1
|
Stopper D, Biermann L, Watson PR, Li J, König B, Gaynes MN, Pessanha de Carvalho L, Klose J, Hanl M, Hamacher A, Schäker-Hübner L, Ramsbeck D, Held J, Christianson DW, Kassack MU, Hansen FK. Exploring Alternative Zinc-Binding Groups in Histone Deacetylase (HDAC) Inhibitors Uncovers DS-103 as a Potent Ethylhydrazide-Based HDAC Inhibitor with Chemosensitizing Properties. J Med Chem 2025; 68:4426-4452. [PMID: 39946728 PMCID: PMC11867874 DOI: 10.1021/acs.jmedchem.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
In this work, we synthesized a series of peptoid-based histone deacetylase (HDAC) inhibitors with variations in the linker region and zinc-binding groups. All compounds were investigated for their HDAC inhibition, antiplasmodial activity, and cytotoxicity against native and cisplatin-resistant carcinoma cell lines. The ethylhydrazide 20 (DS-103) proved to be the most effective compound in these primary screenings. DS-103 showed nanomolar inhibition of class I HDACs and of HDAC6 (class IIb). To further investigate the binding mode of DS-103, a crystal structure of DS-103 in complex with HDAC6 was obtained, which represents the first reported crystal structure of an alkylhydrazide in complex with an HDAC enzyme. Importantly, DS-103 completely reversed cisplatin resistance in two different platinum-resistant solid cancer cell lines and demonstrated strong synergism with cisplatin. The synergistic anticancer effects are mediated by increased DNA damage and p21 expression, resulting in caspase-mediated apoptosis and cell death.
Collapse
Affiliation(s)
- Daniel Stopper
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Lukas Biermann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jingyu Li
- Institute of Pharmaceutical and Medicinal Chemistry, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Beate König
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Matthew N Gaynes
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | | | - Jana Klose
- Department of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Maria Hanl
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Daniel Ramsbeck
- Department of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, 72074 Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
2
|
Stopper D, Buntrock S, Tan K, de Carvalho LP, Schäker-Hübner L, Held J, Kassack MU, Hansen FK. Multicomponent syntheses enable the discovery of novel quisinostat-derived chemotypes as histone deacetylase inhibitors. Eur J Med Chem 2025; 281:117045. [PMID: 39549507 DOI: 10.1016/j.ejmech.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
In this study, we synthesized and evaluated novel histone deacetylase (HDAC) inhibitors derived from the clinical candidate quisinostat. A library of 16 compounds categorized in three novel chemotypes was rapidly generated using multicomponent reactions (MCRs), enabling efficient structure-activity relationship studies. First, the compounds were evaluated for their activity against the Plasmodium falciparum strains 3D7 and Dd2, the main malaria-causing parasite, identifying compound 18b of the type C series as the most potent. It demonstrated low nanomolar IC50 values (IC50 (3D7) = 0.023 μM; IC50 (Dd2) = 0.047 μM) and high parasite selectivity (SIMRC-5/Pf3D7 > 2174). HDAC inhibition assays confirmed substantial inhibition of the P. falciparum enzyme PfHDAC1 (IC50 = 0.037 μM) as well as of human HDAC1 (IC50 = 0.021 μM) and HDAC6 (IC50 = 0.25 μM). Docking studies suggested distinct binding modes of 18b in P. falciparum and human HDAC1. Additionally, the in vitro anticancer activity was evaluated in Cal27 (head-neck carcinoma), HepG2 (hepatocellular carcinoma), A2780 (ovarian carcinoma), and U87 (glioblastoma) cell lines. Compounds 9b, 9d, and 13f showed potent antiproliferative activity and caspase 3/7 activation, in contrast to 18b. Furthermore, these compounds caused hyperacetylation of histone H3 and α-tubulin, indicating robust cellular target engagement. Overall, in this work we have identified the HDAC inhibitor 18b with selective antiplasmodial and 9b, 9d, and 13f with selective anticancer activities, providing valuable hits for further drug development efforts aimed at creating derivatives with reduced cytotoxicity against non-cancer cells compared to quisinostat.
Collapse
Affiliation(s)
- Daniel Stopper
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Susanna Buntrock
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Kathrin Tan
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | | | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074, Tübingen, Germany; German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany.
| |
Collapse
|
3
|
Stopper D, de Carvalho LP, de Souza ML, Kponomaizoun CE, Winzeler EA, Held J, Hansen FK. Development of peptoid-based heteroaryl-decorated histone deacetylase (HDAC) inhibitors with dual-stage antiplasmodial activity. Eur J Med Chem 2024; 277:116782. [PMID: 39208744 DOI: 10.1016/j.ejmech.2024.116782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Dynamics of epigenetic modifications such as acetylation and deacetylation of histone proteins have been shown to be crucial for the life cycle development and survival of Plasmodium falciparum, the deadliest malaria parasite. In this study, we present a novel series of peptoid-based histone deacetylase (HDAC) inhibitors incorporating nitrogen-containing bicyclic heteroaryl residues as a new generation of antiplasmodial peptoid-based HDAC inhibitors. We synthesized the HDAC inhibitors by an efficient multicomponent protocol based on the Ugi four-component reaction. The subsequent screening of 16 compounds from our mini-library identified 6i as the most promising candidate, demonstrating potent activity against asexual blood-stage parasites (IC50Pf3D7 = 30 nM; IC50PfDd2 = 98 nM), low submicromolar activity against liver-stage parasites (IC50PbEEF = 0.25 μM), excellent microsomal stability (t1/2 > 60 min), and low cytotoxicity to HEK293 cells (IC50 = 136 μM).
Collapse
Affiliation(s)
- Daniel Stopper
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | | | - Mariana Laureano de Souza
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Cindy-Esther Kponomaizoun
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074, Tübingen, Germany; German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany.
| |
Collapse
|
4
|
Bonomi RE, Riordan W, Gelovani JG. The Structures, Functions, and Roles of Class III HDACs (Sirtuins) in Neuropsychiatric Diseases. Cells 2024; 13:1644. [PMID: 39404407 PMCID: PMC11476333 DOI: 10.3390/cells13191644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Over the past two decades, epigenetic regulation has become a rapidly growing and influential field in biology and medicine. One key mechanism involves the acetylation and deacetylation of lysine residues on histone core proteins and other critical proteins that regulate gene expression and cellular signaling. Although histone deacetylases (HDACs) have received significant attention, the roles of individual HDAC isoforms in the pathogenesis of psychiatric diseases still require further research. This is particularly true with regard to the sirtuins, class III HDACs. Sirtuins have unique functional activity and significant roles in normal neurophysiology, as well as in the mechanisms of addiction, mood disorders, and other neuropsychiatric abnormalities. This review aims to elucidate the differences in catalytic structure and function of the seven sirtuins as they relate to psychiatry.
Collapse
Affiliation(s)
- Robin E. Bonomi
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA;
| | - William Riordan
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA;
| | - Juri G. Gelovani
- College of Medicine and Health Sciences, Office of the Provost, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Radiology, Division of Nuclear Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
5
|
Sinatra L, Vogelmann A, Friedrich F, Tararina MA, Neuwirt E, Colcerasa A, König P, Toy L, Yesiloglu TZ, Hilscher S, Gaitzsch L, Papenkordt N, Zhai S, Zhang L, Romier C, Einsle O, Sippl W, Schutkowski M, Gross O, Bendas G, Christianson DW, Hansen FK, Jung M, Schiedel M. Development of First-in-Class Dual Sirt2/HDAC6 Inhibitors as Molecular Tools for Dual Inhibition of Tubulin Deacetylation. J Med Chem 2023; 66:14787-14814. [PMID: 37902787 PMCID: PMC10641818 DOI: 10.1021/acs.jmedchem.3c01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
Dysregulation of both tubulin deacetylases sirtuin 2 (Sirt2) and the histone deacetylase 6 (HDAC6) has been associated with the pathogenesis of cancer and neurodegeneration, thus making these two enzymes promising targets for pharmaceutical intervention. Herein, we report the design, synthesis, and biological characterization of the first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. Using biochemical in vitro assays and cell-based methods for target engagement, we identified Mz325 (33) as a potent and selective inhibitor of both target enzymes. Inhibition of both targets was further confirmed by X-ray crystal structures of Sirt2 and HDAC6 in complex with building blocks of 33. In ovarian cancer cells, 33 evoked enhanced effects on cell viability compared to single or combination treatment with the unconjugated Sirt2 and HDAC6 inhibitors. Thus, our dual Sirt2/HDAC6 inhibitors are important new tools to study the consequences and the therapeutic potential of dual inhibition of tubulin deacetylation.
Collapse
Affiliation(s)
- Laura Sinatra
- Institute
for Drug Discovery, Medical Faculty, Leipzig
University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Anja Vogelmann
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Florian Friedrich
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Margarita A. Tararina
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emilia Neuwirt
- Institute
of Neuropathology, Medical Center−University of Freiburg, Faculty
of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
- CIBSS−Centre
for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Arianna Colcerasa
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Philipp König
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lara Toy
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Talha Z. Yesiloglu
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
| | - Sebastian Hilscher
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
- Department
of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry
and Biotechnology, Martin-Luther-University
Halle-Wittenberg, 06120 Halle, Germany
| | - Lena Gaitzsch
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Niklas Papenkordt
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Shiyang Zhai
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lin Zhang
- Institute
of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Christophe Romier
- Institut
de Génétique et de Biologie Moléculaire et Cellulaire
(IGBMC), Université de Strasbourg,
CNRS UMR 7104, Inserm UMR-S 1258, 1 rue Laurent Fries, F-67400 Illkirch, France
| | - Oliver Einsle
- Institute
of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Wolfgang Sippl
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
| | - Mike Schutkowski
- Department
of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry
and Biotechnology, Martin-Luther-University
Halle-Wittenberg, 06120 Halle, Germany
| | - Olaf Gross
- Institute
of Neuropathology, Medical Center−University of Freiburg, Faculty
of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
- CIBSS−Centre
for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Center
for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
| | - Gerd Bendas
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - David W. Christianson
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Finn K. Hansen
- Institute
for Drug Discovery, Medical Faculty, Leipzig
University, Brüderstraße 34, 04103 Leipzig, Germany
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Manfred Jung
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Helmi YY, Papenkordt N, Rennar G, Gbahou F, El-Hady AK, Labani N, Schmidtkunz K, Boettcher S, Jockers R, Abdel-Halim M, Jung M, Zlotos DP. Melatonin-vorinostat hybrid ligands show higher histone deacetylase and cancer cell growth inhibition than vorinostat. Arch Pharm (Weinheim) 2023; 356:e2300149. [PMID: 37339785 DOI: 10.1002/ardp.202300149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
Anticancer drug conjugates are an emerging approach for future cancer treatment. Here, we report a series of hybrid ligands merging the neurohormone melatonin with the approved histone deacetylase (HDAC) inhibitor vorinostat, using melatonin's amide side chain (3a-e), its indolic nitrogen (5a-d), and its ether oxygen (7a-d) as attachment points. Several hybrid ligands showed higher potency thanvorinostat in both HDAC inhibition and cellular assays on different cultured cancer cell lines. In the most potent HDAC1 and HDAC6 inhibitors, 3e, 5c, and 7c, the hydroxamic acid moiety of vorinostat is linked to melatonin through a hexamethylene spacer. Hybrid ligands 5c and 7c were also found to be potent growth inhibitors of MCF-7, PC-3M-Luc, and HL-60 cancer cell lines. As these compounds showed only weak agonist activity at melatonin MT1 receptors, the findings indicate that their anticancer actions are driven by HDAC inhibition.
