1
|
Melbacke A, Salhotra A, Ušaj M, Månsson A. Improved longevity of actomyosin in vitro motility assays for sustainable lab-on-a-chip applications. Sci Rep 2024; 14:22768. [PMID: 39354041 PMCID: PMC11445438 DOI: 10.1038/s41598-024-73457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
In the in vitro motility assay (IVMA), actin filaments are observed while propelled by surface-adsorbed myosin motor fragments such as heavy meromyosin (HMM). In addition to fundamental studies, the IVMA is the basis for a range of lab-on-a-chip applications, e.g. transport of cargoes in nanofabricated channels in nanoseparation/biosensing or the solution of combinatorial mathematical problems in network-based biocomputation. In these applications, prolonged myosin function is critical as is the potential to repeatedly exchange experimental solutions without functional deterioration. We here elucidate key factors of importance in these regards. Our findings support a hypothesis that early deterioration in the IVMA is primarily due to oxygen entrance into in vitro motility assay flow cells. In the presence of a typically used oxygen scavenger mixture (glucose oxidase, glucose, and catalase), this leads to pH reduction by a glucose oxidase-catalyzed reaction between glucose and oxygen but also contributes to functional deterioration by other mechanisms. Our studies further demonstrate challenges associated with evaporation and loss of actin filaments with time. However, over 8 h at 21-26 °C, there is no significant surface desorption or denaturation of HMM if solutions are exchanged manually every 30 min. We arrive at an optimized protocol with repeated exchange of carefully degassed assay solution of 45 mM ionic strength, at 30 min intervals. This is sufficient to maintain the high-quality function in an IVMA over 8 h at 21-26 °C, provided that fresh actin filaments are re-supplied in connection with each assay solution exchange. Finally, we demonstrate adaptation to a microfluidic platform and identify challenges that remain to be solved for real lab-on-a-chip applications.
Collapse
Affiliation(s)
- Andreas Melbacke
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden.
| |
Collapse
|
2
|
Berg AE, Velayuthan LP, Månsson A, Ušaj M. Cost-Efficient Expression of Human Cardiac Myosin Heavy Chain in C2C12 Cells with a Non-Viral Transfection Reagent. Int J Mol Sci 2024; 25:6747. [PMID: 38928453 PMCID: PMC11203843 DOI: 10.3390/ijms25126747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Production of functional myosin heavy chain (MHC) of striated muscle myosin II for studies of isolated proteins requires mature muscle (e.g., C2C12) cells for expression. This is important both for fundamental studies of molecular mechanisms and for investigations of deleterious diseases like cardiomyopathies due to mutations in the MHC gene (MYH7). Generally, an adenovirus vector is used for transfection, but recently we demonstrated transfection by a non-viral polymer reagent, JetPrime. Due to the rather high costs of JetPrime and for the sustainability of the virus-free expression method, access to more than one transfection reagent is important. Here, we therefore evaluate such a candidate substance, GenJet. Using the human cardiac β-myosin heavy chain (β-MHC) as a model system, we found effective transfection of C2C12 cells showing a transfection efficiency nearly as good as with the JetPrime reagent. This was achieved following a protocol developed for JetPrime because a manufacturer-recommended application protocol for GenJet to transfect cells in suspension did not perform well. We demonstrate, using in vitro motility assays and single-molecule ATP turnover assays, that the protein expressed and purified from cells transfected with the GenJet reagent is functional. The purification yields reached were slightly lower than in JetPrime-based purifications, but they were achieved at a significantly lower cost. Our results demonstrate the sustainability of the virus-free method by showing that more than one polymer-based transfection reagent can generate useful amounts of active MHC. Particularly, we suggest that GenJet, due to its current ~4-fold lower cost, is useful for applications requiring larger amounts of a given MHC variant.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 391 82 Kalmar, Sweden; (A.E.B.); (L.P.V.)
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 391 82 Kalmar, Sweden; (A.E.B.); (L.P.V.)
| |
Collapse
|
3
|
Bowser RM, Farman GP, Gregorio CC. Philament: A filament tracking program to quickly and accurately analyze in vitro motility assays. BIOPHYSICAL REPORTS 2024; 4:100147. [PMID: 38404534 PMCID: PMC10884813 DOI: 10.1016/j.bpr.2024.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
In vitro motility (IVM) assays allow for the examination of the basic interaction between cytoskeletal filaments with molecular motors and the influence many physiological factors have on this interaction. Examples of factors that can be studied include changes in ADP and pH that emulate fatigue, altered phosphorylation that can occur with disease, and mutations within myofilament proteins that cause disease. While IVM assays can be analyzed manually, the main limitation is the ability to extract accurate data rapidly from videos collected without individual bias. While programs have been created in the past to enable data extraction, many are now out of date or require the use of proprietary software. Here, we report the generation of a Python-based tracking program, Philament, which automatically extracts data on instantaneous and average velocities, and allows for fully automated analysis of IVM recordings. The data generated are presented in an easily accessible spreadsheet-based, comma-separated values file. Philament also contains a novel method of quantifying the smoothness of filament motion. By fitting curves to standard deviations of velocity and average velocities, the influence of different experimental conditions can be compared relative to one another. This comparison provides a qualitative measure of protein interactions where steeper slopes indicate more unstable interactions and shallower slopes indicate more stable interactions within the myofilament. Overall, Philament's automation of IVM analysis provides easier entry into the field of cardiovascular mechanics and enables users to create a truly high-throughput experimental data analysis.
Collapse
Affiliation(s)
- Ryan M. Bowser
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona
| | - Gerrie P. Farman
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
4
|
Salhotra A, Rahman MA, Ruijgrok PV, Meinecke CR, Ušaj M, Zemsky S, Lindberg FW, Surendiran P, Lyttleton RW, Linke H, Korten T, Bryant Z, Månsson A. Exploitation of Engineered Light-Switchable Myosin XI for Nanotechnological Applications. ACS NANO 2023; 17:17233-17244. [PMID: 37639711 PMCID: PMC10510702 DOI: 10.1021/acsnano.3c05137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
For certain nanotechnological applications of the contractile proteins actin and myosin, e.g., in biosensing and network-based biocomputation, it would be desirable to temporarily switch on/off motile function in parts of nanostructured devices, e.g., for sorting or programming. Myosin XI motor constructs, engineered with a light-switchable domain for switching actin motility between high and low velocities (light-sensitive motors (LSMs) below), are promising in this regard. However, they were not designed for use in nanotechnology, where longevity of operation, long shelf life, and selectivity of function in specific regions of a nanofabricated network are important. Here, we tested if these criteria can be fulfilled using existing LSM constructs or if additional developments will be required. We demonstrated extended shelf life as well as longevity of the actin-propelling function compared to those in previous studies. We also evaluated several approaches for selective immobilization with a maintained actin propelling function in dedicated nanochannels only. Whereas selectivity was feasible using certain nanopatterning combinations, the reproducibility was not satisfactory. In summary, the study demonstrates the feasibility of using engineered light-controlled myosin XI motors for myosin-driven actin transport in nanotechnological applications. Before use for, e.g., sorting or programming, additional work is however needed to achieve reproducibility of the nanofabrication and, further, optimize the motor properties.
