1
|
Lo SK, Su NY, Su CC, Chang YC. Sodium butyrate activates the extrinsic and intrinsic apoptotic processes in murine cementoblasts. J Dent Sci 2025; 20:613-619. [PMID: 39873046 PMCID: PMC11762920 DOI: 10.1016/j.jds.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/03/2024] [Indexed: 01/30/2025] Open
Abstract
Background /purpose: The metabolic by-product butyric acid of Gram-negative anaerobic bacteria can invoke pathological effects on periodontal cells resulting in inflammation and further destruction of periodontium. However, limited researches on the effects of butyric acid on cementoblasts were reported. Therefore, this study aimed to investigate the type of cell death in murine cementoblast (OCCM.30) caused by adding the different concentrations of sodium butyrate to the cell culture. Materials and methods OCCM.30 cells were exposed to sodium butyrate (0, 2, 4, 8, 16 mM) for 48 h. Cell viability was determined by microculture tetrazolium assay. Cell cycle distribution and cell death were analyzed by flow cytometry. Caspase-mediated apoptotic cascade was evaluated by Western blot. Results The concentrations of sodium butyrate≧4 mM were found to inhibit cell viability of OCCM.30 cells in a dose-dependent manner (P < 0.05). Sodium butyrate elevated sub-G1 cell population which exhibited cell apoptosis in OCCM.30 cells (P < 0.05). In addition, early and later apoptotic cells were found in sodium butyrate-induced cell death. Sodium butyrate significantly stimulated the degradation of procaspases-3, -8, and -9 levels, respectively (P < 0.05). Simultaneously, sodium butyrate corresponded to augment the levels of cleaved forms of caspases-3, -8, and -9, respectively (P < 0.05). Conclusion Taken together, sodium butyrate is a cytotoxic agent and can induce apoptosis on cementoblasts. The pathway involved in apoptosis is activated by caspase family signaling pathways. These evidences may provide a new mechanistic insight into the mechanism of damage of cementoblasts during the development and progression of periodontitis.
Collapse
Affiliation(s)
- Shih-Kai Lo
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ni-Yu Su
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Chuan Su
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Manenzhe SC, Koutras S, Zwane NB, Masilana AI, Shangase SL. The impact of Filifactor alocis on the severity of periodontitis among diabetic and non-diabetic patients: a narrative review. FRONTIERS IN DENTAL MEDICINE 2024; 5:1408839. [PMID: 39917682 PMCID: PMC11797853 DOI: 10.3389/fdmed.2024.1408839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 02/09/2025] Open
Abstract
The extensive studies on Filifactor alocis (Fa) show a positive association with periodontitis, demonstrating elevated Fa levels compared to traditional periodontal pathogens in severe disease. Periodontitis is a chronic multifactorial disease induced by a dysbiotic microbiota in a susceptible host whilst diabetes is an established risk factor for periodontitis. Diabetes has been shown to alter the subgingival microbiota into distinct microbial communities which favours the shift towards disease. It is these very distinct subgingival microbiota that are believed to contribute to the high prevalence and severity of periodontitis in diabetic patients. This dysbiotic microbiota constitute traditional periodontal pathogens which include among others the red complex triad (Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia), Aggregatibacter actinomycetemcomitans, the orange complex (Fusobacterium nucleatum, Prevotella intermedia etc.) and other emerging pathogens such as Fa that were previously unrecognised as role players in the pathogenesis of periodontitis. Fa is an asaccharolytic anaerobic gram-positive rod (AAGPR) currently considered to be one of the potential drivers of periodontitis progression and worsening through its unique virulence characteristics. Various mechanisms through which Fa contributes to the pathogenesis and severity of periodontitis have been reported. The mechanisms involved in the bidirectional relationship between periodontitis and diabetes are continuously being explored in order to enhance individualised preventative and management approaches in affected patients. This review aims to report on this emerging periodontal pathogen and its capacity to influence dysbiosis within a complex subgingival microbial community; including its potential role in the bidirectional relationship between diabetes and periodontitis. This review will highlight Fa as a potential prognostic indicator for disease worsening, which will help improve management protocols for periodontitis and diabetes.
Collapse
Affiliation(s)
| | - Sandra Koutras
- Department of Oral Medicine and Periodontics, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Aubrey Isaac Masilana
- Department of Periodontics and Oral Medicine, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
3
|
Kashyap B, Kullaa A. Salivary Metabolites Produced by Oral Microbes in Oral Diseases and Oral Squamous Cell Carcinoma: A Review. Metabolites 2024; 14:277. [PMID: 38786754 PMCID: PMC11122927 DOI: 10.3390/metabo14050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, salivary metabolome studies have provided new biological information and salivary biomarkers to diagnose different diseases at early stages. The saliva in the oral cavity is influenced by many factors that are reflected in the salivary metabolite profile. Oral microbes can alter the salivary metabolite profile and may express oral inflammation or oral diseases. The released microbial metabolites in the saliva represent the altered biochemical pathways in the oral cavity. This review highlights the oral microbial profile and microbial metabolites released in saliva and its use as a diagnostic biofluid for different oral diseases. The importance of salivary metabolites produced by oral microbes as risk factors for oral diseases and their possible relationship in oral carcinogenesis is discussed.