Collapse
Affiliation(s)
- Youssef Y Helmi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
| | - Niklas Papenkordt
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Georg Rennar
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Florence Gbahou
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Ahmed K El-Hady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capitol, Cairo, Egypt
| | - Nedjma Labani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Stefan Boettcher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
7
|
Zessin M, Meleshin M, Hilscher S, Schiene-Fischer C, Barinka C, Jung M, Schutkowski M. Continuous Fluorescent Sirtuin Activity Assay Based on Fatty Acylated Lysines. Int J Mol Sci 2023; 24:ijms24087416. [PMID: 37108579 PMCID: PMC10138348 DOI: 10.3390/ijms24087416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lysine deacetylases, like histone deacetylases (HDACs) and sirtuins (SIRTs), are involved in many regulatory processes such as control of metabolic pathways, DNA repair, and stress responses. Besides robust deacetylase activity, sirtuin isoforms SIRT2 and SIRT3 also show demyristoylase activity. Interestingly, most of the inhibitors described so far for SIRT2 are not active if myristoylated substrates are used. Activity assays with myristoylated substrates are either complex because of coupling to enzymatic reactions or time-consuming because of discontinuous assay formats. Here we describe sirtuin substrates enabling direct recording of fluorescence changes in a continuous format. Fluorescence of the fatty acylated substrate is different when compared to the deacylated peptide product. Additionally, the dynamic range of the assay could be improved by the addition of bovine serum albumin, which binds the fatty acylated substrate and quenches its fluorescence. The main advantage of the developed activity assay is the native myristoyl residue at the lysine side chain avoiding artifacts resulting from the modified fatty acyl residues used so far for direct fluorescence-based assays. Due to the extraordinary kinetic constants of the new substrates (KM values in the low nM range, specificity constants between 175,000 and 697,000 M-1s-1) it was possible to reliably determine the IC50 and Ki values for different inhibitors in the presence of only 50 pM of SIRT2 using different microtiter plate formats.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Sebastian Hilscher
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Cyril Barinka
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
8
|
Photocaged Histone Deacetylase Inhibitors as Prodrugs in Targeted Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:ph16030356. [PMID: 36986455 PMCID: PMC10056348 DOI: 10.3390/ph16030356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Histone deacetylases (HDACs) play a key role in the control of transcription, cell proliferation, and migration. FDA-approved histone deacetylase inhibitors (HDACi) demonstrate clinical efficacy in the treatment of different T-cell lymphomas and multiple myeloma. However, due to unselective inhibition, they display a wide range of adverse effects. One approach to avoiding off-target effects is the use of prodrugs enabling a controlled release of the inhibitor in the target tissue. Herein, we describe the synthesis and biological evaluation of HDACi prodrugs with photo-cleavable protecting groups masking the zinc-binding group of the established HDACi DDK137 (I) and VK1 (II). Initial decaging experiments confirmed that the photocaged HDACi pc-I could be deprotected to its parent inhibitor I. In HDAC inhibition assays, pc-I displayed only low inhibitory activity against HDAC1 and HDAC6. After irradiation with light, the inhibitory activity of pc-I strongly increased. Subsequent MTT viability assays, whole-cell HDAC inhibition assays, and immunoblot analysis confirmed the inactivity of pc-I at the cellular level. Upon irradiation, pc-I demonstrated pronounced HDAC inhibitory and antiproliferative activities which were comparable to the parent inhibitor I. Additionally, only phototreated pc-I was able to induce apoptosis in Annexin V/PI and caspase-Glo 3/7 assays, making pc-I a valuable tool for the development of light-activatable HDACi.
Collapse
|
9
|
Reßing N, Schliehe-Diecks J, Watson PR, Sönnichsen M, Cragin AD, Schöler A, Yang J, Schäker-Hübner L, Borkhardt A, Christianson DW, Bhatia S, Hansen FK. Development of Fluorinated Peptoid-Based Histone Deacetylase (HDAC) Inhibitors for Therapy-Resistant Acute Leukemia. J Med Chem 2022; 65:15457-15472. [PMID: 36351184 PMCID: PMC9691607 DOI: 10.1021/acs.jmedchem.2c01418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using a microwave-assisted protocol, we synthesized 16 peptoid-capped HDAC inhibitors (HDACi) with fluorinated linkers and identified two hit compounds. In biochemical and cellular assays, 10h stood out as a potent unselective HDACi with remarkable cytotoxic potential against different therapy-resistant leukemia cell lines. 10h demonstrated prominent antileukemic activity with low cytotoxic activity toward healthy cells. Moreover, 10h exhibited synergistic interactions with the DNA methyltransferase inhibitor decitabine in AML cell lines. The comparison of crystal structures of HDAC6 complexes with 10h and its nonfluorinated counterpart revealed a similar occupation of the L1 loop pocket but slight differences in zinc coordination. The substitution pattern of the acyl residue turned out to be crucial in terms of isoform selectivity. The introduction of an isopropyl group onto the phenyl ring provided the highly HDAC6-selective inhibitor 10p, which demonstrated moderate synergy with decitabine and exceeded the HDAC6 selectivity of tubastatin A.
Collapse
Affiliation(s)
- Nina Reßing
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121Bonn, Germany
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103Leipzig, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
| | - Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Melf Sönnichsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
| | - Abigail D Cragin
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103Leipzig, Germany
| | - Jing Yang
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
- Department of Medicine, Yangzhou Polytechnic College, West Wenchang Road 458, Yangzhou225009, P. R. China
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121Bonn, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121Bonn, Germany
| |
Collapse
|
10
|
Clauß O, Schäker-Hübner L, Wenzel B, Toussaint M, Deuther-Conrad W, Gündel D, Teodoro R, Dukić-Stefanović S, Ludwig FA, Kopka K, Brust P, Hansen FK, Scheunemann M. Development and Biological Evaluation of the First Highly Potent and Specific Benzamide-Based Radiotracer [ 18F]BA3 for Imaging of Histone Deacetylases 1 and 2 in Brain. Pharmaceuticals (Basel) 2022; 15:ph15030324. [PMID: 35337122 PMCID: PMC8950173 DOI: 10.3390/ph15030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
The degree of acetylation of lysine residues on histones influences the accessibility of DNA and, furthermore, the gene expression. Histone deacetylases (HDACs) are overexpressed in various tumour diseases, resulting in the interest in HDAC inhibitors for cancer therapy. The aim of this work is the development of a novel 18F-labelled HDAC1/2-specific inhibitor with a benzamide-based zinc-binding group to visualize these enzymes in brain tumours by positron emission tomography (PET). BA3, exhibiting high inhibitory potency for HDAC1 (IC50 = 4.8 nM) and HDAC2 (IC50 = 39.9 nM), and specificity towards HDAC3 and HDAC6 (specificity ratios >230 and >2080, respectively), was selected for radiofluorination. The two-step one-pot radiosynthesis of [18F]BA3 was performed in a TRACERlab FX2 N radiosynthesizer by a nucleophilic aliphatic substitution reaction. The automated radiosynthesis of [18F]BA3 resulted in a radiochemical yield of 1%, a radiochemical purity of >96% and a molar activity between 21 and 51 GBq/µmol (n = 5, EOS). For the characterization of BA3, in vitro and in vivo experiments were carried out. The results of these pharmacological and pharmacokinetic studies indicate a suitable inhibitory potency of BA3, whereas the applicability for non-invasive imaging of HDAC1/2 by PET requires further optimization of the properties of this compound.
Collapse
Affiliation(s)
- Oliver Clauß
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
- Correspondence: (O.C.); (M.S.)
| | - Linda Schäker-Hübner
- Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (L.S.-H.); (F.K.H.)
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Daniel Gündel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Sladjana Dukić-Stefanović
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Klaus Kopka
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, 01062 Dresden, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Finn K. Hansen
- Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (L.S.-H.); (F.K.H.)
| | - Matthias Scheunemann
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
- Correspondence: (O.C.); (M.S.)
| |
Collapse
|
11
|
Chu KB, Lee HA, Pflieger M, Fischer F, Asfaha Y, Alves Avelar LA, Skerhut A, Kassack MU, Hansen FK, Schöler A, Kurz T, Kim MJ, Moon EK, Quan FS. Antiproliferation and Antiencystation Effect of Class II Histone Deacetylase Inhibitors on Acanthamoeba castellanii. ACS Infect Dis 2022; 8:271-279. [PMID: 34994538 DOI: 10.1021/acsinfecdis.1c00390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acanthamoeba is a ubiquitous and free-living protozoan pathogen responsible for causing Acanthamoeba keratitis (AK), a severe corneal infection inflicting immense pain that can result in permanent blindness. A drug-based treatment of AK has remained arduous because Acanthamoeba trophozoites undergo encystment to become highly drug-resistant cysts upon exposure to harsh environmental conditions such as amoebicidal agents (e.g., polyhexanide, chloroquine, and chlorohexidine). As such, drugs that block the Acanthamoeba encystation process could result in a successful AK treatment. Histone deacetylase inhibitors (HDACi) have recently emerged as novel therapeutic options for treating various protozoan and parasitic diseases. Here, we investigated whether novel HDACi suppress the proliferation and encystation of Acanthamoeba. Synthetic class II HDACi FFK29 (IIa selective) and MPK576 (IIb selective) dose-dependently decreased the viability of Acanthamoeba trophozoites. While these HDACi demonstrated a negligible effect on the viability of mature cysts, Acanthamoeba encystation was significantly inhibited by these HDACi. Apoptosis was slightly increased in trophozoites after a treatment with these HDACi, whereas cysts were unaffected by the HDACi exposure. The viability of human corneal cells was not affected by HDACi concentrations up to 10 μmol/L. In conclusion, these synthetic HDACi demonstrated potent amoebicidal effects and inhibited the growth and encystation of Acanthamoeba, thus highlighting their enormous potential for further development.
