1Δ acs2Δ S. cerevisiae strains were constructed in which A-ALD or PFL successfully replaced ACS. In A-ALD-dependent strains, aerobic growth rates of up to 0.27 h(-1) were observed, while anaerobic growth rates of PFL-dependent S. cerevisiae (0.20 h(-1)) were stoichiometrically coupled to formate production. In glucose-limited chemostat cultures, intracellular metabolite analysis did not reveal major differences between A-ALD-dependent and reference strains. However, biomass yields on glucose of A-ALD- and PFL-dependent strains were lower than those of the reference strain. Transcriptome analysis suggested that reduced biomass yields were caused by acetaldehyde and formate in A-ALD- and PFL-dependent strains, respectively. Transcript profiles also indicated that a previously proposed role of Acs2 in histone acetylation is probably linked to cytosolic acetyl-CoA levels rather than to direct involvement of Acs2 in histone acetylation. While demonstrating that yeast ACS can be fully replaced, this study demonstrates that further modifications are needed to achieve optimal in vivo performance of the alternative reactions for supply of cytosolic acetyl-CoA as a product precursor.
Collapse
Affiliation(s)
- Barbara U Kozak
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Harmen M van Rossum
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | - Liang Wu
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands.
| |
Collapse
|
42
|
Knee JM, Rzezniczak TZ, Barsch A, Guo KZ, Merritt TJ. A novel ion pairing LC/MS metabolomics protocol for study of a variety of biologically relevant polar metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 936:63-73. [DOI: 10.1016/j.jchromb.2013.07.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/20/2013] [Accepted: 07/31/2013] [Indexed: 01/14/2023]
|
43
|
Bruheim P, Kvitvang HFN, Villas-Boas SG. Stable isotope coded derivatizing reagents as internal standards in metabolite profiling. J Chromatogr A 2013; 1296:196-203. [DOI: 10.1016/j.chroma.2013.03.072] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 12/26/2022]
|
44
|
Antoniewicz MR. Tandem mass spectrometry for measuring stable-isotope labeling. Curr Opin Biotechnol 2013; 24:48-53. [DOI: 10.1016/j.copbio.2012.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 10/02/2012] [Accepted: 10/16/2012] [Indexed: 12/31/2022]
|
45
|
Taymaz-Nikerel H, De Mey M, Baart G, Maertens J, Heijnen JJ, van Gulik W. Changes in substrate availability in Escherichia coli lead to rapid metabolite, flux and growth rate responses. Metab Eng 2013; 16:115-29. [PMID: 23370343 DOI: 10.1016/j.ymben.2013.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 12/31/2012] [Accepted: 01/18/2013] [Indexed: 01/05/2023]
Abstract
The interactions between the intracellular metabolome, fluxome and growth rate of Escherichia coli after sudden glycolytic/gluconeogenic substrate shifts are studied based on pulses of different substrates to an aerobic glucose-limited steady-state (dilution rate=0.1h(-1)). After each added glycolytic (glucose) and gluconeogenic (pyruvate and succinate) substrate pulse, no by-products were secreted and a pseudo steady state in flux and metabolites was achieved in about 30-40s. In the pulse experiments a large oxygen uptake capacity of the cells was observed. The in vivo dynamic responses showed massive reorganization and flexibility (1/100-14-fold change) of extra/intracellular metabolic fluxes, matching with large changes in the concentrations of intracellular metabolites, including reversal of reaction rate for pseudo/near equilibrium reactions. The coupling of metabolome and fluxome could be described by Q-linear kinetics. Remarkably, the three different substrate pulses resulted in a very similar increase in growth rate (0.13-0.3h(-1)). Data analysis showed that there must exist as yet unknown mechanisms which couple the protein synthesis rate to changes in central metabolites.