Collapse
Affiliation(s)
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| |
Collapse
|
4
|
Hakkers J, Liu L, Hentenaar DFM, Raghoebar GM, Vissink A, Meijer HJA, Walters L, Harmsen HJM, de Waal YCM. The Peri-Implant Microbiome-A Possible Factor Determining the Success of Surgical Peri-Implantitis Treatment? Dent J (Basel) 2024; 12:20. [PMID: 38275681 PMCID: PMC10814184 DOI: 10.3390/dj12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The objective was to assess the effect of peri-implantitis surgery on the peri-implant microbiome with a follow-up of one year. A total of 25 peri-implantitis patients in whom non-surgical treatment has failed to solve peri-implantitis underwent resective surgical treatment. Their peri-implant pockets were sampled prior to surgical treatment (T0) and one year post treatment (T12). The natural dentition was sampled to analyse similarities and differences with the peri-implantitis samples. Treatment success was recorded. The change in microbial relative abundance levels was evaluated. The microbiota was analysed by sequencing the amplified V3-V4 region of the 16S rRNA genes. Sequence data were binned to amplicon sequence variants that were assigned to bacterial genera. Group differences were analysed using principal coordinate analysis, Wilcoxon signed rank tests, and t-tests. Beta diversity analyses reported a significant separation between peri-implantitis and natural dentition samples on T0 and T12, along with significant separations between successfully and non-successfully treated patients. Eubacterium was significantly lower on T12 compared to T0 for the peri-implantitis samples. Treponema and Eubacterium abundance levels were significantly lower in patients with treatment success on T0 and T12 versus no treatment success. Therefore, lower baseline levels of Treponema and Eubacterium seem to be associated with treatment success of peri-implantitis surgery. This study might aid clinicians in determining which peri-implantitis cases might be suitable for treatment and give a prognosis with regard to treatment success.
Collapse
Affiliation(s)
- Jarno Hakkers
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (D.F.M.H.); (G.M.R.); (A.V.); (H.J.A.M.)
| | - Lei Liu
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (L.L.); (L.W.); (H.J.M.H.)
| | - Diederik F. M. Hentenaar
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (D.F.M.H.); (G.M.R.); (A.V.); (H.J.A.M.)
| | - Gerry M. Raghoebar
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (D.F.M.H.); (G.M.R.); (A.V.); (H.J.A.M.)
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (D.F.M.H.); (G.M.R.); (A.V.); (H.J.A.M.)
| | - Henny J. A. Meijer
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (D.F.M.H.); (G.M.R.); (A.V.); (H.J.A.M.)
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Lisa Walters
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (L.L.); (L.W.); (H.J.M.H.)
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (L.L.); (L.W.); (H.J.M.H.)
| | - Yvonne C. M. de Waal
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| |
Collapse
|
5
|
Suhasini PC, Shetty SS, Shetty VV, Bhat V, Roopashree PG, Kumari NS. A Comparative Study of Serum Butyric Acid in Subjects with Tongue Cancer. JOURNAL OF DATTA MEGHE INSTITUTE OF MEDICAL SCIENCES UNIVERSITY 2024; 19:104-108. [DOI: 10.4103/jdmimsu.jdmimsu_822_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 01/03/2025]
Abstract
Abstract
Aim:
The aim of the study was to study the level of butyric acid in tongue cancer subjects.
Materials and Methods:
Thirty controls and 30 tongue cancer subjects were recruited for the study. Serum butyric acid levels were estimated using ELISA kits. Statistical analyses were done using SPSS vs 22. The Mann–Whitney U and Kruskal–Wallis tests were used. P ≤ 0.05 was considered statistically significant.
Results:
Butyric acid levels were significantly higher in control subjects when compared to case subjects.
Conclusion:
Butyric acid could be used as a potential anticancer agent in tongue cancer treatment.
Collapse
Affiliation(s)
- P. C. Suhasini
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, India
| | - Shilpa S. Shetty
- Department of Cellomics, Lipidomics and Molecular Genetics Division, Central Research Laboratory, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, India
| | - Vijith Vittal Shetty
- Department of Oncology, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, India
| | - Vadisha Bhat
- Department of ENT, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, India
| | - P. G. Roopashree
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, India
| | - N. Suchetha Kumari
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, India
| |
Collapse
|
6
|
Basic A, Dahlén G. Microbial metabolites in the pathogenesis of periodontal diseases: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1210200. [PMID: 37388417 PMCID: PMC10300593 DOI: 10.3389/froh.2023.1210200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The purpose of this narrative review is to highlight the importance of microbial metabolites in the pathogenesis of periodontal diseases. These diseases, involving gingivitis and periodontitis are inflammatory conditions initiated and maintained by the polymicrobial dental plaque/biofilm. Gingivitis is a reversible inflammatory condition while periodontitis involves also irreversible destruction of the periodontal tissues including the alveolar bone. The inflammatory response of the host is a natural reaction to the formation of plaque and the continuous release of metabolic waste products. The microorganisms grow in a nutritious and shielded niche in the periodontal pocket, protected from natural cleaning forces such as saliva. It is a paradox that the consequences of the enhanced inflammatory reaction also enable more slow-growing, fastidious, anaerobic bacteria, with often complex metabolic pathways, to colonize and thrive. Based on complex food chains, nutrient networks and bacterial interactions, a diverse microbial community is formed and established in the gingival pocket. This microbiota is dominated by anaerobic, often motile, Gram-negatives with proteolytic metabolism. Although this alternation in bacterial composition often is considered pathologic, it is a natural development that is promoted by ecological factors and not necessarily a true "dysbiosis". Normal commensals are adapting to the gingival crevice when tooth cleaning procedures are absent. The proteolytic metabolism is highly complex and involves a number of metabolic pathways with production of a cascade of metabolites in an unspecific manner. The metabolites involve short chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acid), amines (indole, scatole, cadaverine, putrescine, spermine, spermidine) and gases (NH3, CO, NO, H2S, H2). A homeostatic condition is often present between the colonizers and the host response, where continuous metabolic fluctuations are balanced by the inflammatory response. While it is well established that the effect of the dental biofilm on the host response and tissue repair is mediated by microbial metabolites, the mechanisms behind the tissue destruction (loss of clinical attachment and bone) are still poorly understood. Studies addressing the functions of the microbiota, the metabolites, and how they interplay with host tissues and cells, are therefore warranted.