Collapse
Affiliation(s)
- Aseem Salhotra
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, 39182 Kalmar, Sweden
- NanoLundLund
University, Box 118, 22100 Lund, Sweden
| | - Mohammad A Rahman
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, 39182 Kalmar, Sweden
| | - Paul V Ruijgrok
- Department
of Bioengineering, Stanford University, 94305 Stanford, California, United
States
| | - Christoph R Meinecke
- Center
for Microtechnologies, Technische Universität
Chemnitz, 09126 Chemnitz, Germany
| | - Marko Ušaj
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, 39182 Kalmar, Sweden
- NanoLundLund
University, Box 118, 22100 Lund, Sweden
| | - Sasha Zemsky
- Department
of Bioengineering, Stanford University, 94305 Stanford, California, United
States
| | - Frida W Lindberg
- NanoLundLund
University, Box 118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Pradheebha Surendiran
- NanoLundLund
University, Box 118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Roman W. Lyttleton
- NanoLundLund
University, Box 118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Heiner Linke
- NanoLundLund
University, Box 118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Till Korten
- B CUBE -
Center for Molecular Bioengineering and Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Zev Bryant
- Department
of Bioengineering, Stanford University, 94305 Stanford, California, United
States
| | - Alf Månsson
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, 39182 Kalmar, Sweden
- NanoLundLund
University, Box 118, 22100 Lund, Sweden
| |
Collapse
|
5
|
Velayuthan LP, Moretto L, Tågerud S, Ušaj M, Månsson A. Virus-free transfection, transient expression, and purification of human cardiac myosin in mammalian muscle cells for biochemical and biophysical assays. Sci Rep 2023; 13:4101. [PMID: 36907906 PMCID: PMC10008826 DOI: 10.1038/s41598-023-30576-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
Myosin expression and purification is important for mechanistic insights into normal function and mutation induced changes. The latter is particularly important for striated muscle myosin II where mutations cause several debilitating diseases. However, the heavy chain of this myosin is challenging to express and the standard protocol, using C2C12 cells, relies on viral infection. This is time and work intensive and associated with infrastructural demands and biological hazards, limiting widespread use and hampering fast generation of a wide range of mutations. We here develop a virus-free method to overcome these challenges. We use this system to transfect C2C12 cells with the motor domain of the human cardiac myosin heavy chain. After optimizing cell transfection, cultivation and harvesting conditions, we functionally characterized the expressed protein, co-purified with murine essential and regulatory light chains. The gliding velocity (1.5-1.7 µm/s; 25 °C) in the in vitro motility assay as well as maximum actin activated catalytic activity (kcat; 8-9 s-1) and actin concentration for half maximal activity (KATPase; 70-80 µM) were similar to those found previously using virus based infection. The results should allow new types of studies, e.g., screening of a wide range of mutations to be selected for further characterization.
Collapse
Affiliation(s)
- Lok Priya Velayuthan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Sven Tågerud
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| |
Collapse
|
6
|
Vemula V, Huber T, Ušaj M, Bugyi B, Månsson A. Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity. J Biol Chem 2020; 296:100181. [PMID: 33303625 PMCID: PMC7948409 DOI: 10.1074/jbc.ra120.015863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Actin is a major intracellular protein with key functions in cellular motility, signaling, and structural rearrangements. Its dynamic behavior, such as polymerization and depolymerization of actin filaments in response to intracellular and extracellular cues, is regulated by an abundance of actin binding proteins. Out of these, gelsolin is one of the most potent for filament severing. However, myosin motor activity also fragments actin filaments through motor-induced forces, suggesting that these two proteins could cooperate to regulate filament dynamics and motility. To test this idea, we used an in vitro motility assay, where actin filaments are propelled by surface-adsorbed heavy meromyosin (HMM) motor fragments. This allows studies of both motility and filament dynamics using isolated proteins. Gelsolin, at both nanomolar and micromolar Ca2+ concentration, appreciably enhanced actin filament severing caused by HMM-induced forces at 1 mM MgATP, an effect that was increased at higher HMM motor density. This finding is consistent with cooperativity between actin filament severing by myosin-induced forces and by gelsolin. We also observed reduced sliding velocity of the HMM-propelled filaments in the presence of gelsolin, providing further support of myosin-gelsolin cooperativity. Total internal reflection fluorescence microscopy–based single molecule studies corroborated that the velocity reduction was a direct effect of gelsolin binding to the filament and revealed different filament severing pattern of stationary and HMM propelled filaments. Overall, the results corroborate cooperative effects between gelsolin-induced alterations in the actin filaments and changes due to myosin motor activity leading to enhanced F-actin severing of possible physiological relevance.
Collapse
Affiliation(s)
- Venukumar Vemula
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Tamás Huber
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Beáta Bugyi
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
7
|
Rapid time-stamped analysis of filament motility. J Muscle Res Cell Motil 2019; 39:153-162. [PMID: 30972524 DOI: 10.1007/s10974-019-09503-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
The in vitro motility assay is a valuable tool to understand motor protein mechanics, but existing algorithms are not optimized for accurate time resolution. We propose an algorithm that combines trace detection with a time-stamped analysis. By tracking filament ends, we minimize data loss from overlapping and crossing filaments. A movement trace formed by each filament end is created by time-stamping when the filament either first (filament tip) or last (filament tail) occupies a pixel. A frame number vs. distance curve is generated from this trace, which is segmented into regions by slope to detect stop-and-go movement. We show, using generated mock motility videos, accurate detection of velocity and motile fraction changes for velocities < 0.05 pixels per frame, without manual trace dropping and regardless of filament crossings. Compared with established algorithms we show greatly improved accuracy in velocity and motile fraction estimation, with greatly reduced user effort. We tested two actual motility experiments: (1) adenosine triphosphate (ATP) added to skeletal myosin in rigor; (2) myosin light chain phosphatase (MLCP) added to phasic smooth muscle myosin. Our algorithm revealed previously undetectable features: (1) rapid increase in motile fraction paralleled by a slow increase in velocity as ATP concentration increases; (2) simultaneous reductions in velocity and motile fraction as MLCP diffuses into the motility chamber at very low velocities. Our algorithm surpasses existing algorithms in the resolution of time dependent changes in motile fraction and velocity at a wide range of filament lengths and velocities, with minimal user input and CPU time.
