1
|
Liu Q, Wang X, Benedict A, Janibekyan L, Su SW, Wang Y, Zhou F. Surface Plasmon Resonance Coupled with Potential‐step Chronoamperometry: Theory and Applications for Quantitative Measurements of Electrodeposited Thin Films. ELECTROANAL 2019. [DOI: 10.1002/elan.201900006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qinghua Liu
- College of Chemistry and Chemical EngineeringCentral South University Changsha, Hunan, Human P. R. China 410083
- Institute of Surface Analysis and Chemical BiologyUniversity of Jinan Jinan, Shandong P. R. China 250022
| | - Xiaoying Wang
- College of Chemistry and Chemical EngineeringCentral South University Changsha, Hunan, Human P. R. China 410083
- Institute of Surface Analysis and Chemical BiologyUniversity of Jinan Jinan, Shandong P. R. China 250022
| | - Andrew Benedict
- Department of Chemistry and BiochemistryCalifornia State University Los Angeles, California 90032 U.S.A
| | - Lusine Janibekyan
- Department of Chemistry and BiochemistryCalifornia State University Los Angeles, California 90032 U.S.A
| | - Stephanie Wong Su
- Department of Chemistry and BiochemistryCalifornia State University Los Angeles, California 90032 U.S.A
| | - Yixian Wang
- Department of Chemistry and BiochemistryCalifornia State University Los Angeles, California 90032 U.S.A
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical BiologyUniversity of Jinan Jinan, Shandong P. R. China 250022
- Department of Chemistry and BiochemistryCalifornia State University Los Angeles, California 90032 U.S.A
| |
Collapse
|
2
|
Dell’Orco D, Koch KW. Fingerprints of Calcium-Binding Protein Conformational Dynamics Monitored by Surface Plasmon Resonance. ACS Chem Biol 2016; 11:2390-7. [PMID: 27380526 DOI: 10.1021/acschembio.6b00470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface plasmon resonance (SPR) spectroscopy is widely used to probe interactions involving biological macromolecules by detecting changes in the refractive index in a metal/dielectric interface following the dynamic formation of a molecular complex. In past years, SPR-based experimental approaches were developed to monitor conformational changes induced by the binding of small analytes to proteins coupled to the surface of commercially available sensor chips. A significant contribution to our understanding of the phenomenon came from the study of several Ca(2+)-sensor proteins operating in diverse cellular scenarios, in which the conformational switch is triggered by specific Ca(2+) signals. Structural and physicochemical analyses demonstrated that the SPR signal not only depends on the change in protein size upon Ca(2+)-binding but likely originates from variations in the hydration shell structure. The resulting changes in the dielectric properties of water or of the protein-water interface eventually reflect different crowding conditions on the SPR sensor chip, which mimic the cellular environment. SPR could hence be used to monitor conformational transitions in proteins, especially when a significant variation in the hydrophobicity of the solvent-exposed protein surface occurs, thus leading to changes in the dielectric milieu of the whole sensor chip surface. We review recent work in which SPR has been successfully employed to provide a fingerprint of the conformational change dynamics in proteins under native and altered conditions, which include post-translational modifications, copresence of competing analytes, and point mutations of single amino acids associated with genetic diseases.
Collapse
Affiliation(s)
- Daniele Dell’Orco
- Department
of Neurosciences, Biomedicine and Movement Sciences, Section of Biological
Chemistry, University of Verona, I-37134 Verona, Italy
| | - Karl-Wilhelm Koch
- Department
of Neurosciences, Biochemistry Group, University of Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
3
|
Palau W, Masante C, Ventura M, Di Primo C. Direct evidence for RNA-RNA interactions at the 3' end of the Hepatitis C virus genome using surface plasmon resonance. RNA (NEW YORK, N.Y.) 2013; 19:982-991. [PMID: 23651615 PMCID: PMC3683932 DOI: 10.1261/rna.037606.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
Surface plasmon resonance was used to investigate two previously described interactions analyzed by reverse genetics and complementation mutation experiments, involving 5BSL3.2, a stem-loop located in the NS5B coding region of HCV. 5BSL3.2 was immobilized on a sensor chip by streptavidin-biotin coupling, and its interaction either with the SL2 stem-loop of the 3' end or with an upstream sequence centered on nucleotide 9110 (referred to as Seq9110) was monitored in real-time. In contrast with previous results obtained by NMR assays with the same short RNA sequences that we used or SHAPE analysis with longer RNAs, we demonstrate that recognition between 5BSL3.2 and SL2 can occur in solution through a kissing-loop interaction. We show that recognition between Seq9110 and the internal loop of 5BSL3.2 does not prevent binding of SL2 on the apical loop of 5BSL3.2 and does not influence the rate constants of the SL2-5BSL3.2 complex. Therefore, the two binding sites of 5BSL3.2, the apical and internal loops, are structurally independent and both interactions can coexist. We finally show that the stem-loop SL2 is a highly dynamic RNA motif that fluctuates between at least two conformations: One is able to hybridize with 5BSL3.2 through loop-loop interaction, and the other one is capable of self-associating in the absence of protein, reinforcing the hypothesis of SL2 being a dimerization sequence. This result suggests also that the conformational dynamics of SL2 could play a crucial role for controlling the destiny of the genomic RNA.