Collapse
|
7
|
Afrasiabi S, Chiniforush N, Partoazar A, Goudarzi R. The role of bacterial infections in rheumatoid arthritis development and novel therapeutic interventions: Focus on oral infections. J Clin Lab Anal 2023:e24897. [PMID: 37225674 DOI: 10.1002/jcla.24897] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) represents a primary public health challenge, which is a major source of pain, disability, and socioeconomic effects worldwide. Several factors contribute to its pathogenesis. Infections are an important concern in RA patients, which play a key role in mortality risk. Despite major advances in the clinical treatment of RA, long-term use of disease-modifying anti-rheumatic drugs can cause serious adverse effects. Therefore, effective strategies for developing novel prevention and RA-modifying therapeutic interventions are sorely needed. OBJECTIVE This review investigates the available evidence on the interplay between various bacterial infections, particularly oral infections and RA, and focuses on some potential interventions such as probiotics, photodynamic therapy, nanotechnology, and siRNA that can have therapeutic effects.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, California, USA
| |
Collapse
|
8
|
Hominibacterium faecale gen. nov., sp. nov., an anaerobic l-arginine-degrading bacterium isolated from human feces. Arch Microbiol 2023; 205:33. [DOI: 10.1007/s00203-022-03365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
|
9
|
Wei Y, Shi M, Nie Y, Wang C, Sun F, Jiang W, Hu W, Wu X. Integrated analysis of the salivary microbiome and metabolome in chronic and aggressive periodontitis: A pilot study. Front Microbiol 2022; 13:959416. [PMID: 36225347 PMCID: PMC9549375 DOI: 10.3389/fmicb.2022.959416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
This pilot study was designed to identify the salivary microbial community and metabolic characteristics in patients with generalized periodontitis. A total of 36 saliva samples were collected from 13 patients with aggressive periodontitis (AgP), 13 patients with chronic periodontitis (ChP), and 10 subjects with periodontal health (PH). The microbiome was evaluated using 16S rRNA gene high-throughput sequencing, and the metabolome was accessed using gas chromatography-mass spectrometry. The correlation between microbiomes and metabolomics was analyzed by Spearman’s correlation method. Our results revealed that the salivary microbial community and metabolite composition differed significantly between patients with periodontitis and healthy controls. Striking differences were found in the composition of salivary metabolites between AgP and ChP. The genera Treponema, Peptococcus, Catonella, Desulfobulbus, Peptostreptococcaceae_[XI] ([G-2], [G-3] [G-4], [G-6], and [G-9]), Bacteroidetes_[G-5], TM7_[G-5], Dialister, Eikenella, Fretibacterium, and Filifactor were present in higher levels in patients with periodontitis than in the healthy participants. The biochemical pathways that were significantly different between ChP and AgP included pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; beta-alanine metabolism; citrate cycle; and arginine and proline metabolism. The differential metabolites between ChP and AgP groups, such as urea, beta-alanine, 3-aminoisobutyric acid, and thymine, showed the most significant correlations with the genera. These differential microorganisms and metabolites may be used as potential biomarkers to monitor the occurrence and development of periodontitis through the utilization of non-invasive and convenient saliva samples. This study reveals the integration of salivary microbial data and metabolomic data, which provides a foundation to further explore the potential mechanism of periodontitis.
Collapse
Affiliation(s)
- Yiping Wei
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Meng Shi
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Nie
- Laboratory of Environmental Microbiology, Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, China
| | - Cui Wang
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Fei Sun
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenting Jiang
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenjie Hu
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Wenjie Hu,
| | - Xiaolei Wu
- Laboratory of Environmental Microbiology, Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
10
|
Krutyhołowa A, Strzelec K, Dziedzic A, Bereta GP, Łazarz-Bartyzel K, Potempa J, Gawron K. Host and bacterial factors linking periodontitis and rheumatoid arthritis. Front Immunol 2022; 13:980805. [PMID: 36091038 PMCID: PMC9453162 DOI: 10.3389/fimmu.2022.980805] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Observations from numerous clinical, epidemiological and serological studies link periodontitis with severity and progression of rheumatoid arthritis. The strong association is observed despite totally different aetiology of these two diseases, periodontitis being driven by dysbiotic microbial flora on the tooth surface below the gum line, while rheumatoid arthritis being the autoimmune disease powered by anti-citrullinated protein antibodies (ACPAs). Here we discuss genetic and environmental risk factors underlying development of both diseases with special emphasis on bacteria implicated in pathogenicity of periodontitis. Individual periodontal pathogens and their virulence factors are argued as potentially contributing to putative causative link between periodontal infection and initiation of a chain of events leading to breakdown of immunotolerance and development of ACPAs. In this respect peptidylarginine deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis, is elaborated as a potential mechanistic link between this major periodontal pathogen and initiation of rheumatoid arthritis development.
Collapse
Affiliation(s)
- Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Dziedzic
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| |
Collapse
|
11
|
Shiba T, Komatsu K, Sudo T, Sawafuji R, Saso A, Ueda S, Watanabe T, Nemoto T, Kano C, Nagai T, Ohsugi Y, Katagiri S, Takeuchi Y, Kobayashi H, Iwata T. Comparison of Periodontal Bacteria of Edo and Modern Periods Using Novel Diagnostic Approach for Periodontitis With Micro-CT. Front Cell Infect Microbiol 2021; 11:723821. [PMID: 34616690 PMCID: PMC8488429 DOI: 10.3389/fcimb.2021.723821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 11/07/2022] Open
Abstract
Ancient dental calculus, formed from dental plaque, is a rich source of ancient DNA and can provide information regarding the food and oral microbiology at that time. Genomic analysis of dental calculus from Neanderthals has revealed the difference in bacterial composition of oral microbiome between Neanderthals and modern humans. There are few reports investigating whether the pathogenic bacteria of periodontitis, a polymicrobial disease induced in response to the accumulation of dental plaque, were different between ancient and modern humans. This study aimed to compare the bacterial composition of the oral microbiome in ancient and modern human samples and to investigate whether lifestyle differences depending on the era have altered the bacterial composition of the oral microbiome and the causative bacteria of periodontitis. Additionally, we introduce a novel diagnostic approach for periodontitis in ancient skeletons using micro-computed tomography. Ancient 16S rDNA sequences were obtained from 12 samples at the Unko-in site (18th-19th century) of the Edo era (1603–1867), a characteristic period in Japan when immigrants were not accepted. Furthermore, modern 16S rDNA data from 53 samples were obtained from a database to compare the modern and ancient microbiome. The microbial co-occurrence network was analyzed based on 16S rDNA read abundance. Eubacterium species, Mollicutes species, and Treponema socranskii were the core species in the Edo co-occurrence network. The co-occurrence relationship between Actinomyces oricola and Eggerthella lenta appeared to have played a key role in causing periodontitis in the Edo era. However, Porphyromonas gingivalis, Fusobacterium nucleatum subsp. vincentii, and Prevotella pleuritidis were the core and highly abundant species in the co-occurrence network of modern samples. These results suggest the possibility of differences in the pathogens causing periodontitis during different eras in history.