Collapse
|
8
|
Rahman MA, Salhotra A, Månsson A. Comparative analysis of widely used methods to remove nonfunctional myosin heads for the in vitro motility assay. J Muscle Res Cell Motil 2019; 39:175-187. [PMID: 30850933 PMCID: PMC6494787 DOI: 10.1007/s10974-019-09505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/27/2019] [Indexed: 11/28/2022]
Abstract
The in vitro motility assay allows studies of muscle contraction through observation of actin filament propulsion by surface-adsorbed myosin motors or motor fragments isolated from muscle. A possible problem is that motility may be compromised by nonfunctional, “dead”, motors, obtained in the isolation process. Here we investigate the effects on motile function of two approaches designed to eliminate the effects of these dead motors. We first tested the removal of heavy meromyosin (HMM) molecules with ATP-insensitive “dead” heads by pelleting them with actin filaments, using ultracentrifugation in the presence of 1 mM MgATP (“affinity purification”). Alternatively we incubated motility assay flow cells, after HMM surface adsorption, with non-fluorescent “blocking actin” (1 µM) to block the dead heads. Both affinity purification and use of blocking actin increased the fraction of motile filaments compared to control conditions. However, affinity purification significantly reduced the actin sliding speed in five out of seven experiments on silanized surfaces and in one out of four experiments on nitrocellulose surfaces. Similar effects on velocity were not observed with the use of blocking actin. However, a reduced speed was also seen (without affinity purification) if HMM or myosin subfragment 1 was mixed with 1 mM MgATP before and during surface adsorption. We conclude that affinity purification can produce unexpected effects that may complicate the interpretation of in vitro motility assays and other experiments with surface adsorbed HMM, e.g. single molecule mechanics experiments. The presence of MgATP during incubation with myosin motor fragments is critical for the complicating effects.
Collapse
Affiliation(s)
- Mohammad A Rahman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, 391 82, Sweden
| | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, 391 82, Sweden
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, 391 82, Sweden.
| |
Collapse
|
9
|
Kumar S, Milani G, Takatsuki H, Lana T, Persson M, Frasson C, te Kronnie G, Månsson A. Sensing protein antigen and microvesicle analytes using high-capacity biopolymer nano-carriers. Analyst 2015; 141:836-46. [PMID: 26617251 DOI: 10.1039/c5an02377g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lab-on-a-chip systems with molecular motor driven transport of analytes attached to cytoskeletal filament shuttles (actin filaments, microtubules) circumvent challenges with nanoscale liquid transport. However, the filaments have limited cargo-carrying capacity and limitations either in transportation speed (microtubules) or control over motility direction (actin). To overcome these constraints we here report incorporation of covalently attached antibodies into self-propelled actin bundles (nanocarriers) formed by cross-linking antibody conjugated actin filaments via fascin, a natural actin-bundling protein. We demonstrate high maximum antigen binding activity and propulsion by surface adsorbed myosin motors. Analyte transport capacity is tested using both protein antigens and microvesicles, a novel class of diagnostic markers. Increased incubation concentration with protein antigen in the 0.1-100 nM range (1 min) reduces the fraction of motile bundles and their velocity but maximum transportation capacity of >1 antigen per nm of bundle length is feasible. At sub-nanomolar protein analyte concentration, motility is very well preserved opening for orders of magnitude improved limit of detection using motor driven concentration on nanoscale sensors. Microvesicle-complexing to monoclonal antibodies on the nanocarriers compromises motility but nanocarrier aggregation via microvesicles shows unique potential in label-free detection with the aggregates themselves as non-toxic reporter elements.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hajne J, Hanson KL, van Zalinge H, Nicolau DV. Motility of Actin Filaments on Micro-Contact Printed Myosin Patterns. IEEE Trans Nanobioscience 2015; 14:313-22. [DOI: 10.1109/tnb.2015.2393052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Persson M, Bengtsson E, ten Siethoff L, Månsson A. Nonlinear cross-bridge elasticity and post-power-stroke events in fast skeletal muscle actomyosin. Biophys J 2013; 105:1871-81. [PMID: 24138863 PMCID: PMC3797597 DOI: 10.1016/j.bpj.2013.08.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 11/21/2022] Open
Abstract
Generation of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events. First, as an experimental basis, we present evidence for a hyperbolic [MgATP]-velocity relationship of heavy-meromyosin-propelled actin filaments in the in vitro motility assay using fast rabbit skeletal muscle myosin (28-29°C). As the hyperbolic [MgATP]-velocity relationship was not consistent with interhead cooperativity, we developed a cross-bridge model with independent myosin heads and strain-dependent interstate transition rates. The model, implemented with inclusion of MgATP-independent detachment from the rigor state, as suggested by previous single-molecule mechanics experiments, accounts well for the [MgATP]-velocity relationship if nonlinear cross-bridge elasticity is assumed, but not if linear cross-bridge elasticity is assumed. In addition, a better fit is obtained with load-independent than with load-dependent MgATP-induced detachment rate. We discuss our results in relation to previous data showing a nonhyperbolic [MgATP]-velocity relationship when actin filaments are propelled by myosin subfragment 1 or full-length myosin. We also consider the implications of our results for characterization of the cross-bridge elasticity in the filament lattice of muscle.
Collapse
Affiliation(s)
| | | | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
12
|
Magnetic capture from blood rescues molecular motor function in diagnostic nanodevices. J Nanobiotechnology 2013; 11:14. [PMID: 23638952 PMCID: PMC3660291 DOI: 10.1186/1477-3155-11-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/29/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Introduction of effective point-of-care devices for use in medical diagnostics is part of strategies to combat accelerating health-care costs. Molecular motor driven nanodevices have unique potentials in this regard due to unprecedented level of miniaturization and independence of external pumps. However motor function has been found to be inhibited by body fluids. RESULTS We report here that a unique procedure, combining separation steps that rely on antibody-antigen interactions, magnetic forces applied to magnetic nanoparticles (MPs) and the specificity of the actomyosin bond, can circumvent the deleterious effects of body fluids (e.g. blood serum). The procedure encompasses the following steps: (i) capture of analyte molecules from serum by MP-antibody conjugates, (ii) pelleting of MP-antibody-analyte complexes, using a magnetic field, followed by exchange of serum for optimized biological buffer, (iii) mixing of MP-antibody-analyte complexes with actin filaments conjugated with same polyclonal antibodies as the magnetic nanoparticles. This causes complex formation: MP-antibody-analyte-antibody-actin, and magnetic separation is used to enrich the complexes. Finally (iv) the complexes are introduced into a nanodevice for specific binding via actin filaments to surface adsorbed molecular motors (heavy meromyosin). The number of actin filaments bound to the motors in the latter step was significantly increased above the control value if protein analyte (50-60 nM) was present in serum (in step i) suggesting appreciable formation and enrichment of the MP-antibody-analyte-antibody-actin complexes. Furthermore, addition of ATP demonstrated maintained heavy meromyosin driven propulsion of actin filaments showing that the serum induced inhibition was alleviated. Detailed analysis of the procedure i-iv, using fluorescence microscopy and spectroscopy identified main targets for future optimization. CONCLUSION The results demonstrate a promising approach for capturing analytes from serum for subsequent motor driven separation/detection. Indeed, the observed increase in actin filament number, in itself, signals the presence of analyte at clinically relevant nM concentration without the need for further motor driven concentration. Our analysis suggests that exchange of polyclonal for monoclonal antibodies would be a critical improvement, opening for a first clinically useful molecular motor driven lab-on-a-chip device.