Collapse
Affiliation(s)
- Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, 02447 Seoul, South Korea
| | - Hae-Ahm Lee
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, 02447 Seoul, South Korea
| | - Marc Pflieger
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Fabian Fischer
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Leandro A. Alves Avelar
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Alexander Skerhut
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Finn K Hansen
- Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Min-Jeong Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, 02447 Seoul, South Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University, School of Medicine, 02447 Seoul, South Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, 02447 Seoul, South Korea
- Department of Medical Zoology, Kyung Hee University, School of Medicine, 02447 Seoul, South Korea
| |
Collapse
|
12
|
Zessin M, Meleshin M, Simic Z, Kalbas D, Arbach M, Gebhardt P, Melesina J, Liebscher S, Bordusa F, Sippl W, Barinka C, Schutkowski M. Continuous Sirtuin/HDAC (histone deacetylase) activity assay using thioamides as PET (Photoinduced Electron Transfer)-based fluorescence quencher. Bioorg Chem 2021; 117:105425. [PMID: 34695733 DOI: 10.1016/j.bioorg.2021.105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
Histone deacylase 11 and human sirtuins are able to remove fatty acid-derived acyl moieties from the ε-amino group of lysine residues. Specific substrates are needed for investigating the biological functions of these enzymes. Additionally, appropriate screening systems are required for identification of modulators of enzymatic activities of HDAC11 and sirtuins. We designed and synthesized a set of activity probes by incorporation of a thioamide quencher unit into the fatty acid-derived acyl chain and a fluorophore in the peptide sequence. Systematic variation of both fluorophore and quencher position resulted "super-substrates" with catalytic constants of up to 15,000,000 M-1s-1 for human sirtuin 2 (Sirt2) enabling measurements using enzyme concentrations down to 100 pM in microtiter plate-based screening formats. It could be demonstrated that the stalled intermediate formed by the reaction of Sirt2-bound thiomyristoylated peptide and NAD+ has IC50 values below 200 pM.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Zeljko Simic
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Diana Kalbas
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Miriam Arbach
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Philip Gebhardt
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Jelena Melesina
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany.
| |
Collapse
|
13
|
Schäker-Hübner L, Warstat R, Ahlert H, Mishra P, Kraft FB, Schliehe-Diecks J, Schöler A, Borkhardt A, Breit B, Bhatia S, Hügle M, Günther S, Hansen FK. 4-Acyl Pyrrole Capped HDAC Inhibitors: A New Scaffold for Hybrid Inhibitors of BET Proteins and Histone Deacetylases as Antileukemia Drug Leads. J Med Chem 2021; 64:14620-14646. [PMID: 34582215 DOI: 10.1021/acs.jmedchem.1c01119] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multitarget drugs are an emerging alternative to combination therapies. In three iterative cycles of design, synthesis, and biological evaluation, we developed a novel type of potent hybrid inhibitors of bromodomain, and extra-terminal (BET) proteins and histone deacetylases (HDACs) based on the BET inhibitor XD14 and well-established HDAC inhibitors. The most promising new hybrids, 49 and 61, displayed submicromolar inhibitory activity against HDAC1-3 and 6, and BRD4(1), and possess potent antileukemia activity. 49 induced apoptosis more effectively than the combination of ricolinostat and birabresib (1:1). The most balanced dual inhibitor, 61, induced significantly more apoptosis than the related control compounds 62 (no BRD4(1) affinity) and 63 (no HDAC inhibition) as well as the 1:1 combination of both. Additionally, 61 was well tolerated in an in vivo zebrafish toxicity model. Overall, our data suggest an advantage of dual HDAC/BET inhibitors over the combination of two single targeted compounds.
Collapse
Affiliation(s)
- Linda Schäker-Hübner
- Institut für Wirkstoffentwicklung, Medizinische Fakultät, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Robin Warstat
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Heinz Ahlert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Pankaj Mishra
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 9, D-79104 Freiburg, Germany
| | - Fabian B Kraft
- Institut für Wirkstoffentwicklung, Medizinische Fakultät, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany.,Abteilung für Pharmazeutische und Zellbiologische Chemie, Pharmazeutisches Institut, Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Andrea Schöler
- Institut für Wirkstoffentwicklung, Medizinische Fakultät, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Martin Hügle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Stefan Günther
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 9, D-79104 Freiburg, Germany
| | - Finn K Hansen
- Institut für Wirkstoffentwicklung, Medizinische Fakultät, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany.,Abteilung für Pharmazeutische und Zellbiologische Chemie, Pharmazeutisches Institut, Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
14
|
Campiani G, Cavella C, Osko JD, Brindisi M, Relitti N, Brogi S, Saraswati AP, Federico S, Chemi G, Maramai S, Carullo G, Jaeger B, Carleo A, Benedetti R, Sarno F, Lamponi S, Rottoli P, Bargagli E, Bertucci C, Tedesco D, Herp D, Senger J, Ruberti G, Saccoccia F, Saponara S, Gorelli B, Valoti M, Kennedy B, Sundaramurthi H, Butini S, Jung M, Roach KM, Altucci L, Bradding P, Christianson DW, Gemma S, Prasse A. Harnessing the Role of HDAC6 in Idiopathic Pulmonary Fibrosis: Design, Synthesis, Structural Analysis, and Biological Evaluation of Potent Inhibitors. J Med Chem 2021; 64:9960-9988. [PMID: 34251197 PMCID: PMC8300879 DOI: 10.1021/acs.jmedchem.1c00184] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by a progressive-fibrosing phenotype. IPF has been associated with aberrant HDAC activities confirmed by our immunohistochemistry studies on HDAC6 overexpression in IPF lung tissues. We herein developed a series of novel hHDAC6 inhibitors, having low inhibitory potency over hHDAC1 and hHDAC8, as potential pharmacological tools for IPF treatment. Their inhibitory potency was combined with low in vitro and in vivo toxicity. Structural analysis of 6h and structure-activity relationship studies contributed to the optimization of the binding mode of the new molecules. The best-performing analogues were tested for their efficacy in inhibiting fibrotic sphere formation and cell viability, proving their capability in reverting the IPF phenotype. The efficacy of analogue 6h was also determined in a validated human lung model of TGF-β1-dependent fibrogenesis. The results highlighted in this manuscript may pave the way for the identification of first-in-class molecules for the treatment of IPF.
Collapse
Affiliation(s)
- Giuseppe Campiani
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Caterina Cavella
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Jeremy D. Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Margherita Brindisi
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Nicola Relitti
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - A. Prasanth Saraswati
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Stefano Federico
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Chemi
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Samuele Maramai
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriele Carullo
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Benedikt Jaeger
- Klinik für Pneumologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| | - Alfonso Carleo
- Klinik für Pneumologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | - Federica Sarno
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | - Stefania Lamponi
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Paola Rottoli
- University of Siena, Specialization School of Respiratory Diseases, Department of Medical Sciences, Surgery and Neurosciences, Centro didattico Le Scotte, , 53100, Siena, Italy
| | - Elena Bargagli
- University of Siena, Department of Medical Sciences, Surgery and Neurosciences, Respiratory Diseases Unit, AOUS, Centro didattico Le Scotte, 53100, Siena, Italy
| | - Carlo Bertucci
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro, 6, Bologna 40126, Italy
| | - Daniele Tedesco
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro, 6, Bologna 40126, Italy
| | - Daniel Herp
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Johanna Senger
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Beatrice Gorelli
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Breándan Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Husvinee Sundaramurthi
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Stefania Butini
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Katy M. Roach
- Department of Respiratory Sciences, University of Leicester, UK, Institute of Lung Health and NIHR Leicester BRC-Respiratory, LE5 4PW, Leicester, UK
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | - Peter Bradding
- Department of Respiratory Sciences, University of Leicester, UK, Institute of Lung Health and NIHR Leicester BRC-Respiratory, LE5 4PW, Leicester, UK
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Sandra Gemma
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy
| | - Antje Prasse
- Klinik für Pneumologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| |
Collapse
|
15
|
Mackwitz MKW, Hesping E, Eribez K, Schöler A, Antonova-Koch Y, Held J, Winzeler EA, Andrews KT, Hansen FK. Investigation of the in vitro and in vivo efficacy of peptoid-based HDAC inhibitors with dual-stage antiplasmodial activity. Eur J Med Chem 2020; 211:113065. [PMID: 33360801 DOI: 10.1016/j.ejmech.2020.113065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
Histone deacetylases (HDACs) have been identified as emerging antiplasmodial drug targets. In this work, we report on the synthesis, structure-activity relationships, metabolic stability and in vivo efficacy of new peptoid-based HDAC inhibitors with dual-stage antiplasmodial activity. A mini library of HDAC inhibitors was synthesized using a one-pot, multi-component protocol or submonomer pathways. The screening of the target compounds for their activity against asexual blood stage parasites, human cell cytotoxicity, liver stage parasites, and selected human HDAC isoforms provided important structure-activity relationship data. The most promising HDAC inhibitor from this series, compound 3n, demonstrated potent activity against drug-sensitive and drug-resistant asexual stage P. falciparum parasites and was selective for the parasite versus human cells (Pf3D7 IC50 0.016 μM; SIHepG2/Pf3D7 573; PfDd2 IC50 0.002 μM; SIHepG2/PfDd2 4580) combined with activity against P. berghei exoerythrocytic liver stages (PbEEF IC50 0.48 μM). While compound 3n displayed high stability in human (Clint 5 μL/min/mg) and mouse (Clint 6 μL/min/mg) liver microsomes, only modest oral in vivo efficacy was observed in P. berghei infected mice. Together these data provide a foundation for future work to improve the properties of these dual-stage inhibitors as drug leads for malaria.