Collapse
Affiliation(s)
- Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeaki Sudo
- Institute of Education, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rikai Sawafuji
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Aiko Saso
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| | - Shintaroh Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Legal Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Takayasu Watanabe
- Department of Chemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Takashi Nemoto
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chihiro Kano
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Nagai
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Kobayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Oral Microbiota Identifies Patients in Early Onset Rheumatoid Arthritis. Microorganisms 2021; 9:microorganisms9081657. [PMID: 34442739 PMCID: PMC8400434 DOI: 10.3390/microorganisms9081657] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/18/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is the most common autoimmune inflammatory disease, and single periodontitis-associated bacteria have been suggested in disease manifestation. Here, the oral microbiota was characterized in relation to the early onset of RA (eRA) taking periodontal status into consideration. 16S rRNA gene amplicon sequencing of saliva bacterial DNA from 61 eRA patients without disease-modifying anti-rheumatic drugs and 59 matched controls was performed. Taxonomic classification at 98.5% was conducted against the Human Oral Microbiome Database, microbiota functions were predicted using PICRUSt, and periodontal status linked from the Swedish quality register for clinically assessed caries and periodontitis. The participants were classified into three distinct microbiota-based cluster groups with cluster allocation differences by eRA status. Independently of periodontal status, eRA patients had enriched levels of Prevotella pleuritidis, Treponema denticola, Porphyromonas endodontalis and Filifactor alocis species and in the Porphyromonas and Fusobacterium genera and functions linked to ornithine metabolism, glucosylceramidase, beta-lactamase resistance, biphenyl degradation, fatty acid metabolism and 17-beta-estradiol-17-dehydrogenase metabolism. The results support a deviating oral microbiota composition already in eRA patients compared with healthy controls and highlight a panel of oral bacteria that may be useful in eRA risk assessment in both periodontally healthy and diseased persons.
Collapse
|
13
|
Levine M, Lohinai ZM. Resolving the Contradictory Functions of Lysine Decarboxylase and Butyrate in Periodontal and Intestinal Diseases. J Clin Med 2021; 10:jcm10112360. [PMID: 34072136 PMCID: PMC8198195 DOI: 10.3390/jcm10112360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontal disease is a common, bacterially mediated health problem worldwide. Mastication (chewing) repeatedly traumatizes the gingiva and periodontium, causing traces of inflammatory exudate, gingival crevicular fluid (GCF), to appear in crevices between the teeth and gingiva. Inadequate tooth cleaning causes a dentally adherent microbial biofilm composed of commensal salivary bacteria to appear around these crevices where many bacteria grow better on GCF than in saliva. We reported that lysine decarboxylase (Ldc) from Eikenella corrodens depletes the GCF of lysine by converting it to cadaverine and carbon dioxide. Lysine is an amino acid essential for the integrity and continuous renewal of dentally attached epithelium acting as a barrier to microbial products. Unless removed regularly by oral hygiene, bacterial products invade the lysine-deprived dental attachment where they stimulate inflammation that enhances GCF exudation. Cadaverine increases and supports the development of a butyrate-producing microbiome that utilizes the increased GCF substrates to slowly destroy the periodontium (dysbiosis). A long-standing paradox is that acid-induced Ldc and butyrate production support a commensal (probiotic) microbiome in the intestine. Here, we describe how the different physiologies of the respective tissues explain how the different Ldc and butyrate functions impact the progression and control of these two chronic diseases.
Collapse
Affiliation(s)
- Martin Levine
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| | - Zsolt M. Lohinai
- Department of Conservative Dentistry, Semmelweis University, H-1088 Budapest, Hungary;
| |
Collapse
|
14
|
Gaowa N, Zhang X, Li H, Wang Y, Zhang J, Hao Y, Cao Z, Li S. Effects of Rumen-Protected Niacin on Dry Matter Intake, Milk Production, Apparent Total Tract Digestibility, and Faecal Bacterial Community in Multiparous Holstein Dairy Cow during the Postpartum Period. Animals (Basel) 2021; 11:617. [PMID: 33652794 PMCID: PMC7996887 DOI: 10.3390/ani11030617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Extensive studies about rumen-protected niacin (RPN) supplementation on dairy cows in early-lactation have been done, but the effects of RPN on changes in dry matter intake (DMI), milk production, feed digestibility, and fecal bacterial community were conflicting. The aim of this study was to investigate them affected by RPN in postpartum cows. Multiparous Holstein dairy cows (n = 12, parity = 3.5 ± 0.5, body weights = 740 ± 28 kg) were divided into two groups supplemented with either 0 (CON) or 20 g/d RPN (RPN). Our results showed that RPN supplementation increased DMI and milk production of cows during the first three weeks after calving (p < 0.05). The concentrations of neuropeptide Y and orexin A were significantly higher in RPN group than that in the CON group during postpartum period (p < 0.05). The apparent total-tract digestibility of nutrients was similar between the CON and RPN groups at 2 weeks after calving (p > 0.05). The 16S rRNA gene sequencing analysis showed that RPN had no impact on the alpha and beta diversity, although 4 genera were changed in cow feces at 14 days after calving. Overall, 20 g/d RPN added to the diet could improve DMI and milk yield up to two weeks after calving with little influence on feed digestibility.