Collapse
Affiliation(s)
- William Palau
- Université de Bordeaux, Laboratoire ARNA, F-33000 Bordeaux, France
- INSERM, U869, Laboratoire ARNA, F-33600 Pessac, France
| | - Cyril Masante
- Université de Bordeaux, Laboratoire MFP-UMR5234, F-33000 Bordeaux, France
- CNRS UMR 5234, Laboratoire MFP-UMR5234, F-33000 Bordeaux, France
| | - Michel Ventura
- Université de Bordeaux, Laboratoire MFP-UMR5234, F-33000 Bordeaux, France
- CNRS UMR 5234, Laboratoire MFP-UMR5234, F-33000 Bordeaux, France
| | - Carmelo Di Primo
- Université de Bordeaux, Laboratoire ARNA, F-33000 Bordeaux, France
- INSERM, U869, Laboratoire ARNA, F-33600 Pessac, France
| |
Collapse
|
4
|
Dell'Orco D, Sulmann S, Linse S, Koch KW. Dynamics of conformational Ca2+-switches in signaling networks detected by a planar plasmonic device. Anal Chem 2012; 84:2982-9. [PMID: 22404528 DOI: 10.1021/ac300213j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ca(2+)-sensor proteins regulate a variety of intracellular processes by adopting specific conformations in response to finely tuned changes in Ca(2+)-concentration. Here we present a surface plasmon resonance (SPR)-based approach, which allows for simultaneous detection of conformational dynamics of four Ca(2+)-sensor proteins (calmodulin, recoverin, GCAP1, and GCAP2) operating in the vertebrate phototransduction cascade, over variations in Ca(2+) concentration in the 0.1-0.6 μM range. By working at conditions that quantitatively mimic those found in the cell, we show that the method is able to detect subtle differences in the dynamics of each Ca(2+)-sensor, which appear to be influenced by the presence of free Mg(2+) at physiological concentration and by posttranslational modifications such as myristoylation. Comparison between the macroscopic Ca(2+)-binding constants, directly measured by competition with a chromophoric chelator, and the concerted binding-conformational switch detected by SPR at equilibrium reveals the relative contribution of the conformational change process to the SPR signal. This process appears to be influenced by the presence of other cations that perturb Ca(2+)-binding and the conformational transition by competing with Ca(2+), or by pure electrostatic screening. In conclusion, the approach described here allows a comparative analysis of protein conformational changes occurring under physiologically relevant molecular crowding conditions in ultrathin biosensor layers.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.