Collapse
|
13
|
Lard M, Ten Siethoff L, Kumar S, Persson M, Te Kronnie G, Linke H, Månsson A. Ultrafast molecular motor driven nanoseparation and biosensing. Biosens Bioelectron 2013; 48:145-52. [PMID: 23672875 DOI: 10.1016/j.bios.2013.03.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 11/29/2022]
Abstract
Portable biosensor systems would benefit from reduced dependency on external power supplies as well as from further miniaturization and increased detection rate. Systems built around self-propelled biological molecular motors and cytoskeletal filaments hold significant promise in these regards as they are built from nanoscale components that enable nanoseparation independent of fluidic pumping. Previously reported microtubule-kinesin based devices are slow, however, compared to several existing biosensor systems. Here we demonstrate that this speed limitation can be overcome by using the faster actomyosin motor system. Moreover, due to lower flexural rigidity of the actin filaments, smaller features can be achieved compared to microtubule-based systems, enabling further miniaturization. Using a device designed through optimization by Monte Carlo simulations, we demonstrate extensive myosin driven enrichment of actin filaments on a detector area of less than 10 μm², with a concentration half-time of approximately 40 s. We also show accumulation of model analyte (streptavidin at nanomolar concentration in nanoliter effective volume) detecting increased fluorescence intensity within seconds after initiation of motor-driven transportation from capture regions. We discuss further optimizations of the system and incorporation into a complete biosensing workflow.
Collapse
Affiliation(s)
- Mercy Lard
- The Nanometer Structure Consortium (nmC@LU), Division of Solid State Physics, Lund University, SE-22100 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Korten S, Albet-Torres N, Paderi F, ten Siethoff L, Diez S, Korten T, te Kronnie G, Månsson A. Sample solution constraints on motor-driven diagnostic nanodevices. LAB ON A CHIP 2013; 13:866-876. [PMID: 23303341 DOI: 10.1039/c2lc41099k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The last decade has seen appreciable advancements in efforts towards increased portability of lab-on-a-chip devices by substituting microfluidics with molecular motor-based transportation. As of now, first proof-of-principle devices have analyzed protein mixtures of low complexity, such as target protein molecules in buffer solutions optimized for molecular motor performance. However, in a diagnostic work-up, lab-on-a-chip devices need to be compatible with complex biological samples. While it has been shown that such samples do not interfere with crucial steps in molecular diagnostics (for example antibody-antigen recognition), their effect on molecular motors is unknown. This critical and long overlooked issue is addressed here. In particular, we studied the effects of blood, cell lysates and solutions containing genomic DNA extracts on actomyosin and kinesin-microtubule-based transport, the two biomolecular motor systems that are most promising for lab-on-a-chip applications. We found that motor function is well preserved at defined dilutions of most of the investigated biological samples and demonstrated a molecular motor-driven label-free blood type test. Our results support the feasibility of molecular-motor driven nanodevices for diagnostic point-of-care applications and also demonstrate important constraints imposed by sample composition and device design that apply both to kinesin-microtubule and actomyosin driven applications.
Collapse
Affiliation(s)
- Slobodanka Korten
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Persson M, Gullberg M, Tolf C, Lindberg AM, Månsson A, Kocer A. Transportation of nanoscale cargoes by myosin propelled actin filaments. PLoS One 2013; 8:e55931. [PMID: 23437074 PMCID: PMC3578877 DOI: 10.1371/journal.pone.0055931] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/03/2013] [Indexed: 02/04/2023] Open
Abstract
Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies. However, it is poorly understood how actomyosin function is affected by different number of nanoscale cargoes, by cargo size, and by the mode of cargo-attachment to the actin filament. This is studied here using biotin/fluorophores, streptavidin, streptavidin-coated quantum dots, and liposomes as model cargoes attached to monomers along the actin filaments (“side-attached”) or to the trailing filament end via the plus end capping protein CapZ. Long-distance transportation (>100 µm) could be seen for all cargoes independently of attachment mode but the fraction of motile filaments decreased with increasing number of side-attached cargoes, a reduction that occurred within a range of 10–50 streptavidin molecules, 1–10 quantum dots or with just 1 liposome. However, as observed by monitoring these motile filaments with the attached cargo, the velocity was little affected. This also applied for end-attached cargoes where the attachment was mediated by CapZ. The results with side-attached cargoes argue against certain models for chemomechanical energy transduction in actomyosin and give important insights of relevance for effective exploitation of actomyosin-based cargo-transportation in molecular diagnostics and other nanotechnological applications. The attachment of quantum dots via CapZ, without appreciable modulation of actomyosin function, is useful in fundamental studies as exemplified here by tracking with nanometer accuracy.
Collapse
Affiliation(s)
- Malin Persson
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Emerging concepts for on-chip biotechnologies aim to replace microfluidic flow by active, molecular-motor driven transport of cytoskeletal filaments, including applications in bio-simulation, biocomputation, diagnostics, and drug screening. Many of these applications require reliable detection, with minimal data acquisition, of filaments at many, local checkpoints in a device consisting of a potentially complex network of channels that guide filament motion. Here we develop such a detection system using actomyosin motility. Detection points consist of pairs of gold lines running perpendicular to nanochannels that guide motion of fluorescent actin filaments. Fluorescence interference contrast (FLIC) is used to locally enhance the signal at the gold lines. A cross-correlation method is used to suppress errors, allowing reliable detection of single or multiple filaments. Optimal device design parameters are discussed. The results open for automatic read-out of filament count and velocity in high-throughput motility assays, helping establish the viability of active, motor-driven on-chip applications.