Collapse
Affiliation(s)
- Marcel K W Mackwitz
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Eva Hesping
- Griffith Institute for Drug Discovery, 46 Don Young Road, Nathan Campus, Griffith University, QLD, 4111, Australia
| | - Korina Eribez
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, United States
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Yevgeniya Antonova-Koch
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, United States
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, United States
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, 46 Don Young Road, Nathan Campus, Griffith University, QLD, 4111, Australia.
| | - Finn K Hansen
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany; Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
16
|
Relitti N, Saraswati AP, Chemi G, Brindisi M, Brogi S, Herp D, Schmidtkunz K, Saccoccia F, Ruberti G, Ulivieri C, Vanni F, Sarno F, Altucci L, Lamponi S, Jung M, Gemma S, Butini S, Campiani G. Novel quinolone-based potent and selective HDAC6 inhibitors: Synthesis, molecular modeling studies and biological investigation. Eur J Med Chem 2020; 212:112998. [PMID: 33199154 DOI: 10.1016/j.ejmech.2020.112998] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
In this work we describe the synthesis of potent and selective quinolone-based histone deacetylase 6 (HDAC6) inhibitors. The quinolone moiety has been exploited as an innovative bioactive cap-group for HDAC6 inhibition; its synthesis was achieved by applying a multicomponent reaction. The optimization of potency and selectivity of these products was performed by employing computational studies which led to the discovery of the diethylaminomethyl derivatives 7g and 7k as the most promising hit molecules. These compounds were investigated in cellular studies to evaluate their anticancer effect against colon (HCT-116) and histiocytic lymphoma (U9347) cancer cells, showing good to excellent potency, leading to tumor cell death by apoptosis induction. The small molecules 7a, 7g and 7k were able to strongly inhibit the cytoplasmic and slightly the nuclear HDAC enzymes, increasing the acetylation of tubulin and of the lysine 9 and 14 of histone 3, respectively. Compound 7g was also able to increase Hsp90 acetylation levels in HCT-116 cells, thus further supporting its HDAC6 inhibitory profile. Cytotoxicity and mutagenicity assays of these molecules showed a safe profile; moreover, the HPLC analysis of compound 7k revealed good solubility and stability profile.
Collapse
Affiliation(s)
- Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - A Prasanth Saraswati
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Margherita Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Daniel Herp
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, CNR, Campus A. Buzzati-Traverso. Via E. Ramarini 32, 00015, Monterotondo, Rome, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, CNR, Campus A. Buzzati-Traverso. Via E. Ramarini 32, 00015, Monterotondo, Rome, Italy
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Francesca Vanni
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Federica Sarno
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| |
Collapse
|
17
|
Reßing N, Sönnichsen M, Osko JD, Schöler A, Schliehe-Diecks J, Skerhut A, Borkhardt A, Hauer J, Kassack MU, Christianson DW, Bhatia S, Hansen FK. Multicomponent Synthesis, Binding Mode, and Structure-Activity Relationship of Selective Histone Deacetylase 6 (HDAC6) Inhibitors with Bifurcated Capping Groups. J Med Chem 2020; 63:10339-10351. [PMID: 32803970 DOI: 10.1021/acs.jmedchem.9b01888] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histone deacetylase 6 (HDAC6) is an emerging target for the treatment of cancer, neurodegenerative diseases, inflammation, and other diseases. Here, we present the multicomponent synthesis and structure-activity relationship of a series of tetrazole-based HDAC6 inhibitors. We discovered the hit compound NR-160 by investigating the inhibition of recombinant HDAC enzymes and protein acetylation. A cocrystal structure of HDAC6 complexed with NR-160 disclosed that the steric complementarity of the bifurcated capping group of NR-160 to the L1 and L2 loop pockets may be responsible for its HDAC6-selective inhibition. While NR-160 displayed only low cytotoxicity as a single agent against leukemia cell lines, it augmented the apoptosis induction of the proteasome inhibitor bortezomib in combination experiments significantly. Furthermore, a combinatorial high-throughput drug screen revealed significantly enhanced cytotoxicity when NR-160 was used in combination with epirubicin and daunorubicin. The synergistic effect in combination with bortezomib and anthracyclines highlights the potential of NR-160 in combination therapies.
Collapse
Affiliation(s)
- Nina Reßing
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany.,Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Melf Sönnichsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jeremy D Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Alexander Skerhut
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Julia Hauer
- Department of Pediatrics, Pediatric Hematology and Oncology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany
| | - Matthias U Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Finn K Hansen
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany.,Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
18
|
Saccoccia F, Brindisi M, Gimmelli R, Relitti N, Guidi A, Saraswati AP, Cavella C, Brogi S, Chemi G, Butini S, Papoff G, Senger J, Herp D, Jung M, Campiani G, Gemma S, Ruberti G. Screening and Phenotypical Characterization of Schistosoma mansoni Histone Deacetylase 8 ( SmHDAC8) Inhibitors as Multistage Antischistosomal Agents. ACS Infect Dis 2020; 6:100-113. [PMID: 31661956 DOI: 10.1021/acsinfecdis.9b00224] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Schistosomiasis (also known as bilharzia) is a neglected tropical disease caused by platyhelminths of the genus Schistosoma. The disease is endemic in tropical and subtropical areas of the world where water is infested by the intermediate parasite host, the snail. More than 800 million people live in endemic areas and more than 200 million are infected and require treatment. Praziquantel (PZQ) is the drug of choice for schistosomiasis treatment and transmission control being safe and very effective against adult worms of all the clinically relevant Schistosoma species. Unfortunately, it is ineffective on immature, juvenile worms; therefore, it does not prevent reinfection. Moreover, the risk of development and spread of drug resistance because of the widespread use of a single drug in such a large population represents a serious threat. Therefore, research aimed at identifying novel drugs to be used alone or in combination with PZQ are needed. Schistosoma mansoni histone deacetylase 8 (SmHDAC8) is a class I zinc-dependent HDAC, which is abundantly expressed in all stages of its life cycle, thus representing an interesting target for drug discovery. Through virtual screening and phenotypical characterization of selected hits, we discovered two main chemical classes of compounds characterized by the presence of a hydroxamate-based metal binding group coupled to a spiroindoline or a tricyclic thieno[3,2-b]indole core as capping groups. Some of the compounds of both classes were deeply investigated and showed to impair viability of larval, juvenile, and adult schistosomes, to impact egg production in vitro and/or to induce morphological alterations of the adult schistosome reproductive systems. Noteworthy, all of them inhibit the recombinant form of SmHDAC8 enzyme in vitro. Overall, we identified very interesting scaffolds, paving the way to the development of effective antischistosomal agents.
Collapse
Affiliation(s)
- Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Margherita Brindisi
- Department of Excellence of Pharmacy, University of Napoli Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Roberto Gimmelli
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Nicola Relitti
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alessandra Guidi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - A Prasanth Saraswati
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Caterina Cavella
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Simone Brogi
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Giulia Chemi
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Johanna Senger
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Daniel Herp
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Giuseppe Campiani
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| |
Collapse
|
19
|
Kutil Z, Mikešová J, Zessin M, Meleshin M, Nováková Z, Alquicer G, Kozikowski A, Sippl W, Bařinka C, Schutkowski M. Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS OMEGA 2019; 4:19895-19904. [PMID: 31788622 PMCID: PMC6882135 DOI: 10.1021/acsomega.9b02808] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 05/05/2023]
Abstract
Histone deacetylase 11 (HDAC11) preferentially removes fatty acid residues from lysine side chains in a peptide or protein environment. Here, we report the development and validation of a continuous fluorescence-based activity assay using an internally quenched TNFα-derived peptide derivative as a substrate. The threonine residue in the +1 position was replaced by the quencher amino acid 3'-nitro-l-tyrosine and the fatty acyl moiety substituted by 2-aminobenzoylated 11-aminoundecanoic acid. The resulting peptide substrate enables fluorescence-based direct and continuous readout of HDAC11-mediated amide bond cleavage fully compatible with high-throughput screening formats. The Z'-factor is higher than 0.85 for the 15 μM substrate concentration, and the signal-to-noise ratio exceeds 150 for 384-well plates. In the absence of NAD+, this substrate is specific for HDAC11. Reevaluation of inhibitory data using our novel assay revealed limited potency and selectivity of known HDAC inhibitors, including Elevenostat, a putative HDAC11-specific inhibitor.
Collapse
Affiliation(s)
- Zsófia Kutil
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jana Mikešová
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Matthes Zessin
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marat Meleshin
- Department
of Enzymology, Institute of Biochemistry and Biotechnology, Charles
Tanford Protein Centre, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Straße
3a, 06120 Halle
(Saale), Germany
| | - Zora Nováková
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Glenda Alquicer
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Alan Kozikowski
- StarWise
Therapeutics LLC, 505
S Rosa Road, Suite 27, Madison, Wisconsin 53719-1235, United States
| | - Wolfgang Sippl
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Cyril Bařinka
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
- E-mail: . Tel.: +420-325-873-777 (C.B.)
| | - Mike Schutkowski
- Department
of Enzymology, Institute of Biochemistry and Biotechnology, Charles
Tanford Protein Centre, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Straße
3a, 06120 Halle
(Saale), Germany
- E-mail: . Tel.: +49-345-5524-828 (M.S.)