Collapse
Affiliation(s)
- Naren Gaowa
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (N.G.); (X.Z.); (Y.W.); (Y.H.); (Z.C.)
| | - Xiaoming Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (N.G.); (X.Z.); (Y.W.); (Y.H.); (Z.C.)
| | - Huanxu Li
- Beijing Oriental Kingherd Biotechnology Company, Beijing 100069, China;
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (N.G.); (X.Z.); (Y.W.); (Y.H.); (Z.C.)
| | - Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Yangyi Hao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (N.G.); (X.Z.); (Y.W.); (Y.H.); (Z.C.)
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (N.G.); (X.Z.); (Y.W.); (Y.H.); (Z.C.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (N.G.); (X.Z.); (Y.W.); (Y.H.); (Z.C.)
| |
Collapse
|
15
|
Miralda I, Uriarte SM. Periodontal Pathogens' strategies disarm neutrophils to promote dysregulated inflammation. Mol Oral Microbiol 2020; 36:103-120. [PMID: 33128827 PMCID: PMC8048607 DOI: 10.1111/omi.12321] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Periodontitis is an irreversible, chronic inflammatory disease where inflammophilic pathogenic microbial communities accumulate in the gingival crevice. Neutrophils are a major component of the innate host response against bacterial challenge, and under homeostatic conditions, their microbicidal functions typically protect the host against periodontitis. However, a number of periodontal pathogens developed survival strategies to evade neutrophil microbicidal functions while promoting inflammation, which provides a source of nutrients for bacterial growth. Research on periodontal pathogens has largely focused on a few established species: Tannerella forsythia, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis. However, advances in culture-independent techniques have facilitated the identification of new bacterial species in periodontal lesions, such as the two Gram-positive anaerobes, Filifactor alocis and Peptoanaerobacter stomatis, whose characterization of pathogenic potential has not been fully described. Additionally, there is not a full understanding of the pathogenic mechanisms used against neutrophils by organisms that are abundant in periodontal lesions. This presents a substantial barrier to the development of new approaches to prevent or ameliorate the disease. In this review, we first summarize the neutrophil functions affected by the established periodontal pathogens listed above, denoting unknown areas that still merit a closer look. Then, we review the literature on neutrophil functions and the emerging periodontal pathogens, F. alocis and P. stomatis, comparing the effects of the emerging microbes to that of established pathogens, and speculate on the contribution of these putative pathogens to the progression of periodontal disease.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
16
|
Kouznetsova VL, Li J, Romm E, Tsigelny IF. Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning. Oral Dis 2020; 27:484-493. [PMID: 32762095 DOI: 10.1111/odi.13591] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of this research is the study of metabolic pathways related to oral cancer and periodontitis along with development of machine-learning model for elucidation of these diseases based on saliva metabolites of patients. METHODS Data mining, metabolomic pathways analysis, study of metabolite-gene networks related to these diseases. Machine-learning and deep-learning methods for development of the model for recognition of oral cancer versus periodontitis, using patients' saliva. RESULTS The most accurate classifications between oral cancer and periodontitis were performed using neural networks, logistic regression and stochastic gradient descent confirmed by the separate 10-fold cross-validations. The best results were achieved by the deep-learning neural network with the TensorFlow program. Accuracy of the resulting model was 79.54%. The other methods, which did not rely on deep learning, were able to achieve comparable, although slightly worse results with respect to accuracy. CONCLUSION Our results demonstrate a possibility to distinguish oral cancer from periodontal disease by analysis the saliva metabolites of a patient, using machine-learning methods. These findings may be useful in the development of a non-invasive method to aid care providers in determining between oral cancer and periodontitis quickly and effectively.
Collapse
Affiliation(s)
| | - Jeremy Li
- MAP program, University of California, San Diego, CA, USA
| | | | - Igor F Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, CA, USA.,CureMatch Inc. San Diego, CA, USA.,Department of Neurosciences, University of California, San Diego, CA, USA
| |
Collapse
|
17
|
Xiao S, Liu C, Chen M, Zou J, Zhang Z, Cui X, Jiang S, Shang E, Qian D, Duan J. Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites. Appl Microbiol Biotechnol 2019; 104:303-317. [DOI: 10.1007/s00253-019-10174-w] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
|
18
|
Metabolic modeling for predicting VFA production from protein‐rich substrates by mixed‐culture fermentation. Biotechnol Bioeng 2019; 117:73-84. [DOI: 10.1002/bit.27177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 11/07/2022]
|
19
|
Importance of Virulence Factors for the Persistence of Oral Bacteria in the Inflamed Gingival Crevice and in the Pathogenesis of Periodontal Disease. J Clin Med 2019; 8:jcm8091339. [PMID: 31470579 PMCID: PMC6780532 DOI: 10.3390/jcm8091339] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 01/18/2023] Open
Abstract
Periodontitis is a chronic inflammation that develops due to a destructive tissue response to prolonged inflammation and a disturbed homeostasis (dysbiosis) in the interplay between the microorganisms of the dental biofilm and the host. The infectious nature of the microbes associated with periodontitis is unclear, as is the role of specific bacterial species and virulence factors that interfere with the host defense and tissue repair. This review highlights the impact of classical virulence factors, such as exotoxins, endotoxins, fimbriae and capsule, but also aims to emphasize the often-neglected cascade of metabolic products (e.g., those generated by anaerobic and proteolytic metabolism) that are produced by the bacterial phenotypes that survive and thrive in deep, inflamed periodontal pockets. This metabolic activity of the microbes aggravates the inflammatory response from a low-grade physiologic (homeostatic) inflammation (i.e., gingivitis) into more destructive or tissue remodeling processes in periodontitis. That bacteria associated with periodontitis are linked with a number of systemic diseases of importance in clinical medicine is highlighted and exemplified with rheumatoid arthritis, The unclear significance of a number of potential "virulence factors" that contribute to the pathogenicity of specific bacterial species in the complex biofilm-host interaction clinically is discussed in this review.