Collapse
|
17
|
Kumar S, ten Siethoff L, Persson M, Lard M, te Kronnie G, Linke H, Månsson A. Antibodies covalently immobilized on actin filaments for fast myosin driven analyte transport. PLoS One 2012; 7:e46298. [PMID: 23056279 PMCID: PMC3463588 DOI: 10.1371/journal.pone.0046298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/29/2012] [Indexed: 01/09/2023] Open
Abstract
Biosensors would benefit from further miniaturization, increased detection rate and independence from external pumps and other bulky equipment. Whereas transportation systems built around molecular motors and cytoskeletal filaments hold significant promise in the latter regard, recent proof-of-principle devices based on the microtubule-kinesin motor system have not matched the speed of existing methods. An attractive solution to overcome this limitation would be the use of myosin driven propulsion of actin filaments which offers motility one order of magnitude faster than the kinesin-microtubule system. Here, we realized a necessary requirement for the use of the actomyosin system in biosensing devices, namely covalent attachment of antibodies to actin filaments using heterobifunctional cross-linkers. We also demonstrated consistent and rapid myosin II driven transport where velocity and the fraction of motile actin filaments was negligibly affected by the presence of antibody-antigen complexes at rather high density (>20 µm(-1)). The results, however, also demonstrated that it was challenging to consistently achieve high density of functional antibodies along the actin filament, and optimization of the covalent coupling procedure to increase labeling density should be a major focus for future work. Despite the remaining challenges, the reported advances are important steps towards considerably faster nanoseparation than shown for previous molecular motor based devices, and enhanced miniaturization because of high bending flexibility of actin filaments.
Collapse
Affiliation(s)
- Saroj Kumar
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | | | - Malin Persson
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | - Mercy Lard
- The Nanometer Structure Consortium and Division of Solid State Physics, Lund University, Lund, Sweden
| | - Geertruy te Kronnie
- Department of Women’s and Children’s Health, University of Padua, Padova, Italy
| | - Heiner Linke
- The Nanometer Structure Consortium and Division of Solid State Physics, Lund University, Lund, Sweden
| | - Alf Månsson
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
- * E-mail:
| |
Collapse
|
18
|
Self-organization of motor-propelled cytoskeletal filaments at topographically defined borders. J Biomed Biotechnol 2012; 2012:647265. [PMID: 22536023 PMCID: PMC3321463 DOI: 10.1155/2012/647265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/07/2012] [Indexed: 11/29/2022] Open
Abstract
Self-organization phenomena are of critical importance in living organisms and of great interest to exploit in nanotechnology. Here we describe in vitro self-organization of molecular motor-propelled actin filaments, manifested as a tendency of the filaments to accumulate in high density close to topographically defined edges on nano- and microstructured surfaces. We hypothesized that this “edge-tracing” effect either (1) results from increased motor density along the guiding edges or (2) is a direct consequence of the asymmetric constraints on stochastic changes in filament sliding direction imposed by the edges. The latter hypothesis is well captured by a model explicitly defining the constraints of motility on structured surfaces in combination with Monte-Carlo simulations [cf. Nitta et al. (2006)] of filament sliding. In support of hypothesis 2 we found that the model reproduced the edge tracing effect without the need to assume increased motor density at the edges. We then used model simulations to elucidate mechanistic details. The results are discussed in relation to nanotechnological applications and future experiments to test model predictions.
Collapse
|
19
|
Albet-Torres N, Månsson A. Long-term storage of surface-adsorbed protein machines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7108-12. [PMID: 21563803 PMCID: PMC3104519 DOI: 10.1021/la201081w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The effective and simple long-term storage of complex functional proteins is critical in achieving commercially viable biosensors. This issue is particularly challenging in recently proposed types of nanobiosensors, where molecular-motor-driven transportation substitutes microfluidics and forms the basis for novel detection schemes. Importantly, therefore, we here describe that delicate heavy meromyosin (HMM)-based nanodevices (HMM motor fragments adsorbed to silanized surfaces and actin bound to HMM) fully maintain their function when stored at -20 °C for more than a month. The mechanisms for the excellent preservation of acto-HMM motor function upon repeated freeze-thaw cycles are discussed. The results are important to the future commercial implementation of motor-based nanodevices and are of more general value to the long-term storage of any protein-based bionanodevice.
Collapse
Affiliation(s)
- Nuria Albet-Torres
- School of Natural Sciences, Linnaeus University, SE-39245 Kalmar, Sweden.
| | | |
Collapse
|
20
|
Vikhoreva NN, Månsson A. Regulatory light chains modulate in vitro actin motility driven by skeletal heavy meromyosin. Biochem Biophys Res Commun 2010; 403:1-6. [PMID: 20946876 DOI: 10.1016/j.bbrc.2010.10.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/08/2010] [Indexed: 11/25/2022]
Abstract
Phosphorylation and Ca(2+)-Mg(2+) exchange on the regulatory light chains (RLCs) of skeletal myosin modulate muscle contraction. However, the relation between the mechanisms for the effects of phosphorylation and metal ion exchange are not clear. We propose that modulation of skeletal muscle contraction by phosphorylation of the myosin regulatory light chains (RLCs) is mediated by altered electrostatic interactions between myosin heads/necks and the negatively charged thick filament backbone. Our study, using the in vitro motility assay, showed actin motility on hydrophilic negatively charged surfaces only over the HMM with phosphorylated RLCs both in the presence and absence of Ca(2+). In contrast, good actin motility was observed on silanized surfaces (low charge density), independent of RLC phosphorylation status but with markedly lower velocity in the presence of Ca(2+). The data suggest that Ca(2+)-binding to, and phosphorylation of, the RLCs affect the actomyosin interaction by independent molecular mechanisms. The phosphorylation effects depend on hydrophobicity and charge density of the underlying surface. Such findings might be exploited for control of actomyosin based transportation of cargoes in lab-on-a chip applications, e.g. local and temporary stopping of actin sliding on hydrophilic areas along a nanosized track.