| |
Collapse
|
20
|
Krieger V, Hamacher A, Cao F, Stenzel K, Gertzen CGW, Schäker-Hübner L, Kurz T, Gohlke H, Dekker FJ, Kassack MU, Hansen FK. Synthesis of Peptoid-Based Class I-Selective Histone Deacetylase Inhibitors with Chemosensitizing Properties. J Med Chem 2019; 62:11260-11279. [DOI: 10.1021/acs.jmedchem.9b01489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Viktoria Krieger
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Fangyuan Cao
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Katharina Stenzel
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Christoph G. W. Gertzen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute for Complex Systems - Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
- Center for Structural Studies (CSS), Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Linda Schäker-Hübner
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute for Complex Systems - Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Frank J. Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Matthias U. Kassack
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Finn K. Hansen
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Zessin M, Kutil Z, Meleshin M, Nováková Z, Ghazy E, Kalbas D, Marek M, Romier C, Sippl W, Bařinka C, Schutkowski M. One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity. Biochemistry 2019; 58:4777-4789. [PMID: 31682411 DOI: 10.1021/acs.biochem.9b00786] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We developed a one-step direct assay for the determination of histone deacylase (HDAC) activity by substituting the carbonyl oxygen of the acyl moiety with sulfur, resulting in thioacylated lysine side chains. This modification is recognized by class I HDACs with different efficiencies ranging from not accepted for HDAC1 to kinetic constants similar to that of the parent oxo substrate for HDAC8. Class II HDACs can hydrolyze thioacylated substrates with approximately 5-10-fold reduced kcat values, which resembles the effect of thioamide substitution in metallo-protease substrates. Class IV HDAC11 accepts thiomyristoyl modification less efficiently with an ∼5-fold reduced specificity constant. On the basis of the unique spectroscopic properties of thioamide bonds (strong absorption in spectral range of 260-280 nm and efficient fluorescence quenching), HDAC-mediated cleavage of thioamides could be followed by ultraviolet-visible and fluorescence spectroscopy in a continuous manner. The HDAC activity assay is compatible with microtiter plate-based screening formats up to 1536-well plates with Z' factors of >0.75 and signal-to-noise ratios of >50. Using thioacylated lysine residues in p53-derived peptides, we optimized substrates for HDAC8 with a catalytic efficiency of >250000 M-1 s-1, which are more than 100-fold more effective than most of the known substrates. We determined inhibition constants of several inhibitors for human HDACs using thioacylated peptidic substrates and found good correlation with the values from the literature. On the other hand, we could introduce N-methylated, N-acylated lysine residues as inhibitors for HDACs with an IC50 value of 1 μM for an N-methylated, N-myristoylated peptide derivative and human HDAC11.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Zsófia Kutil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Marat Meleshin
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Zora Nováková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Ehab Ghazy
- Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Diana Kalbas
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Martin Marek
- Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC) , Universite de Strasbourg (UDS), CNRS, INSERM , 1 rue Laurent Fries, B.P. 10142 , 67404 Illkirch Cedex IGBMC, France
| | - Christophe Romier
- Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC) , Universite de Strasbourg (UDS), CNRS, INSERM , 1 rue Laurent Fries, B.P. 10142 , 67404 Illkirch Cedex IGBMC, France
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| |
Collapse
|
22
|
Raudszus R, Nowotny R, Gertzen CG, Schöler A, Krizsan A, Gockel I, Kalwa H, Gohlke H, Thieme R, Hansen FK. Fluorescent analogs of peptoid-based HDAC inhibitors: Synthesis, biological activity and cellular uptake kinetics. Bioorg Med Chem 2019; 27:115039. [DOI: 10.1016/j.bmc.2019.07.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 11/26/2022]
|
23
|
Mackwitz MKW, Hesping E, Antonova-Koch Y, Diedrich D, Woldearegai TG, Skinner-Adams T, Clarke M, Schöler A, Limbach L, Kurz T, Winzeler EA, Held J, Andrews KT, Hansen FK. Structure-Activity and Structure-Toxicity Relationships of Peptoid-Based Histone Deacetylase Inhibitors with Dual-Stage Antiplasmodial Activity. ChemMedChem 2019; 14:912-926. [PMID: 30664827 PMCID: PMC6502651 DOI: 10.1002/cmdc.201800808] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/17/2022]
Abstract
Novel malaria intervention strategies are of great importance, given the development of drug resistance in malaria-endemic countries. In this regard, histone deacetylases (HDACs) have emerged as new and promising malaria drug targets. In this work, we present the design, synthesis, and biological evaluation of 20 novel HDAC inhibitors with antiplasmodial activity. Based on a previously discovered peptoid-based hit compound, we modified all regions of the peptoid scaffold by using a one-pot multicomponent pathway and submonomer routes to gain a deeper understanding of the structure-activity and structure-toxicity relationships. Most compounds displayed potent activity against asexual blood-stage P. falciparum parasites, with IC50 values in the range of 0.0052-0.25 μm and promising selectivity over mammalian cells (SIPf3D7/HepG2 : 170-1483). In addition, several compounds showed encouraging sub-micromolar activity against P. berghei exo-erythrocytic forms (PbEEF). Our study led to the discovery of the hit compound N-(2-(benzylamino)-2-oxoethyl)-N-(4-(hydroxycarbamoyl)benzyl)-4-isopropylbenzamide (2 h) as a potent and parasite-specific dual-stage antiplasmodial HDAC inhibitor (IC50 Pf3D7=0.0052 μm, IC50 PbEEF=0.016 μm).
Collapse
Affiliation(s)
- Marcel K W Mackwitz
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Eva Hesping
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD, 4111, Australia
| | - Yevgeniya Antonova-Koch
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, USA
| | - Daniela Diedrich
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Tamirat Gebru Woldearegai
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Tina Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD, 4111, Australia
| | - Mary Clarke
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD, 4111, Australia
| | - Andrea Schöler
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Laura Limbach
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, USA
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD, 4111, Australia
| | - Finn K Hansen
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| |
Collapse
|
24
|
Shao D, Yao C, Kim MH, Fry J, Cohen RA, Costello CE, Matsui R, Seta F, McComb ME, Bachschmid MM. Improved mass spectrometry-based activity assay reveals oxidative and metabolic stress as sirtuin-1 regulators. Redox Biol 2019; 22:101150. [PMID: 30877853 PMCID: PMC6423473 DOI: 10.1016/j.redox.2019.101150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
Sirtuin-1 (SirT1) catalyzes NAD+-dependent protein lysine deacetylation and is a critical regulator of energy and lipid metabolism, mitochondrial biogenesis, apoptosis, and senescence. Activation of SirT1 mitigates metabolic perturbations associated with diabetes and obesity. Pharmacologic molecules, cellular redox, and nutritional states can regulate SirT1 activity. Technical barriers against measuring endogenous SirT1 activity have limited characterization of SirT1 in disease and its activation by small molecules. Herein, we developed a relative quantitative mass spectrometry-based technique for measuring endogenous SirT1 activity (RAMSSAY/RelAtive Mass Spectrometry Sirt1 Activity assaY) in cell and tissue homogenates using a biotin-labeled, acetylated p53-derived peptide as a substrate. We demonstrate that oxidative and metabolic stress diminish SirT1 activity in the hepatic cell line HepG2. Moreover, pharmacologic molecules including nicotinamide and EX-527 attenuate SirT1 activity; purported activators of SirT1, the polyphenol S17834, the polyphenol resveratrol, or the non-polyphenolic Sirtris compound SRT1720, failed to activate endogenous SirT1 significantly. Furthermore, we provide evidence that feeding a high fat high sucrose diet (HFHS) to mice inhibits endogenous SirT1 activity in mouse liver. In summary, we introduce a robust, specific and sensitive mass spectrometry-based assay for detecting and quantifying endogenous SirT1 activity using a biotin-labeled peptide in cell and tissue lysates. With this assay, we determine how pharmacologic molecules and metabolic and oxidative stress regulate endogenous SirT1 activity. The assay may also be adapted for other sirtuin isoforms. Fast, sensitive, and specific MALDI-TOF based sirtuin-1 activity assay applicable to cell and tissue lysates. Oxidative and metabolic stress inhibit Sirtuin-1 deacetylase activity. Purported activators of SirT1failed to significantly activate endogenous SirT1. The activity assay is adaptable to other sirtuin isoforms using specific synthetic peptides and assay conditions.
Collapse
Affiliation(s)
- Di Shao
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Chunxiang Yao
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA; Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, MA, USA
| | - Maya H Kim
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Jessica Fry
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Richard A Cohen
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, MA, USA
| | - Reiko Matsui
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Francesca Seta
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Mark E McComb
- Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, MA, USA
| | - Markus M Bachschmid
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA; Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
25
|
Diedrich D, Stenzel K, Hesping E, Antonova-Koch Y, Gebru T, Duffy S, Fisher G, Schöler A, Meister S, Kurz T, Avery VM, Winzeler EA, Held J, Andrews KT, Hansen FK. One-pot, multi-component synthesis and structure-activity relationships of peptoid-based histone deacetylase (HDAC) inhibitors targeting malaria parasites. Eur J Med Chem 2018; 158:801-813. [PMID: 30245402 PMCID: PMC6195125 DOI: 10.1016/j.ejmech.2018.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022]
Abstract
Malaria drug discovery has shifted from a focus on targeting asexual blood stage parasites, to the development of drugs that can also target exo-erythrocytic forms and/or gametocytes in order to prevent malaria and/or parasite transmission. In this work, we aimed to develop parasite-selective histone deacetylase inhibitors (HDACi) with activity against the disease-causing asexual blood stages of Plasmodium malaria parasites as well as with causal prophylactic and/or transmission blocking properties. An optimized one-pot, multi-component protocol via a sequential Ugi four-component reaction and hydroxylaminolysis was used for the preparation of a panel of peptoid-based HDACi. Several compounds displayed potent activity against drug-sensitive and drug-resistant P. falciparum asexual blood stages, high parasite-selectivity and submicromolar activity against exo-erythrocytic forms of P. berghei. Our optimization study resulted in the discovery of the hit compound 1u which combines high activity against asexual blood stage parasites (Pf 3D7 IC50: 4 nM; Pf Dd2 IC50: 1 nM) and P. berghei exo-erythrocytic forms (Pb EEF IC50: 25 nM) with promising parasite-specific activity (SIPf3D7/HepG2: 2496, SIPfDd2/HepG2: 9990, and SIPbEEF/HepG2: 400).
Collapse
Affiliation(s)
- Daniela Diedrich
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Katharina Stenzel
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany; Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Eva Hesping
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Yevgeniya Antonova-Koch
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Tamirat Gebru
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Sandra Duffy
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Gillian Fisher
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Andrea Schöler
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Stephan Meister
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Vicky M Avery
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia.
| | - Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany; Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany.
| |
Collapse
|
26
|
Porter NJ, Osko JD, Diedrich D, Kurz T, Hooker JM, Hansen FK, Christianson DW. Histone Deacetylase 6-Selective Inhibitors and the Influence of Capping Groups on Hydroxamate-Zinc Denticity. J Med Chem 2018; 61:8054-8060. [PMID: 30118224 PMCID: PMC6136958 DOI: 10.1021/acs.jmedchem.8b01013] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Four crystal structures are presented of histone deacetylase 6 (HDAC6) complexes with para-substituted phenylhydromaxamate inhibitors, including bulky peptoids. These structures provide insight regarding the design of capping groups that confer selectivity for binding to HDAC6, specifically with regard to interactions in a pocket formed by the L1 loop. Capping group interactions may also influence hydroxamate-Zn2+ coordination with monodentate or bidentate geometry.