Collapse
|
20
|
Rzeznik M, Triba MN, Levy P, Jungo S, Botosoa E, Duchemann B, Le Moyec L, Bernaudin JF, Savarin P, Guez D. Identification of a discriminative metabolomic fingerprint of potential clinical relevance in saliva of patients with periodontitis using 1H nuclear magnetic resonance (NMR) spectroscopy. PLoS One 2017; 12:e0182767. [PMID: 28837579 PMCID: PMC5570357 DOI: 10.1371/journal.pone.0182767] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/24/2017] [Indexed: 12/31/2022] Open
Abstract
Periodontitis is characterized by the loss of the supporting tissues of the teeth in an inflammatory-infectious context. The diagnosis relies on clinical and X-ray examination. Unfortunately, clinical signs of tissue destruction occur late in the disease progression. Therefore, it is mandatory to identify reliable biomarkers to facilitate a better and earlier management of this disease. To this end, saliva represents a promising fluid for identification of biomarkers as metabolomic fingerprints. The present study used high-resolution 1H-nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistical analysis to identify the metabolic signature of active periodontitis. The metabolome of stimulated saliva of 26 patients with generalized periodontitis (18 chronic and 8 aggressive) was compared to that of 25 healthy controls. Principal Components Analysis (PCA), performed with clinical variables, indicated that the patient population was homogeneous, demonstrating a strong correlation between the clinical and the radiological variables used to assess the loss of periodontal tissues and criteria of active disease. Orthogonal Projection to Latent Structure (OPLS) analysis showed that patients with periodontitis can be discriminated from controls on the basis of metabolite concentrations in saliva with satisfactory explained variance (R2X = 0.81 and R2Y = 0.61) and predictability (Q2Y = 0.49, CV-AUROC = 0.94). Interestingly, this discrimination was irrespective of the type of generalized periodontitis, i.e. chronic or aggressive. Among the main discriminating metabolites were short chain fatty acids as butyrate, observed in higher concentrations, and lactate, γ-amino-butyrate, methanol, and threonine observed in lower concentrations in periodontitis. The association of lactate, GABA, and butyrate to generate an aggregated variable reached the best positive predictive value for diagnosis of periodontitis. In conclusion, this pilot study showed that 1H-NMR spectroscopy analysis of saliva could differentiate patients with periodontitis from controls. Therefore, this simple, robust, non-invasive method, may offer a significant help for early diagnosis and follow-up of periodontitis.
Collapse
Affiliation(s)
- Matthias Rzeznik
- Paris 13 University, Sorbonne Paris Cité, CSPBAT, UMR 7244, CNRS, Bobigny, France.,APHP, Department of Periodontology, Bretonneau Hospital, Paris-Descartes University, Paris, France
| | - Mohamed Nawfal Triba
- Paris 13 University, Sorbonne Paris Cité, CSPBAT, UMR 7244, CNRS, Bobigny, France
| | - Pierre Levy
- APHP, Department of Public Health, Tenon Hospital, Paris, France.,UMR-S1136 (EPAR team), INSERM UPMC, Sorbonne Universités, Paris, France
| | - Sébastien Jungo
- APHP, Department of Periodontology, Bretonneau Hospital, Paris-Descartes University, Paris, France
| | - Eliot Botosoa
- Paris 13 University, Sorbonne Paris Cité, CSPBAT, UMR 7244, CNRS, Bobigny, France
| | - Boris Duchemann
- Paris 13 University, Sorbonne Paris Cité, CSPBAT, UMR 7244, CNRS, Bobigny, France.,APHP, Department of Pneumology, Avicenne Hospital, Bobigny, France
| | | | - Jean-François Bernaudin
- APHP, Department of Pneumology, Avicenne Hospital, Bobigny, France.,UPMC Paris 6, Sorbonne Universités, Paris, France.,Paris 13 University, Sorbonne Paris Cité, EA2363, Bobigny, France
| | - Philippe Savarin
- Paris 13 University, Sorbonne Paris Cité, CSPBAT, UMR 7244, CNRS, Bobigny, France
| | - Dominique Guez
- APHP, Department of Periodontology, Bretonneau Hospital, Paris-Descartes University, Paris, France
| |
Collapse
|
21
|
Chang MC, Tsai YL, Liou EJW, Tang CM, Wang TM, Liu HC, Liao MW, Yeung SY, Chan CP, Jeng JH. Effect of Butyrate on Collagen Expression, Cell Viability, Cell Cycle Progression and Related Proteins Expression of MG-63 Osteoblastic Cells. PLoS One 2016; 11:e0165438. [PMID: 27893752 PMCID: PMC5125573 DOI: 10.1371/journal.pone.0165438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/11/2016] [Indexed: 01/20/2023] Open
Abstract
AIMS Butyric acid is one major metabolic product generated by anaerobic Gram-negative bacteria of periodontal and root canal infection. Butyric acid affects the activity of periodontal cells such as osteoblasts. The purposes of this study were to investigate the effects of butyrate on MG-63 osteoblasts. METHODS MG-63 cells were exposed to butyrate and cell viability was estimated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The mRNA and protein expression of type I collagen and cell cycle-related proteins were measured by reverse-transcriptase polymerase chain reaction (RT-PCR), western blotting or immunofluorescent staining. Cellular production of reactive oxygen species (ROS) was analyzed by 2',7'-dichlorofluorescein (DCF) fluorescence flow cytometry. RESULTS Exposure to butyrate suppressed cell proliferation, and induced G2/M (8 and 16 mM) cell cycle arrest of MG-63 cells. Some cell apoptosis was noted. The mRNA expression of cdc2 and cyclin-B1 decreased after exposure to butyrate. The protein expression of type I collagen, cdc2 and cyclin B1 were decreased, whereas the expression of p21, p27 and p57 was stimulated. Under the treatment of butyrate, ROS production in MG-63 cells markedly increased. CONCLUSIONS The secretion of butyric acid by periodontal and root canal microorganisms may inhibit bone cell growth and matrix turnover. This is possibly due to induction of cell cycle arrest and ROS generation and inhibition of collagen expression. These results suggest the involvement of butyric acid in the pathogenesis of periodontal and periapical tissue destruction by impairing bone healing responses.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Ling Tsai
- Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | | | - Chia-Mei Tang
- Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Tong-Mei Wang
- Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | | | - Ming-Wei Liao
- Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| |
Collapse
|
22
|
Jusko M, Miedziak B, Ermert D, Magda M, King BC, Bielecka E, Riesbeck K, Eick S, Potempa J, Blom AM. FACIN, a Double-Edged Sword of the Emerging Periodontal Pathogen Filifactor alocis: A Metabolic Enzyme Moonlighting as a Complement Inhibitor. THE JOURNAL OF IMMUNOLOGY 2016; 197:3245-3259. [PMID: 27638863 DOI: 10.4049/jimmunol.1600739] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/20/2016] [Indexed: 02/01/2023]
Abstract