Collapse
Affiliation(s)
- N N Vikhoreva
- School of Natural Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden
| | | |
Collapse
|
21
|
Vikhoreva NN, Vikhorev PG, Fedorova MA, Hoffmann R, Månsson A, Kuleva NV. The in vitro motility assay parameters of actin filaments from Mytilus edulis exposed in vivo to copper ions. Arch Biochem Biophys 2009; 491:32-8. [DOI: 10.1016/j.abb.2009.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 11/26/2022]
|
22
|
Albet-Torres N, Bloemink MJ, Barman T, Candau R, Frölander K, Geeves MA, Golker K, Herrmann C, Lionne C, Piperio C, Schmitz S, Veigel C, Månsson A. Drug effect unveils inter-head cooperativity and strain-dependent ADP release in fast skeletal actomyosin. J Biol Chem 2009; 284:22926-37. [PMID: 19520847 PMCID: PMC2755700 DOI: 10.1074/jbc.m109.019232] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/09/2009] [Indexed: 11/06/2022] Open
Abstract
Amrinone is a bipyridine compound with characteristic effects on the force-velocity relationship of fast skeletal muscle, including a reduction in the maximum shortening velocity and increased maximum isometric force. Here we performed experiments to elucidate the molecular mechanisms for these effects, with the additional aim to gain insight into the molecular mechanisms underlying the force-velocity relationship. In vitro motility assays established that amrinone reduces the sliding velocity of heavy meromyosin-propelled actin filaments by 30% at different ionic strengths of the assay solution. Stopped-flow studies of myofibrils, heavy meromyosin and myosin subfragment 1, showed that the effects on sliding speed were not because of a reduced rate of ATP-induced actomyosin dissociation because the rate of this process was increased by amrinone. Moreover, optical tweezers studies could not detect any amrinone-induced changes in the working stroke length. In contrast, the ADP affinity of acto-heavy meromyosin was increased about 2-fold by 1 mm amrinone. Similar effects were not observed for acto-subfragment 1. Together with the other findings, this suggests that the amrinone-induced reduction in sliding velocity is attributed to inhibition of a strain-dependent ADP release step. Modeling results show that such an effect may account for the amrinone-induced changes of the force-velocity relationship. The data emphasize the importance of the rate of a strain-dependent ADP release step in influencing the maximum sliding velocity in fast skeletal muscle. The data also lead us to discuss the possible importance of cooperative interactions between the two myosin heads in muscle contraction.
Collapse
Affiliation(s)
- Nuria Albet-Torres
- From the School of Pure Applied Natural Science, University of Kalmar, SE-391 82 Kalmar, Sweden
| | - Marieke J. Bloemink
- the Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Tom Barman
- Unité Mixte de Recherche 5236 CNRS, University of Montpellier I and II, Institut de Biologie, 34000 Montpellier, France
| | - Robin Candau
- Unité Mixte de Recherche 866 INRA, University of Montpellier I, 34060 Montpellier, France, and
| | - Kerstin Frölander
- From the School of Pure Applied Natural Science, University of Kalmar, SE-391 82 Kalmar, Sweden
| | - Michael A. Geeves
- the Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Kerstin Golker
- From the School of Pure Applied Natural Science, University of Kalmar, SE-391 82 Kalmar, Sweden
| | - Christian Herrmann
- Unité Mixte de Recherche 5236 CNRS, University of Montpellier I and II, Institut de Biologie, 34000 Montpellier, France
| | - Corinne Lionne
- Unité Mixte de Recherche 5236 CNRS, University of Montpellier I and II, Institut de Biologie, 34000 Montpellier, France
| | - Claudia Piperio
- the National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Stephan Schmitz
- the National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Claudia Veigel
- the National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Alf Månsson
- From the School of Pure Applied Natural Science, University of Kalmar, SE-391 82 Kalmar, Sweden
| |
Collapse
|
23
|
Vikhorev PG, Vikhoreva NN, Sundberg M, Balaz M, Albet-Torres N, Bunk R, Kvennefors A, Liljesson K, Nicholls IA, Nilsson L, Omling P, Tågerud S, Montelius L, Månsson A. Diffusion dynamics of motor-driven transport: gradient production and self-organization of surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:13509-17. [PMID: 18989944 DOI: 10.1021/la8016112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The interaction between cytoskeletal filaments (e.g., actin filaments) and molecular motors (e.g., myosin) is the basis for many aspects of cell motility and organization of the cell interior. In the in vitro motility assay (IVMA), cytoskeletal filaments are observed while being propelled by molecular motors adsorbed to artificial surfaces (e.g., in studies of motor function). Here we integrate ideas that cytoskeletal filaments may be used as nanoscale templates in nanopatterning with a novel approach for the production of surface gradients of biomolecules and nanoscale topographical features. The production of such gradients is challenging but of increasing interest (e.g., in cell biology). First, we show that myosin-induced actin filament sliding in the IVMA can be approximately described as persistent random motion with a diffusion coefficient (D) given by a relationship analogous to the Einstein equation (D = kT/gamma). In this relationship, the thermal energy (kT) and the drag coefficient (gamma) are substituted by a parameter related to the free-energy transduction by actomyosin and the actomyosin dissociation rate constant, respectively. We then demonstrate how the persistent random motion of actin filaments can be exploited in conceptually novel methods for the production of actin filament density gradients of predictable shapes. Because of regularly spaced binding sites (e.g., lysines and cysteines) the actin filaments act as suitable nanoscale scaffolds for other biomolecules (tested for fibronectin) or nanoparticles. This forms the basis for secondary chemical and topographical gradients with implications for cell biological studies and biosensing.
Collapse
Affiliation(s)
- Petr G Vikhorev
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Muscle contraction and other forms of cell motility occur as a result of cyclic interactions between myosin molecules and actin filaments. Force generation is generally attributed to ATP-driven structural changes in myosin, whereas a passive role is ascribed to actin. However, some results challenge this view, predicting structural changes in actin during motor activity, e.g., when the actin filaments slide on a myosin-coated surface in vitro. Here, we analyzed statistical properties of the sliding filament paths, allowing us to detect changes of this type. It is interesting to note that evidence for substantial structural changes that led to increased bending flexibility of the filaments was found in phalloidin-stabilized, but not in phalloidin-free, actin filaments. The results are in accordance with the idea that a high-flexibility structural state of actin is a prerequisite for force production, but not the idea that a low-to-high flexibility transition of the actin filament should be an important component of the force-generating step per se. Finally, our data challenge the general view that phalloidin-stabilized filaments behave as native actin filaments in their interaction with myosin. This has important implications, since phalloidin stabilization is a routine procedure in most studies of actomyosin function.