Collapse
Affiliation(s)
- Nicholas J. Porter
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
| | - Jeremy D. Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
| | - Daniela Diedrich
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Finn K. Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
27
|
Novel spiroindoline HDAC inhibitors: Synthesis, molecular modelling and biological studies. Eur J Med Chem 2018; 157:127-138. [DOI: 10.1016/j.ejmech.2018.07.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 02/08/2023]
|
28
|
Gabano E, Ravera M, Zanellato I, Tinello S, Gallina A, Rangone B, Gandin V, Marzano C, Bottone MG, Osella D. An unsymmetric cisplatin-based Pt(iv) derivative containing 2-(2-propynyl)octanoate: a very efficient multi-action antitumor prodrug candidate. Dalton Trans 2018; 46:14174-14185. [PMID: 28984330 DOI: 10.1039/c7dt02928d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design, synthesis, characterization and biological properties of a Pt(iv) complex containing the very active inhibitor of histone deacetylase (2-propynyl)octanoic acid, POA, as an axial ligand are reported here. The title complex, namely (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato)platinum(iv), 1, containing POA in racemic or in enantiomeric forms, was one/two orders of magnitude more active than cisplatin, depending on the chemo-sensitivity of the cancer cell lines. Moreover, 1 exhibited similar or even better antiproliferative activity than (OC-6-33)-diamminedichloridobis(2-propylpentanoato)platinum(iv), 2, containing two molecules of the well-known histone deacetylase inhibitor 2-propylpentanoic (valproic) acid. The high potency of 1 is likely due to its high cellular accumulation and to the synergism between the DNA-damaging cisplatin and the histone deacetylase inhibitor POA, both released upon the intracellular reduction of 1. Prodrug 1, after oral administration, caused an impressive reduction of the tumor mass (94%) in a model of solid tumor (murine Lewis lung carcinoma), compared to that of the control, whereas (intraperitoneal) cisplatin induced a tumor regression of 75% only. A good accumulation of 1 was observed in the tumor mass. The time course of the body weight attested that cisplatin induced elevated anorexia, whereas treatment with 1 did not induce significant body weight loss throughout the therapeutic experiment.
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bonomi R, Popov V, Laws MT, Gelovani D, Majhi A, Shavrin A, Lu X, Muzik O, Turkman N, Liu R, Mangner T, Gelovani JG. Molecular Imaging of Sirtuin1 Expression-Activity in Rat Brain Using Positron-Emission Tomography-Magnetic-Resonance Imaging with [ 18F]-2-Fluorobenzoylaminohexanoicanilide. J Med Chem 2018; 61:7116-7130. [PMID: 30052441 DOI: 10.1021/acs.jmedchem.8b00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sirtuin 1 (SIRT1) is a class III histone deacetylase that plays significant roles in the regulation of lifespan, metabolism, memory, and circadian rhythms and in the mechanisms of many diseases. However, methods of monitoring the pharmacodynamics of SIRT1-targeted drugs are limited to blood sampling because of the invasive nature of biopsies. For the noninvasive monitoring of the spatial and temporal dynamics of SIRT1 expression-activity in vivo by PET-CT-MRI, we developed a novel substrate-type radiotracer, [18F]-2-fluorobenzoylaminohexanoicanilide (2-[18F]BzAHA). PET-CT-MRI studies in rats demonstrated increased accumulation of 2-[18F]BzAHA-derived radioactivity in the hypothalamus, hippocampus, nucleus accumbens, and locus coeruleus, consistent with autoradiographic and immunofluorescent (IMF) analyses of brain-tissue sections. Pretreatment with the SIRT1 specific inhibitor, EX-527 (5 mg/kg, ip), resulted in about a 20% reduction of 2-[18F]BzAHA-derived-radioactivity accumulation in these structures. In vivo imaging of SIRT1 expression-activity should facilitate studies that improve the understanding of SIRT1-mediated regulation in the brain and aid in the development and clinical translation of SIRT1-targeted therapies.
Collapse
Affiliation(s)
- Robin Bonomi
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Vadim Popov
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Maxwell T Laws
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - David Gelovani
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Anjoy Majhi
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Aleksandr Shavrin
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | | | | | - Nashaat Turkman
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Renshyan Liu
- National Taiwan University , Taipei City 10617 , Taiwan
| | | | - Juri G Gelovani
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| |
Collapse
|
30
|
Mackwitz MKW, Hamacher A, Osko JD, Held J, Schöler A, Christianson DW, Kassack MU, Hansen FK. Multicomponent Synthesis and Binding Mode of Imidazo[1,2- a]pyridine-Capped Selective HDAC6 Inhibitors. Org Lett 2018; 20:3255-3258. [PMID: 29790770 DOI: 10.1021/acs.orglett.8b01118] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The multicomponent synthesis of a mini-library of histone deacetylase inhibitors with imidazo[1,2- a]pyridine-based cap groups is presented. The biological evaluation led to the discovery of the hit compound MAIP-032 as a selective HDAC6 inhibitor with promising anticancer activity. The X-ray structure of catalytic domain 2 from Danio rerio HDAC6 complexed with MAIP-032 revealed a monodentate zinc-binding mode.
Collapse
Affiliation(s)
- Marcel K W Mackwitz
- Institut für Pharmazie , Universität Leipzig , Brüderstraße 34 , 04103 Leipzig , Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie , Heinrich-Heine-Universität Düsseldorf , Universitätsstr. 1 , 40225 Düsseldorf , Germany
| | - Jeremy D Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Jana Held
- Institut für Tropenmedizin , Eberhard Karls Universität Tübingen , Wilhelmstr. 27 , 72074 Tübingen , Germany
| | - Andrea Schöler
- Institut für Pharmazie , Universität Leipzig , Brüderstraße 34 , 04103 Leipzig , Germany
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Matthias U Kassack
- Institut für Pharmazeutische und Medizinische Chemie , Heinrich-Heine-Universität Düsseldorf , Universitätsstr. 1 , 40225 Düsseldorf , Germany
| | - Finn K Hansen
- Institut für Pharmazie , Universität Leipzig , Brüderstraße 34 , 04103 Leipzig , Germany
| |
Collapse
|
31
|
Rooker DR, Klyubka Y, Gautam R, Tomat E, Buccella D. Peptide-Based Fluorescent Probes for Deacetylase and Decrotonylase Activity: Toward a General Platform for Real-Time Detection of Lysine Deacylation. Chembiochem 2018; 19:496-504. [PMID: 29235227 DOI: 10.1002/cbic.201700582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Histone deacetylases regulate the acetylation levels of numerous proteins and play key roles in physiological processes and disease states. In addition to acetyl groups, deacetylases can remove other acyl modifications on lysines, the roles and regulation of which are far less understood. A peptide-based fluorescent probe for single-reagent, real-time detection of deacetylase activity that can be readily adapted for probing broader lysine deacylation, including decrotonylation, is reported. Following cleavage of the lysine modification, the probe undergoes rapid intramolecular imine formation that results in marked optical changes, thus enabling convenient detection of deacylase activity with good statistical Z' factors for both absorption and fluorescence modalities. The peptide-based design offers broader isozyme scope than that of small-molecule analogues, and is suitable for probing both metal- and nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylases. With an effective sirtuin activity assay in hand, it is demonstrated that iron chelation by Sirtinol, a commonly employed sirtuin inhibitor, results in an enhancement in the inhibitory activity of the compound that may affect its performance in vivo.
Collapse
Affiliation(s)
- Debra R Rooker
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Yuliya Klyubka
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Ritika Gautam
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Daniela Buccella
- Department of Chemistry, New York University, New York, NY, 10003, USA
| |
Collapse
|
32
|
Structure-Activity Relationship of Propargylamine-Based HDAC Inhibitors. ChemMedChem 2017; 12:2044-2053. [DOI: 10.1002/cmdc.201700550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/05/2017] [Indexed: 11/07/2022]
|
33
|
Pannek M, Simic Z, Fuszard M, Meleshin M, Rotili D, Mai A, Schutkowski M, Steegborn C. Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features. Nat Commun 2017; 8:1513. [PMID: 29138502 PMCID: PMC5686155 DOI: 10.1038/s41467-017-01701-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/07/2017] [Indexed: 12/22/2022] Open
Abstract
Sirtuins are evolutionary conserved NAD+-dependent protein lysine deacylases. The seven human isoforms, Sirt1-7, regulate metabolism and stress responses and are considered therapeutic targets for aging-related diseases. Sirt4 locates to mitochondria and regulates fatty acid metabolism and apoptosis. In contrast to the mitochondrial deacetylase Sirt3 and desuccinylase Sirt5, no prominent deacylase activity and structural information are available for Sirt4. Here we describe acyl substrates and crystal structures for Sirt4. The enzyme shows isoform-specific acyl selectivity, with significant activity against hydroxymethylglutarylation. Crystal structures of Sirt4 from Xenopus tropicalis reveal a particular acyl binding site with an additional access channel, rationalizing its activities. The structures further identify a conserved, isoform-specific Sirt4 loop that folds into the active site to potentially regulate catalysis. Using these results, we further establish efficient Sirt4 activity assays, an unusual Sirt4 regulation by NADH, and Sirt4 effects of pharmacological modulators.
Collapse
Affiliation(s)
- Martin Pannek
- Department of Biochemistry, University of Bayreuth, 95440, Bayreuth, Germany
| | - Zeljko Simic
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06108, Halle, Germany
| | - Matthew Fuszard
- Department of Biochemistry, University of Bayreuth, 95440, Bayreuth, Germany
| | - Marat Meleshin
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06108, Halle, Germany
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs, Pasteur Institute Italy, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185, Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Pasteur Institute Italy, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185, Rome, Italy
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06108, Halle, Germany
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440, Bayreuth, Germany.
| |
Collapse
|
34
|
Pande S, Kratasyuk VA, Medvedeva NN, Kolenchukova OA, Salmina AB. Nutritional biomarkers: Current view and future perspectives. Crit Rev Food Sci Nutr 2017; 58:3055-3069. [PMID: 28678523 DOI: 10.1080/10408398.2017.1350136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a poor relationship between nutrient intake and existing nutritional biomarkers due to variety of factors affecting their sensitivity and specificity. To explore the impact of nutrients at molecular level and devising a sensitive biomarker, proteomics is a central technology with sirtuins as one of the most promising nutritional biomarker. Sirtuins (seven mammalian sirtuins reported so far) have been reported to perform protein deacetylases and ADP-ribosyltransferases activity. It is distributed in different cellular compartments thereby controlling several metabolic processes. Sirtuins are oxidized nicotinamide adenine dinucleotide dependent, which implicates a direct effect of the metabolic state of the cell on its activity. Calorie restriction upregulates the mammalian sirtuin protein levels in variety of tissues and organs where it acts upon both histone and nonhistone substrates. Sirtuin senses nutrient availability and impacts gluconeogenesis, glycolysis, and insulin sensitivity. It deacetylates and inhibits the nuclear receptor that activates fat synthesis and adipogenesis in the body, leading to fat loss and bringing favorable cellular and health changes. Sirtuins mediates intracellular response that promotes cell survival, DNA damage repair thereby increasing the cell longitivity. The activation of sirtuins brings a wide spectrum of other health benefits and its activity levels are indicative of nutritional status as well as disease progression in cancer, inflammation, obesity, cardiovascular diseases, and viral infections. There are several foods that activate sirtuin activity and offer significant health benefits by their consumption.