Periodontal disease is one of the most common inflammatory infectious diseases worldwide and it is associated with other syndromes, such as cardiovascular disease or rheumatoid arthritis. Recent advances in sequencing allowed for identification of novel periodontopathogens such as Gram-positive Filifactor alocis, but its virulence mechanisms remain largely unknown. We confirmed that F. alocis is a prevalent species in periodontitis patients, and we also observed strong correlation of this bacterium with clinical parameters, highlighting its role in the pathogenesis of the disease. Further, we found that preincubation of human serum with F. alocis resulted in abolished bactericidal activity and that F. alocis was surviving readily in full blood. We demonstrated that one of the key contributors to F. alocis complement resistance is a unique protein, FACIN (F. alocis complement inhibitor), which binds to C3, resulting in suppression of all complement pathways. Interestingly, FACIN is a nonclassical cell surface protein, a cytosolic enzyme acetylornithine transaminase, for which we now identified a moonlighting function. FACIN binds to C3 alone, but more importantly it also captures activated complement factor 3 within the complex with factor B, thereby locking in the convertase in an inactive state. Because of the indispensable role of alternative pathway convertase in amplifying complement cascades, its inhibition by FACIN results in a very potent downregulation of activated complement factor 3 opsonization on the pathogen surface, accompanied by reduction of downstream C5 cleavage.
Collapse
Affiliation(s)
- Monika Jusko
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - Beata Miedziak
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - David Ermert
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - Michal Magda
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - Ben C King
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - Ewa Bielecka
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Kristian Riesbeck
- Section of Clinical Microbiology, Department of Translational Medicine, Lund University, 202 13 Malmö, Sweden
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, 3010 Bern, Switzerland; and
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.,Centre for Oral Health and Systemic Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Anna M Blom
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden;
| |
Collapse
|
23
|
Levine M, Lohinai Z, Teles RP. Low Biofilm Lysine Content in Refractory Chronic Periodontitis. J Periodontol 2016; 88:181-189. [PMID: 27620654 DOI: 10.1902/jop.2016.160302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Chronic periodontitis is controlled without antibiotics by scaling and root planing (SRP) to remove dental biofilm. It has been previously reported that the epithelial barrier to bacterial proinflammatory products is impaired when biofilm lysine falls below the minimal content of normal blood plasma. Aims were to examine whether being refractory and requiring antibiotics to supplement SRP were associated with low biofilm lysine contents. METHODS Sixteen patients with periodontitis and six periodontally healthy volunteers (HVs) (respective mean ages: 57 ± 6 and 36 ± 8 years) were examined. Patients with periodontitis received SRP and surgery, and HVs received prophylaxis. At quarterly maintenance or prophylaxis visits during the subsequent year, therapeutic response was good (GR, n = 9) or poor (PR, n = 7; including five cigarette smokers). Biofilm cadaverine, lysine, and other amino acid (AA) contents were determined by liquid chromatography. Cadaverine mole fraction of lysine plus cadaverine (CF) indicated biofilm lysine decarboxylase activity. RESULTS Biofilm lysine was 0.19 ± 0.10 and 0.20 ± 0.09 μmol/mg in GRs and HVs, but 0.07 ± 0.03 μmol/mg in PRs (Kruskal-Wallis: P <0.01). All AAs were depleted in biofilm from smokers, but only lysine was depleted in biofilm from non-smokers. CF was inversely associated with clinical attachment level (CAL) at baseline before therapy in all patients (R2 = 0.28, P <0.01) and with CAL change after therapy in GR (R2 = 0.49, P <0.05). Lysine and cadaverine contents discriminated PRs from GRs and HVs (Wilks' λ = 0.499, P <0.012). CONCLUSIONS Refractory responses requiring antibiotic therapy result from smoking and/or microbial infections that starve the biofilm and epithelial attachment of lysine. Biofilm CF is associated with periodontitis severity pretherapy and extent of therapeutic response post-therapy.
Collapse
Affiliation(s)
- Martin Levine
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zsolt Lohinai
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Ricardo P Teles
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
24
|
Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, Tameda M, Shiraki K, Ito M, Takei Y, Takase K. Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: Terminal restriction fragment length polymorphism and next-generation sequencing analyses. Oncol Rep 2015; 35:325-33. [PMID: 26549775 DOI: 10.3892/or.2015.4398] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/13/2015] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in Japan. The etiology of CRC has been linked to numerous factors including genetic mutation, diet, life style, inflammation, and recently, the gut microbiota. However, CRC-associated gut microbiota is still largely unexamined. This study used terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing (NGS) to analyze and compare gut microbiota of Japanese control subjects and Japanese patients with carcinoma in adenoma. Stool samples were collected from 49 control subjects, 50 patients with colon adenoma, and 9 patients with colorectal cancer (3/9 with invasive cancer and 6/9 with carcinoma in adenoma) immediately before colonoscopy; DNA was extracted from each stool sample. Based on T-RFLP analysis, 12 subjects (six control and six carcinoma in adenoma subjects) were selected; their samples were used for NGS and species-level analysis. T-RFLP analysis showed no significant differences in bacterial population between control, adenoma and cancer groups. However, NGS revealed that i), control and carcinoma in adenoma subjects had different gut microbiota compositions, ii), one bacterial genus (Slackia) was significantly associated with the control group and four bacterial genera (Actinomyces, Atopobium, Fusobacterium, and Haemophilus) were significantly associated with the carcinoma-in-adenoma group, and iii), several bacterial species were significantly associated with each type (control: Eubacterium coprostanoligens; carcinoma in adenoma: Actinomyces odontolyticus, Bacteroides fragiles, Clostridium nexile, Fusobacterium varium, Haemophilus parainfluenzae, Prevotella stercorea, Streptococcus gordonii, and Veillonella dispar). Gut microbial properties differ between control subjects and carcinoma-in-adenoma patients in this Japanese population, suggesting that gut microbiota is related to CRC prevention and development.