Collapse
|
25
|
Albet-Torres N, O'Mahony J, Charlton C, Balaz M, Lisboa P, Aastrup T, Månsson A, Nicholls IA. Mode of heavy meromyosin adsorption and motor function correlated with surface hydrophobicity and charge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:11147-56. [PMID: 17696458 DOI: 10.1021/la7008682] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The in vitro motility assay is valuable for fundamental studies of actomyosin function and has recently been combined with nanostructuring techniques for the development of nanotechnological applications. However, the limited understanding of the interaction mechanisms between myosin motor fragments (heavy meromyosin, HMM) and artificial surfaces hampers the development as well as the interpretation of fundamental studies. Here we elucidate the HMM-surface interaction mechanisms for a range of negatively charged surfaces (silanized glass and SiO2), which is relevant both to nanotechnology and fundamental studies. The results show that the HMM-propelled actin filament sliding speed (after a single injection of HMM, 120 microg/mL) increased with the contact angle of the surfaces (in the range of 20-80 degrees). However, quartz crystal microbalance (QCM) studies suggested a reduction in the adsorption of HMM (with coupled water) under these conditions. This result and actin filament binding data, together with previous measurements of the HMM density (Sundberg, M.; Balaz, M.; Bunk, R.; Rosengren-Holmberg, J. P.; Montelius, L.; Nicholls, I. A.; Omling, P.; Tågerud, S.; Månsson, A. Langmuir 2006, 22, 7302-7312. Balaz, M.; Sundberg, M.; Persson, M.; Kvassman, J.; Månsson, A. Biochemistry 2007, 46, 7233-7251), are consistent with (1) an HMM monolayer and (2) different HMM configurations at different contact angles of the surface. More specifically, the QCM and in vitro motility assay data are consistent with a model where the molecules are adsorbed either via their flexible C-terminal tail part (HMMC) or via their positively charged N-terminal motor domain (HMMN) without other surface contact points. Measurements of zeta potentials suggest that an increased contact angle is correlated with a reduced negative charge of the surfaces. As a consequence, the HMMC configuration would be the dominant configuration at high contact angles but would be supplemented with electrostatically adsorbed HMM molecules (HMMN configuration) at low contact angles. This would explain the higher initial HMM adsorption (from probability arguments) under the latter conditions. Furthermore, because the HMMN mode would have no actin binding it would also account for the lower sliding velocity at low contact angles. The results are compared to previous studies of the microtubule-kinesin system and are also discussed in relation to fundamental studies of actomyosin and nanotechnological developments and applications.
Collapse
Affiliation(s)
- Nuria Albet-Torres
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sundberg M, Månsson A, Tågerud S. Contact angle measurements by confocal microscopy for non-destructive microscale surface characterization. J Colloid Interface Sci 2007; 313:454-60. [PMID: 17553514 DOI: 10.1016/j.jcis.2007.04.067] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 04/15/2007] [Accepted: 04/29/2007] [Indexed: 11/28/2022]
Abstract
Contact angle measurements are of great importance in surface characterization but the practical use has often been limited to macroscopic dimensions (millimeters). Therefore, we have developed a confocal microscopy method that allows non-destructive measurements of both low (<30 degrees ) and high (30 degrees -90 degrees ) contact angles. Low contact angles were measured by reconstructing the drop profile from the interference patterns in droplets condensed from atmospheric humidity. At higher contact angles water droplets with a small amount of fluorescein were sprayed onto the surfaces and 3D-image stacks were recorded and used to extract the contact angle. Suitable drop sizes were between a few up to about 50 mum radius, using a 40x magnification objective. Using drops >10 micrometers radius for microcontact angle measurements a good correlation was obtained between measured micro- and macrocontact angles. After microcontact angle measurements the surfaces were rinsed and heavy meromyosin motor fragments were adsorbed to the surface. Importantly, the sensitive actin propelling function of these motor proteins was not affected by the previous contact angle measurements using fluorescent droplets. This suggests that the methodology should be suitable for non-destructive characterization of different parts of micropatterned surfaces being developed for biological assays.
Collapse
Affiliation(s)
- Mark Sundberg
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden.
| | | | | |
Collapse
|
27
|
Sundberg M, Bunk R, Albet-Torres N, Kvennefors A, Persson F, Montelius L, Nicholls IA, Ghatnekar-Nilsson S, Omling P, Tågerud S, Månsson A. Actin filament guidance on a chip: toward high-throughput assays and lab-on-a-chip applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:7286-95. [PMID: 16893228 DOI: 10.1021/la060854i] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biological molecular motors that are constrained so that function is effectively limited to predefined nanosized tracks may be used as molecular shuttles in nanotechnological applications. For these applications and in high-throughput functional assays (e.g., drug screening), it is important that the motors propel their cytoskeletal filaments unidirectionally along the tracks with a minimal number of escape events. We here analyze the requirements for achieving this for actin filaments that are propelled by myosin II motor fragments (heavy meromyosin; HMM). First, we tested the guidance of HMM-propelled actin filaments along chemically defined borders. Here, trimethylchlorosilane (TMCS)-derivatized areas with high-quality HMM function were surrounded by SiO(2) domains where HMM did not bind actin. Guidance along the TMCS-SiO(2) border was almost 100% for filament approach angles between 0 and 20 degrees but only about 10% at approach angles near 90 degrees . A model (Clemmens, J.; Hess, H.; Lipscomb, R.; Hanein, Y.; Bohringer, K. F.; Matzke, C. M.; Bachand, G. D.; Bunker, B. C.; Vogel, V. Langmuir 2003, 19, 10967-10974) accounted for essential aspects of the data and also correctly predicted a more efficient guidance of actin filaments than previously shown for kinesin-propelled microtubules. Despite the efficient guidance at low approach angles, nanosized (<700 nm wide) TMCS tracks surrounded by SiO(2) were not effective in guiding actin filaments. Neither was there complete guidance along nanosized tracks that were surrounded by topographical barriers (walls and roof partially covering the track) unless there was also chemically based selectivity between the tracks and surroundings. In the latter case, with dually defined tracks, there was close to 100% guidance. A combined experimental and theoretical analysis, using tracks of the latter type, suggested that a track width of less than about 200-300 nm is sufficient at a high HMM surface density to achieve unidirectional sliding of actin filaments. In accord with these results, we demonstrate the long-term trapping of actin filaments on a closed-loop track (width < 250 nm). The results are discussed in relation to lab-on-a-chip applications and nanotechnology-assisted assays of actomyosin function.