Collapse
Affiliation(s)
- Shubhra Pande
- a Laboratory of Bioluminescent Biotechnologies, Department of Biophysics , Institute of Fundamental Biology and Biotechnology, Siberian Federal University , Krasnoyarsk , Russia.,b Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky , Krasnoyarsk , Russia
| | - Valentina A Kratasyuk
- a Laboratory of Bioluminescent Biotechnologies, Department of Biophysics , Institute of Fundamental Biology and Biotechnology, Siberian Federal University , Krasnoyarsk , Russia.,c Federal State Budgetary Scientific Institution "Institute of Biophysics, Siberian Branch of RAS" , Krasnoyarsk , Russia
| | - Nadezhda N Medvedeva
- b Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky , Krasnoyarsk , Russia
| | - Oxana A Kolenchukova
- a Laboratory of Bioluminescent Biotechnologies, Department of Biophysics , Institute of Fundamental Biology and Biotechnology, Siberian Federal University , Krasnoyarsk , Russia.,d Federal State Budgetary Scientific Institution "Scientific Research Institute of medical problems of the North" , Krasnoyarsk , Russia
| | - Alla B Salmina
- b Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky , Krasnoyarsk , Russia
| |
Collapse
|
35
|
Hasaninejad A, Mandegani F, Beyrati M, Maryamabadi A, Mohebbi G. Highly Efficient Synthesis of Spirooxindole, Spiroacenaphthylene and Bisbenzo[b]pyran Derivatives and Evaluation of Their Inhibitory Activity against Sirtuin 2. ChemistrySelect 2017. [DOI: 10.1002/slct.201701364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alireza Hasaninejad
- Department of Chemistry; Faculty of Sciences; Persian Gulf University; Bushehr 7516913817 Iran
| | - Fatemeh Mandegani
- Department of Chemistry; Faculty of Sciences; Persian Gulf University; Bushehr 7516913817 Iran
| | - Maryam Beyrati
- Department of Chemistry; Faculty of Sciences; Persian Gulf University; Bushehr 7516913817 Iran
| | - Ammar Maryamabadi
- Department of Chemistry; Faculty of Sciences; Persian Gulf University; Bushehr 7516913817 Iran
| | - Gholamhossein Mohebbi
- Persian Gulf Marine Biotechnology Research Center; the Persian Gulf Biomedical Research Center; Bushehr University of Medical Sciences; Bushehr Iran
| |
Collapse
|
36
|
Stenzel K, Chakrabarti A, Melesina J, Hansen FK, Lancelot J, Herkenhöhner S, Lungerich B, Marek M, Romier C, Pierce RJ, Sippl W, Jung M, Kurz T. Isophthalic Acid-Based HDAC Inhibitors as Potent Inhibitors of HDAC8 fromSchistosoma mansoni. Arch Pharm (Weinheim) 2017. [DOI: 10.1002/ardp.201700096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Katharina Stenzel
- Institute of Pharmaceutical and Medicinal Chemistry; Heinrich-Heine-University; Düsseldorf Germany
| | - Alokta Chakrabarti
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Freiburg Germany
| | - Jelena Melesina
- Institute of Pharmacy; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Finn K. Hansen
- Institute of Pharmaceutical and Medicinal Chemistry; Heinrich-Heine-University; Düsseldorf Germany
- Pharmaceutical/Medicinal Chemistry; Institute of Pharmacy; Leipzig University; Leipzig Germany
| | - Julien Lancelot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille; U1019 UMR 8204CIIL - Centre d'Infection et d'Immunité de Lille; Lille France
| | - Simon Herkenhöhner
- Institute of Pharmaceutical and Medicinal Chemistry; Heinrich-Heine-University; Düsseldorf Germany
| | - Beate Lungerich
- Institute of Pharmaceutical and Medicinal Chemistry; Heinrich-Heine-University; Düsseldorf Germany
| | - Martin Marek
- IGBMC; Université de Strasbourg; Illkirch France
| | | | - Raymond. J. Pierce
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille; U1019 UMR 8204CIIL - Centre d'Infection et d'Immunité de Lille; Lille France
| | - Wolfgang Sippl
- Institute of Pharmacy; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Freiburg Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry; Heinrich-Heine-University; Düsseldorf Germany
| |
Collapse
|
37
|
Stenzel K, Hamacher A, Hansen FK, Gertzen CGW, Senger J, Marquardt V, Marek L, Marek M, Romier C, Remke M, Jung M, Gohlke H, Kassack MU, Kurz T. Alkoxyurea-Based Histone Deacetylase Inhibitors Increase Cisplatin Potency in Chemoresistant Cancer Cell Lines. J Med Chem 2017; 60:5334-5348. [DOI: 10.1021/acs.jmedchem.6b01538] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Katharina Stenzel
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Finn K. Hansen
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Pharmaceutical/Medicinal
Chemistry, Institute of Pharmacy, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Christoph G. W. Gertzen
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Johanna Senger
- Institut
für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Viktoria Marquardt
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department
of Pediatric Oncology, Hematology, and Clinical Immunology, Medical
Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Department
of Neuropathology, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Division of Pediatric
Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer
Research Center (DKFZ), Moorenstraße
5, 40225 Düsseldorf, Germany
| | - Linda Marek
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Martin Marek
- Département
de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Christophe Romier
- Département
de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Marc Remke
- Department
of Pediatric Oncology, Hematology, and Clinical Immunology, Medical
Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Department
of Neuropathology, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Division of Pediatric
Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer
Research Center (DKFZ), Moorenstraße
5, 40225 Düsseldorf, Germany
| | - Manfred Jung
- Institut
für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Holger Gohlke
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Matthias U. Kassack
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Thomas Kurz
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
38
|
Krieger V, Hamacher A, Gertzen CGW, Senger J, Zwinderman MRH, Marek M, Romier C, Dekker FJ, Kurz T, Jung M, Gohlke H, Kassack MU, Hansen FK. Design, Multicomponent Synthesis, and Anticancer Activity of a Focused Histone Deacetylase (HDAC) Inhibitor Library with Peptoid-Based Cap Groups. J Med Chem 2017; 60:5493-5506. [PMID: 28574690 DOI: 10.1021/acs.jmedchem.7b00197] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this work, we report the multicomponent synthesis of a focused histone deacetylase (HDAC) inhibitor library with peptoid-based cap groups and different zinc-binding groups. All synthesized compounds were tested in a cellular HDAC inhibition assay and an MTT assay for cytotoxicity. On the basis of their noteworthy activity in the cellular HDAC assays, four compounds were further screened for their inhibitory activity against recombinant HDAC1-3, HDAC6, and HDAC8. All four compounds showed potent inhibition of HDAC1-3 as well as significant inhibition of HDAC6 with IC50 values in the submicromolar concentration range. Compound 4j, the most potent HDAC inhibitor in the cellular HDAC assay, revealed remarkable chemosensitizing properties and enhanced the cisplatin sensitivity of the cisplatin-resistant head-neck cancer cell line Cal27CisR by almost 7-fold. Furthermore, 4j almost completely reversed the cisplatin resistance in Cal27CisR. This effect is related to a synergistic induction of apoptosis as seen in the combination of 4j with cisplatin.
Collapse
Affiliation(s)
- Viktoria Krieger
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christoph G W Gertzen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Johanna Senger
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg , Albertstraße 25, 79104 Freiburg im Breisgau, Germany
| | - Martijn R H Zwinderman
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen , 9712 Groningen, The Netherlands
| | - Martin Marek
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM , 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM , 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen , 9712 Groningen, The Netherlands
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Manfred Jung
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg , Albertstraße 25, 79104 Freiburg im Breisgau, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Matthias U Kassack
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany.,Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Leipzig University , Brüderstraße 34, 04103 Leipzig, Germany
| |
Collapse
|
39
|
Vojacek S, Beese K, Alhalabi Z, Swyter S, Bodtke A, Schulzke C, Jung M, Sippl W, Link A. Three-Component Aminoalkylations Yielding Dihydronaphthoxazine-Based Sirtuin Inhibitors: Scaffold Modification and Exploration of Space for Polar Side-Chains. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201700097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Steffen Vojacek
- Institute of Pharmacy; University of Greifswald; Greifswald Germany
| | - Katja Beese
- Institute of Pharmacy; University of Greifswald; Greifswald Germany
| | - Zayan Alhalabi
- Institute of Pharmacy; Martin Luther University of Halle-Wittenberg; Halle/Saale Germany
| | - Sören Swyter
- Institute of Pharmaceutical Sciences; University of Freiburg; Freiburg Germany
| | - Anja Bodtke
- Institute of Pharmacy; University of Greifswald; Greifswald Germany
| | - Carola Schulzke
- Institute of Biochemistry; University of Greifswald; Greifswald Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences; University of Freiburg; Freiburg Germany
| | - Wolfgang Sippl
- Institute of Pharmacy; Martin Luther University of Halle-Wittenberg; Halle/Saale Germany
| | - Andreas Link
- Institute of Pharmacy; University of Greifswald; Greifswald Germany
| |
Collapse
|
40
|
Hau M, Zenk F, Ganesan A, Iovino N, Jung M. Cellular analysis of the action of epigenetic drugs and probes. Epigenetics 2017; 12:308-322. [PMID: 28071961 DOI: 10.1080/15592294.2016.1274472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Small molecule drugs and probes are important tools in drug discovery, pharmacology, and cell biology. This is of course also true for epigenetic inhibitors. Important examples for the use of established epigenetic inhibitors are the study of the mechanistic role of a certain target in a cellular setting or the modulation of a certain phenotype in an approach that aims toward therapeutic application. Alternatively, cellular testing may aim at the validation of a new epigenetic inhibitor in drug discovery approaches. Cellular and eventually animal models provide powerful tools for these different approaches but certain caveats have to be recognized and taken into account. This involves both the selectivity of the pharmacological tool as well as the specificity and the robustness of the cellular system. In this article, we present an overview of different methods that are used to profile and screen for epigenetic agents and comment on their limitations. We describe not only diverse successful case studies of screening approaches using different assay formats, but also some problematic cases, critically discussing selected applications of these systems.