| | | | | | | |
Collapse
|
5
|
Naghib SM, Rabiee M, Omidinia E, Khoshkenar P. Investigation of a Biosensor Based on Phenylalanine Dehydrogenase Immobilized on a Polymer-Blend Film for Phenylketonuria Diagnosis. ELECTROANAL 2012. [DOI: 10.1002/elan.201100391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Patel TR, Meier M, Li J, Morris G, Rowe AJ, Stetefeld J. T-shaped arrangement of the recombinant agrin G3-IgG Fc protein. Protein Sci 2011; 20:931-40. [PMID: 21448912 PMCID: PMC3104224 DOI: 10.1002/pro.628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 12/12/2022]
Abstract
Agrin is a large heparin sulphate proteoglycan with multiple domains, which is located in the extracellular matrix. The C-terminal G3 domain of agrin is functionally one of the most important domains. It harbors an α-dystroglycan binding site and carries out acetylcholine receptor clustering activities. In the present study, we have fused the G3 domain of agrin to an IgG Fc domain to produce a G3-Fc fusion protein that we intend to use as a tool to investigate new binding partners of agrin. As a first step of the study, we have characterized the recombinant fusion protein using a multidisciplinary approach using dynamic light scattering, analytical ultracentrifugation and small angle X-ray scattering (SAXS). Interestingly, our SAXS analysis using the high-resolution structures of G3 and Fc domain as models indicates that the G3-Fc protein forms a T-shaped molecule with the G3 domains extruding perpendicularly from the Fc scaffold. To validate our models, we have used the program HYDROPRO to calculate the hydrodynamic properties of the solution models. The calculated values are in excellent agreement with those determined experimentally.
Collapse
Affiliation(s)
- Trushar R Patel
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Manta B, Obal G, Ricciardi A, Pritsch O, Denicola A. Tools to evaluate the conformation of protein products. Biotechnol J 2011; 6:731-41. [DOI: 10.1002/biot.201100107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/31/2011] [Accepted: 04/04/2011] [Indexed: 11/10/2022]
|
8
|
Aran M, Ferrero D, Wolosiuk A, Mora-García S, Wolosiuk RA. ATP and Mg2+ promote the reversible oligomerization and aggregation of chloroplast 2-Cys peroxiredoxin. J Biol Chem 2011; 286:23441-51. [PMID: 21525006 DOI: 10.1074/jbc.m111.239434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-Cys peroxiredoxins (2-Cys Prxs) are ubiquitous peroxidases with important roles in cellular antioxidant defense and hydrogen peroxide-mediated signaling. Post-translational modifications of conserved cysteines cause the transition from low to high molecular weight oligomers, triggering the functional change from peroxidase to molecular chaperone. However, it remains unclear how non-covalent interactions of 2-Cys Prx with metabolites modulate the quaternary structure. Here, we disclose that ATP and Mg(2+) (ATP/Mg) promote the self-polymerization of chloroplast 2-Cys Prx (polypeptide 23.5 kDa) into soluble higher order assemblies (>2 MDa) that proceed to insoluble aggregates beyond 5 mM ATP. Remarkably, the withdrawal of ATP or Mg(2+) brings soluble oligomers and insoluble aggregates back to the native conformation without compromising the associated functions. As confirmed by transmission electron microscopy, ATP/Mg drive the toroid-like decamers (diameter 13 nm) to the formation of large sphere-like particles (diameter ∼30 nm). Circular dichroism studies on ATP-labeled 2-Cys Prx reveal that ATP/Mg enhance the proportion of β-sheets with the concurrent decrease in the content of α-helices. In line with this observation, the formation of insoluble aggregates is strongly prevented by 2,2,2-trifluoroethanol, a cosolvent employed to induce α-helical conformations. We further find that the response of self-polymerization to ATP/Mg departs abruptly from that of the associated peroxidase and chaperone activities when two highly conserved residues, Arg(129) and Arg(152), are mutated. Collectively, our data uncover that non-covalent interactions of ATP/Mg with 2-Cys Prx modulate dynamically the quaternary structure, thereby coupling the non-redox chemistry of cell energy with redox transformations at cysteine residues.
Collapse
Affiliation(s)
- Martín Aran
- Instituto de Investigaciones Bioquímicas-Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Depto. Química Biológica-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
9
|
Dell'Orco D, Müller M, Koch KW. Quantitative detection of conformational transitions in a calcium sensor protein by surface plasmon resonance. Chem Commun (Camb) 2010; 46:7316-8. [PMID: 20835460 DOI: 10.1039/c0cc02086a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We determined the conditions under which surface plasmon resonance can be used to monitor at real-time the Ca(2+)-induced conformational transitions of the sensor protein recoverin immobilized over a sensor chip. The equilibrium and the kinetics of conformational transitions were detected and quantified over a physiological range of Ca(2+) and protein concentrations similar to those found within cells. Structural analysis suggests that the detection principle reflects changes in the hydrodynamic properties of the protein and is not due to a mass effect. The phenomenon appears to be related to changes in the refractive index at the metal/dielectric interface.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Institute of Biology and Environmental Sciences, Biochemistry Group, University of Oldenburg, D-26111 Oldenburg, Germany.