Collapse
Affiliation(s)
- Mark Sundberg
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sundberg M, Balaz M, Bunk R, Rosengren-Holmberg JP, Montelius L, Nicholls IA, Omling P, Tågerud S, Månsson A. Selective spatial localization of actomyosin motor function by chemical surface patterning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:7302-12. [PMID: 16893230 DOI: 10.1021/la060365i] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have previously described the efficient guidance and unidirectional sliding of actin filaments along nanosized tracks with adsorbed heavy meromyosin (HMM; myosin II motor fragment). In those experiments, the tracks were functionalized with trimethylchlorosilane (TMCS) by chemical vapor deposition (CVD) and surrounded by hydrophilic areas. Here we first show, using in vitro motility assays on nonpatterned and micropatterned surfaces, that the quality of HMM function on CVD-TMCS is equivalent to that on standard nitrocellulose substrates. We further examine the influences of physical properties of different surfaces (glass, SiO(2), and TMCS) and chemical properties of the buffer solution on motility. With the presence of methylcellulose in the assay solution, there was HMM-induced actin filament sliding on both glass/SiO(2) and on TMCS, but the velocity was higher on TMCS. This difference in velocity increased with decreasing contact angles of the glass and SiO(2) surfaces in the range of 20-67 degrees (advancing contact angles for water droplets). The corresponding contact angle of CVD-TMCS was 81 degrees. In the absence of methylcellulose, there was high-quality motility on TMCS but no motility on glass/SiO(2). This observation was independent of the contact angle of the glass/SiO(2) surfaces and of HMM incubation concentrations (30-150 microg mL(-)(1)) and ionic strengths of the assay solution (20-50 mM). Complete motility selectivity between TMCS and SiO(2) was observed for both nonpatterned and for micro- and nanopatterned surfaces. Spectrophotometric analysis of HMM depletion during incubation, K/EDTA ATPase measurements, and total internal reflection fluorescence spectroscopy of HMM binding showed only minor differences in HMM surface densities between TMCS and SiO(2)/glass. Thus, the motility contrast between the two surface chemistries seems to be attributable to different modes of HMM binding with the hindrance of actin binding on SiO(2)/glass.
Collapse
Affiliation(s)
- Mark Sundberg
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Balaz M, Månsson A. Detection of small differences in actomyosin function using actin labeled with different phalloidin conjugates. Anal Biochem 2005; 338:224-36. [PMID: 15745742 DOI: 10.1016/j.ab.2004.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2004] [Indexed: 10/25/2022]
Abstract
This study shows that there is only a negligible difference in actomyosin function in the in vitro motility assay among actin filaments labeled with Rhodamine phalloidin (RhPh), Alexa-488 phalloidin (APh), and biotin-XX phalloidin (BPh). Similar results were obtained at varying ionic strengths (0.02-0.13 M), in the presence of imidazole or 3-[N-morpholino]propanesulfonic acid (MOPS) buffer, and at varying MgATP concentrations (0.1-3 mM). If RhPh- and APh-labeled filaments were studied in a given flow cell, there was minimal variability in sliding velocity between the fluorophores (standard deviation of 3% of the absolute sliding velocity). The variability was considerably smaller than that between flow cells, allowing us to use dual labeling of different actin types and then apply analysis of variance to detect minor functional differences between them. Using this method, we could statistically verify a 4% difference (P<0.001) in sliding velocity (3mM Mg ATP) between cardiac and skeletal muscle actin. Suggested improvements of the method would readily allow the detection of even smaller differences. We discuss implications of the results for nanotechnological applications, understanding actomyosin function, and reducing experimental costs and the use of laboratory animals.
Collapse
Affiliation(s)
- Martina Balaz
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden
| | | |
Collapse
|
30
|
Sundberg M, Rosengren JP, Bunk R, Lindahl J, Nicholls IA, Tågerud S, Omling P, Montelius L, Månsson A. Silanized surfaces for in vitro studies of actomyosin function and nanotechnology applications. Anal Biochem 2004; 323:127-38. [PMID: 14622967 DOI: 10.1016/j.ab.2003.07.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown that selective heavy meromyosin (HMM) adsorption to predefined regions of nanostructured polymer resist surfaces may be used to produce a nanostructured in vitro motility assay. However, actomyosin function was of lower quality than on conventional nitrocellulose films. We have therefore studied actomyosin function on differently derivatized glass surfaces with the aim to find a substitute for the polymer resists. We have found that surfaces derivatized with trimethylchlorosilane (TMCS) were superior to all other surfaces tested, including nitrocellulose. High-quality actin filament motility was observed up to 6 days after incubation with HMM and the fraction of motile actin filaments and the velocity of smooth sliding were generally higher on TMCS than on nitrocellulose. The actomyosin function on TMCS-derivatized glass and nitrocellulose is considered in relation to roughness and hydrophobicity of these surfaces. The results suggest that TMCS is an ideal substitute for polymer resists in the nanostructured in vitro motility assay. Furthermore, TMCS derivatized glass also seems to offer several advantages over nitrocellulose for HMM adsorption in the ordinary in vitro motility assay.
Collapse
Affiliation(s)
- Mark Sundberg
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Månsson A, Sundberg M, Balaz M, Bunk R, Nicholls IA, Omling P, Tågerud S, Montelius L. In vitro sliding of actin filaments labelled with single quantum dots. Biochem Biophys Res Commun 2004; 314:529-34. [PMID: 14733939 DOI: 10.1016/j.bbrc.2003.12.133] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently refined the in vitro motility assay for studies of actomyosin function to achieve rectified myosin induced sliding of actin filaments. This paves the way, both for detailed functional studies of actomyosin and for nanotechnological applications. In the latter applications it would be desirable to use actin filaments for transportation of cargoes (e.g., enzymes) between different predetermined locations on a chip. We here describe how single quantum dot labelling of isolated actin filaments simultaneously provides handles for cargo attachment and bright and photostable fluorescence labels facilitating cargo detection and filament tracking. Labelling was achieved with preserved actomyosin function using streptavidin-coated CdSe quantum dots (Qdots). These nanocrystals have several unique physical properties and the present work describes their first use for functional studies of isolated proteins outside the cell. The results, in addition to the nanotechnology developments, open for new types of in vitro assays of isolated biomolecules.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-39182 Kalmar, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bunk R, Klinth J, Montelius L, Nicholls IA, Omling P, Tågerud S, Månsson A. Actomyosin motility on nanostructured surfaces. Biochem Biophys Res Commun 2003; 301:783-8. [PMID: 12565849 DOI: 10.1016/s0006-291x(03)00027-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have here, for the first time, used nanofabrication techniques to reproduce aspects of the ordered actomyosin arrangement in a muscle cell. The adsorption of functional heavy meromyosin (HMM) to five different resist polymers was first assessed. One group of resists (MRL-6000.1XP and ZEP-520) consistently exhibited high quality motility of actin filaments after incubation with HMM. A second group (PMMA-200, PMMA-950, and MRI-9030) generally gave low quality of motility with only few smoothly moving filaments. Based on these findings electron beam lithography was applied to a bi-layer resist system with PMMA-950 on top of MRL-6000.1XP. Grooves (100-200nm wide) in the PMMA layer were created to expose the MRL-6000.1XP surface for adsorption of HMM and guidance of actin filament motility. This guidance was quite efficient allowing no U-turns of the filaments and approximately 20 times higher density of moving filaments in the grooves than on the surrounding PMMA.
Collapse
Affiliation(s)
- Richard Bunk
- Division of Solid State Physics and The Nanometer Consortium, University of Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|