Collapse
Affiliation(s)
- Mirjam Hau
- a University of Freiburg, Institute for Pharmaceutical Sciences , Freiburg , Germany
| | - Fides Zenk
- b Max Planck Institute of Immunobiology and Epigenetics , Freiburg , Germany
| | - A Ganesan
- c School of Pharmacy, University of East Anglia , Norwich NR4 7TJ , United Kingdom.,d Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg , Freiburg , Germany
| | - Nicola Iovino
- b Max Planck Institute of Immunobiology and Epigenetics , Freiburg , Germany
| | - Manfred Jung
- a University of Freiburg, Institute for Pharmaceutical Sciences , Freiburg , Germany.,d Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg , Freiburg , Germany
| |
Collapse
|
41
|
Wutz D, Gluhacevic D, Chakrabarti A, Schmidtkunz K, Robaa D, Erdmann F, Romier C, Sippl W, Jung M, König B. Photochromic histone deacetylase inhibitors based on dithienylethenes and fulgimides. Org Biomol Chem 2017; 15:4882-4896. [DOI: 10.1039/c7ob00976c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis, photochromic properties, inhibition of different HDACs and corresponding molecular dockings of photochromic inhibitors are described.
Collapse
Affiliation(s)
- D. Wutz
- Institute of Organic Chemistry
- University of Regensburg
- 93053 Regensburg
- Germany
| | - D. Gluhacevic
- Institute of Organic Chemistry
- University of Regensburg
- 93053 Regensburg
- Germany
| | - A. Chakrabarti
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - K. Schmidtkunz
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - D. Robaa
- Department of Pharmaceutical Chemistry
- Martin Luther University of Halle Wittenberg
- 06120 Halle/Saale
- Germany
| | - F. Erdmann
- Department of Pharmaceutical Chemistry
- Martin Luther University of Halle Wittenberg
- 06120 Halle/Saale
- Germany
| | - C. Romier
- Département de Biologie Structurale Intégrative
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)
- Université de Strasbourg (UDS)
- CNRS
- INSERM
| | - W. Sippl
- Department of Pharmaceutical Chemistry
- Martin Luther University of Halle Wittenberg
- 06120 Halle/Saale
- Germany
| | - M. Jung
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - B. König
- Institute of Organic Chemistry
- University of Regensburg
- 93053 Regensburg
- Germany
| |
Collapse
|
42
|
Wang YH, Zheng GX, Li YJ. Giardia duodenalis GlSir2.2, homolog of SIRT1, is a nuclear-located and NAD+-dependent deacethylase. Exp Parasitol 2016; 169:28-33. [DOI: 10.1016/j.exppara.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/03/2016] [Accepted: 07/11/2016] [Indexed: 11/28/2022]
|
43
|
Phenylpyrrole-based HDAC inhibitors: synthesis, molecular modeling and biological studies. Future Med Chem 2016; 8:1573-87. [PMID: 27556815 DOI: 10.4155/fmc-2016-0068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Histone deacetylases (HDACs) regulate the expression and activity of numerous proteins involved in the initiation and progression of cancer. Currently, three hydroxamate-containing HDAC pan-inhibitors have been approved as antitumor agents. RESULTS We herein present the development of a series of novel phenylpyrrole-based derivatives stemmed from combined computational and medicinal chemistry efforts to rationally modulate HDAC1/6 isoform selectivity. In vitro activity on HDAC1 and HDAC6 isoforms and the effects of selected analogs on histone H3 and α-tubulin acetylation levels were determined. Cell-based data evidenced, for selected compounds, a promising antitumor potential and low toxicity on normal cells. CONCLUSION The newly developed compounds represent a valuable starting point for the development of novel anticancer agents.
Collapse
|
44
|
Bedalov A, Chowdhury S, Simon JA. Biology, Chemistry, and Pharmacology of Sirtuins. Methods Enzymol 2016; 574:183-211. [PMID: 27423863 DOI: 10.1016/bs.mie.2016.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sirtuins are a family of protein deacylases related by amino acid sequence and cellular function to the yeast Saccharomyces cerevisiae protein Sir2 (Silent Information Regulator-2), the first of this class of enzymes to be identified and studied in detail. Based on its initially discovered activity, Sir2 was classified as a histone deacetylase that removes acetyl groups from histones H3 and H4. The acetylation/deacetylation of these particular substrates leads to changes in transcriptional silencing at specific loci in the yeast genome, hence its name. Sirtuins, however, have been shown to regulate a wide variety of cellular processes beyond transcriptional repression in varied subcellular compartments and in different cell types. Mechanistically distinct from Zn(2+)-dependent deacylases, sirtuins use nicotinamide adenine dinucleotide as a cofactor in the removal of acetyl and other acyl groups linking metabolic status and posttranslational modification. Sirtuins' unique position has made them attractive targets for small-molecule drug development. In this chapter, we describe the biological roles, therapeutic areas in which sirtuins may play a role and development of small-molecule inhibitors of sirtuins employing phenotypic screening technologies ranging from assays in yeast, as well as biochemical screens to yield lead drug development candidates targeting a broad spectrum of human diseases.
Collapse
Affiliation(s)
- A Bedalov
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - S Chowdhury
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - J A Simon
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
| |
Collapse
|
45
|
Abstract
Sirtuins are NAD-dependent lysine deacylases that play critical roles in cellular regulation and are implicated in human diseases. Modulators of sirtuins are needed as tools for investigating their biological functions and possible therapeutic applications. However, the discovery of sirtuin modulators is hampered by the lack of efficient sirtuin assays. Here we report an improved fluorogenic assay for SIRT1, SIRT2, and SIRT3 using a new substrate, a myristoyl peptide with a C-terminal aminocoumarin. The new assay has several advantages, including significantly lower substrate concentration needed, increased signal-to-background ratio, and improved Z'-factor. The novel assay thus will expedite high-throughput screening of SIRT1, SIRT2, and SIRT3 modulators.
Collapse
Affiliation(s)
- Ying-Ling Chiang
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Tel: +1 607-255-4650
| |
Collapse
|
46
|
Li P, Han Y, Li Y, Zhu R, Wang H, Nie Z, Yao S. Bioanalytical approaches for the detection of protein acetylation-related enzymes. Anal Bioanal Chem 2016; 408:2659-68. [DOI: 10.1007/s00216-016-9304-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
47
|
Senger J, Melesina J, Marek M, Romier C, Oehme I, Witt O, Sippl W, Jung M. Synthesis and Biological Investigation of Oxazole Hydroxamates as Highly Selective Histone Deacetylase 6 (HDAC6) Inhibitors. J Med Chem 2015; 59:1545-55. [PMID: 26653328 DOI: 10.1021/acs.jmedchem.5b01493] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histone deacetylase 6 (HDAC6) catalyzes the removal of an acetyl group from lysine residues of several non-histone proteins. Here we report the preparation of thiazole-, oxazole-, and oxadiazole-containing biarylhydroxamic acids by a short synthetic procedure. We identified them as selective HDAC6 inhibitors by investigating the inhibition of recombinant HDAC enzymes and the protein acetylation in cells by Western blotting (tubulin vs histone acetylation). The most active compounds exhibited nanomolar potency and high selectivity for HDAC6. For example, an oxazole hydroxamate inhibits HDAC6 with an IC50 of 59 nM and has a selectivity index of >200 against HDAC1 and HDAC8. This is the first report showing that the nature of a heterocycle directly connected to a zinc binding group (ZBG) can be used to modulate subtype selectivity and potency for HDAC6 inhibitors to such an extent. We rationalize the high potency and selectivity of the oxazoles by molecular modeling and docking.
Collapse
Affiliation(s)
- Johanna Senger
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg , Albertstraße 25, 79104 Freiburg, Germany
| | - Jelena Melesina
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg , Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Martin Marek
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Ina Oehme
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Centre (DKFZ) , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Olaf Witt
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Centre (DKFZ) , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg , Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg , Albertstraße 25, 79104 Freiburg, Germany
| |
Collapse
|
48
|
Göbel P, Ritterbusch F, Helms M, Bischof M, Harms K, Jung M, Meggers E. Probing Chiral Recognition of Enzyme Active Sites with Octahedral Iridium(III) Propeller Complexes. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Falenczyk C, Schiedel M, Karaman B, Rumpf T, Kuzmanovic N, Grøtli M, Sippl W, Jung M, König B. Chromo-pharmacophores: photochromic diarylmaleimide inhibitors for sirtuins. Chem Sci 2014. [DOI: 10.1039/c4sc01346h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Controlling the activity of sirtuins is of high biomedical relevance as the enzymes are involved in cancer, neurodegeneration and other diseases.
Collapse
Affiliation(s)
- C. Falenczyk
- Institute of Organic Chemistry
- University of Regensburg
- 93040 Regensburg, Germany
| | - M. Schiedel
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg, Germany
| | - B. Karaman
- Department of Pharmaceutical Chemistry
- Martin Luther University of Halle Wittenberg
- 06120 Halle/Saale, Germany
| | - T. Rumpf
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg, Germany
| | - N. Kuzmanovic
- Institute of Organic Chemistry
- University of Regensburg
- 93040 Regensburg, Germany
| | - M. Grøtli
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- 41296 Göteborg, Sweden
| | - W. Sippl
- Department of Pharmaceutical Chemistry
- Martin Luther University of Halle Wittenberg
- 06120 Halle/Saale, Germany
| | - M. Jung
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg, Germany
| | - B. König
- Institute of Organic Chemistry
- University of Regensburg
- 93040 Regensburg, Germany
| |
Collapse
|
50
|
Abstract
The effect of histone deacetylases (HDACs) on normal and aberrant gene expression has been studied widely, making these enzymes interesting targets for the treatment of cancer and other diseases. In this chapter, we present in vitro assays that are commonly used to detect HDAC activity that do not rely on radioactive substrates and are amenable for high-throughput testing in microtiter plates. The major focus is on in vitro screening, but we also provide protocols to monitor HDAC activity from cancer cells and peripheral white blood cells. We will discuss the advantages and drawbacks of the respective protocols and give general hints and suggestions that are valuable to obtain reliable and reproducible results.
Collapse
|