Collapse
Affiliation(s)
- Hilal Taymaz-Nikerel
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
46
|
Kim S, Lee DY, Wohlgemuth G, Park HS, Fiehn O, Kim KH. Evaluation and Optimization of Metabolome Sample Preparation Methods for Saccharomyces cerevisiae. Anal Chem 2013; 85:2169-76. [DOI: 10.1021/ac302881e] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sooah Kim
- School of Life Sciences and
Biotechnology, Korea University, Seoul
136-713, Republic of Korea
| | - Do Yup Lee
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
| | - Gert Wohlgemuth
- Genome
Center, University of California, Davis, California 95616, United States
| | - Hyong Seok Park
- School of Life Sciences and
Biotechnology, Korea University, Seoul
136-713, Republic of Korea
| | - Oliver Fiehn
- Genome
Center, University of California, Davis, California 95616, United States
| | - Kyoung Heon Kim
- School of Life Sciences and
Biotechnology, Korea University, Seoul
136-713, Republic of Korea
| |
Collapse
|
47
|
Winter G, Krömer JO. Fluxomics - connecting ‘omics analysis and phenotypes. Environ Microbiol 2013; 15:1901-16. [DOI: 10.1111/1462-2920.12064] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Gal Winter
- Centre for Microbial Electrosynthesis (CEMES); Advanced Water Management Centre (AWMC); University of Queensland; Brisbane; Qld; Australia
| | - Jens O. Krömer
- Centre for Microbial Electrosynthesis (CEMES); Advanced Water Management Centre (AWMC); University of Queensland; Brisbane; Qld; Australia
| |
Collapse
|
48
|
Cruz LAB, Hebly M, Duong GH, Wahl SA, Pronk JT, Heijnen JJ, Daran-Lapujade P, van Gulik WM. Similar temperature dependencies of glycolytic enzymes: an evolutionary adaptation to temperature dynamics? BMC SYSTEMS BIOLOGY 2012; 6:151. [PMID: 23216813 PMCID: PMC3554419 DOI: 10.1186/1752-0509-6-151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/06/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in Saccharomyces cerevisiae during temperature changes. RESULTS Saccharomyces cerevisiae was grown under different temperature regimes and glucose availability conditions. These included glucose-excess batch cultures at different temperatures and glucose-limited chemostat cultures, subjected to fast linear temperature shifts and circadian sinoidal temperature cycles. An observed temperature-independent relation between intracellular levels of glycolytic metabolites and residual glucose concentration for all experimental conditions revealed that it is the substrate availability rather than temperature that determines intracellular metabolite profiles. This observation corresponded with predictions generated in silico with a kinetic model of yeast glycolysis, when the catalytic capacities of all glycolytic enzymes were set to share the same normalized temperature dependency. CONCLUSIONS From an evolutionary perspective, such similar temperature dependencies allow cells to adapt more rapidly to temperature changes, because they result in minimal perturbations of intracellular metabolite levels, thus circumventing the need for extensive modification of enzyme levels.
Collapse
Affiliation(s)
- Luisa Ana B Cruz
- Department of Biotechnology, Delft University of Technology and Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Jung JY, Kim TY, Ng CY, Oh MK. Characterization of GCY1 in Saccharomyces cerevisiae by metabolic profiling. J Appl Microbiol 2012; 113:1468-78. [PMID: 22979944 DOI: 10.1111/jam.12013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/29/2012] [Accepted: 09/07/2012] [Indexed: 12/20/2022]
Abstract
AIMS The analytical study of intracellular (IC) metabolites has developed with advances in chromatography-linked mass spectrometry and fast sampling procedures. We applied the IC metabolite analysis to characterize the role of GCY1 in the glycerol (GLY) catabolic pathway in Saccharomyces cerevisiae. METHODS AND RESULTS Strains with disrupted or overexpressing GLY catabolic genes such as GCY1, DAK1 and DAK2 were constructed. The strains were cultivated under different aeration conditions and quickly quenched using a novel rapid sampling port. IC concentrations of GLY, dihydroxyacetone (DHA), glycerol 3-phosphate and dihydroxyacetone phosphate were analysed in the strains by gas chromatography/mass spectrometry. DHA was not detected in the gcy1 gene-disrupted strain but accumulated 225.91 μmol g DCW(-1) in a DHA kinase gene-deficient strain under micro-aerobic conditions. Additionally, a 16.1% increase in DHA occurred by overexpressing GCY1 in the DHA kinase-deficient strain. CONCLUSIONS Metabolic profiling showed that the GCY1 gene product functions as a GLY dehydrogenase in S. cerevisiae, particularly under micro-aerobic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY Metabolic profiling of the GLY dissimilation pathway was successfully demonstrated in S. cerevisiae, and the function of GCY1 was explained by the results.
Collapse
Affiliation(s)
- J-Y Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | | | | | | |
Collapse
|
50
|
de Jonge LP, Douma RD, Heijnen JJ, van Gulik WM. Optimization of cold methanol quenching for quantitative metabolomics of Penicillium chrysogenum. Metabolomics 2012; 8:727-735. [PMID: 22833711 PMCID: PMC3397231 DOI: 10.1007/s11306-011-0367-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/25/2011] [Indexed: 11/28/2022]
Abstract
A sampling procedure for quantitative metabolomics in Penicillium chrysogenum based on cold aqueous methanol quenching was re-evaluated and optimized to reduce metabolite leakage during sample treatment. The optimization study included amino acids and intermediates of the glycolysis and the TCA-cycle. Metabolite leakage was found to be minimal for a methanol content of the quenching solution (QS) of 40% (v/v) while keeping the temperature of the quenched sample near -20°C. The average metabolite recovery under these conditions was 95.7% (±1.1%). Several observations support the hypothesis that metabolite leakage from quenched mycelia of P. chrysogenum occurs by diffusion over the cell membrane. First, a prolonged contact time between mycelia and the QS lead to a somewhat higher extent of leakage. Second, when suboptimal quenching liquids were used, increased metabolite leakage was found to be correlated with lower molecular weight and with lower absolute net charge. The finding that lowering the methanol content of the quenching liquid reduces metabolite leakage in P. chrysogenum contrasts with recently published quenching studies for two other eukaryotic micro-organisms. This demonstrates that it is necessary to validate and, if needed, optimize the quenching conditions for each particular micro-organism. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0367-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lodewijk P. de Jonge
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Rutger D. Douma
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Joseph J. Heijnen
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Walter M. van Gulik
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| |
Collapse
|