| | | | | |
Collapse
|
10
|
Chen LY. Monitoring conformational changes of immobilized RNase A and Lysozyme in reductive unfolding by surface plasmon resonance. Anal Chim Acta 2009; 631:96-101. [DOI: 10.1016/j.aca.2008.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/05/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
|
11
|
Bhambhani A, Chah S, Hvastkovs EG, Jensen GC, Rusling JF, Zare RN, Kumar CV. Folding control and unfolding free energy of yeast iso-1-cytochrome c bound to layered zirconium phosphate materials monitored by surface plasmon resonance. J Phys Chem B 2008; 112:9201-8. [PMID: 18598069 DOI: 10.1021/jp7121642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The free energy change (Delta G degrees ) for the unfolding of immobilized yeast iso-1-cytochrome c (Cyt c) at nanoassemblies was measured by surface plasmon resonance (SPR) spectroscopy. Data show that SPR is sensitive to protein conformational changes, and protein solid interface exerts a major influence on bound protein stability. First, Cyt c was self-assembled on the Au film via the single thiol of Cys-102. Then, crystalline sheets of layered alpha-Zr(O(3)POH)(2).H(2)O (alpha-ZrP) or Zr(O(3)PCH(2)CH(2)COOH)(2).xH(2)O (alpha-ZrCEP) were adsorbed to construct alpha-ZrP/Cyt c/Au or alpha-ZrCEP/Cyt c/Au nanoassemblies. The construction of each layer was monitored by SPR, in real time, and the assemblies were further characterized by atomic force microscopy and electrochemical studies. Thermodynamic stability of the protein nanoassembly was assessed by urea-induced unfolding. Surprisingly, unfolding is reversible in all cases studied here. Stability of Cyt c in alpha-ZrP/Cyt c/Au increased by approximately 4.3 kJ/mol when compared to the unfolding free energy of Cyt c/Au assembly. In contrast, the protein stability decreased by approximately 1.5 kJ/mol for alpha-ZrCEP/Cyt c/Au layer. Thus, OH-decorated surfaces stabilized the protein whereas COOH-decorated surfaces destabilized it. These data quantitate the role of specific functional groups of the inorganic layers in controlling bound protein stability.
Collapse
Affiliation(s)
- Akhilesh Bhambhani
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Ricklin D, Lambris JD. Exploring the complement interaction network using surface plasmon resonance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:260-78. [PMID: 17892218 DOI: 10.1007/978-0-387-71767-8_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104-6100, USA.
| | | |
Collapse
|
13
|
Wood DO, Lee JS. Investigation of pH-dependent DNA-metal ion interactions by surface plasmon resonance. J Inorg Biochem 2005; 99:566-74. [PMID: 15621291 DOI: 10.1016/j.jinorgbio.2004.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 10/22/2004] [Accepted: 11/01/2004] [Indexed: 11/16/2022]
Abstract
Ni(II) and Zn(II) M-DNA formation and denaturation of double-stranded DNA (dsDNA) by Cd(2+) were monitored by surface plasmon resonance (SPR). When exposed to immobilized 30 bp 50% GC dsDNA, Zn(2+) and Ni(2+) were found to give signals indicative of a conformational change at pH 8.5 but not 7.5, while Mg(2+) and Ca(2+) caused small changes at both pHs. The concentrations that gave 50% of the maximum responses were 0.06 and 0.50 mM for Zn(2+) and Ni(2+), respectively. At pH 8.5, Cd(2+) denatured over 40% of the dsDNA, while other metals denatured less than 5% of the DNA. Smaller pH-dependent signals were induced by Zn(2+), Ni(2+) or Cd(2+) with 50% GC single-stranded DNA (ssDNA), and with a homopolymer of d(T)30. Homopolymers d(A)30 and d(C)30 showed small signals that were largely independent of pH in the presence of Zn(2+) or Ni(2+).
Collapse
Affiliation(s)
- David O Wood
- Department of Biochemistry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada S7N 5E5
| | | |
Collapse
|
14
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
15
|
Chien FC, Liu JS, Su HJ, Kao LA, Chiou CF, Chen WY, Chen SJ. An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|