Collapse
Affiliation(s)
- Chika Kasai
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Kazushi Sugimoto
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Isao Moritani
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Junichiro Tanaka
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Yumi Oya
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Hidekazu Inoue
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Masahiko Tameda
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Katsuya Shiraki
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Tsu, Mie, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kojiro Takase
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| |
Collapse
|
25
|
Abstract
Recent advances in molecular biology have facilitated analyses of the oral microbiome ("Who are they?"); however, its functions (e.g., metabolic activities) are poorly understood ("What are they doing?"). This review aims to summarize our current understanding of the metabolism of the oral microbiome. Saccharolytic bacteria-including Streptococcus, Actinomyces, and Lactobacillus species-degrade carbohydrates into organic acids via the Embden-Meyerhof-Parnas pathway and several of its branch pathways, resulting in dental caries, while alkalization and acid neutralization via the arginine deiminase system, urease, and so on, counteract acidification. Proteolytic/amino acid-degrading bacteria, including Prevotella and Porphyromonas species, break down proteins and peptides into amino acids and degrade them further via specific pathways to produce short-chain fatty acids, ammonia, sulfur compounds, and indole/skatole, which act as virulent and modifying factors in periodontitis and oral malodor. Furthermore, it is suggested that ethanol-derived acetaldehyde can cause oral cancer, while nitrate-derived nitrite can aid caries prevention and systemic health. Microbial metabolic activity is influenced by the oral environment; however, it can also modify the oral environment, enhance the pathogenicity of bacteria, and induce microbial selection to create more pathogenic microbiome. Taking a metabolomic approach to analyzing the oral microbiome is crucial to improving our understanding of the functions of the oral microbiome.
Collapse
Affiliation(s)
- N Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
26
|
Marchesan J, Jiao Y, Schaff RA, Hao J, Morelli T, Kinney JS, Gerow E, Sheridan R, Rodrigues V, Paster BJ, Inohara N, Giannobile WV. TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens. Mol Oral Microbiol 2015; 31:243-258. [PMID: 26177212 DOI: 10.1111/omi.12116] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2015] [Indexed: 12/29/2022]
Abstract
Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. Although the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, six being classical pathogens and four putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone-marrow-derived macrophages (BMDM) from wild-type (WT) and Toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. Campylobacter concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2 stimulatory activity. These studies allowed us to provide important evidence on newly identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855).
Collapse
Affiliation(s)
- Julie Marchesan
- Department of Periodontics and Oral Medicine & Michigan Center for Oral Health Research, University of Michigan School of Dentistry, Ann Arbor, Michigan USA.,Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yizu Jiao
- Department of Periodontics and Oral Medicine & Michigan Center for Oral Health Research, University of Michigan School of Dentistry, Ann Arbor, Michigan USA
| | - Riley A Schaff
- Department of Periodontics and Oral Medicine & Michigan Center for Oral Health Research, University of Michigan School of Dentistry, Ann Arbor, Michigan USA
| | - Jie Hao
- Department of Periodontics and Oral Medicine & Michigan Center for Oral Health Research, University of Michigan School of Dentistry, Ann Arbor, Michigan USA
| | - Thiago Morelli
- Department of Periodontics and Oral Medicine & Michigan Center for Oral Health Research, University of Michigan School of Dentistry, Ann Arbor, Michigan USA.,Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet S Kinney
- Department of Periodontics and Oral Medicine & Michigan Center for Oral Health Research, University of Michigan School of Dentistry, Ann Arbor, Michigan USA
| | - Elizabeth Gerow
- Department of Periodontics and Oral Medicine & Michigan Center for Oral Health Research, University of Michigan School of Dentistry, Ann Arbor, Michigan USA
| | - Rachel Sheridan
- Department of Periodontics and Oral Medicine & Michigan Center for Oral Health Research, University of Michigan School of Dentistry, Ann Arbor, Michigan USA
| | - Vinicius Rodrigues
- Department of Periodontics and Oral Medicine & Michigan Center for Oral Health Research, University of Michigan School of Dentistry, Ann Arbor, Michigan USA
| | - Bruce J Paster
- The Forsyth Institute, Cambridge, MA, USA.,Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Naohiro Inohara
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - William V Giannobile
- Department of Periodontics and Oral Medicine & Michigan Center for Oral Health Research, University of Michigan School of Dentistry, Ann Arbor, Michigan USA
| |
Collapse
|
27
|
Aruni AW, Mishra A, Dou Y, Chioma O, Hamilton BN, Fletcher HM. Filifactor alocis--a new emerging periodontal pathogen. Microbes Infect 2015; 17:517-30. [PMID: 25841800 DOI: 10.1016/j.micinf.2015.03.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Filifactor alocis, a previously unrecognized Gram-positive anaerobic rod, is now considered a new emerging pathogen that may play a significant role in periodontal disease. F. alocis' unique characteristics and variations at the molecular level that may be responsible for the functional changes required to mediate the pathogenic process are discussed.
Collapse
Affiliation(s)
- A Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92354, USA
| | - Arunima Mishra
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92354, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92354, USA
| | - Ozioma Chioma
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92354, USA
| | - Brittany N Hamilton
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92354, USA
| | - Hansel M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92354, USA; Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Aruni AW, Dou Y, Mishra A, Fletcher HM. The Biofilm Community-Rebels with a Cause. CURRENT ORAL HEALTH REPORTS 2015; 2:48-56. [PMID: 26120510 PMCID: PMC4478205 DOI: 10.1007/s40496-014-0044-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Oral Biofilms are one of the most complex and diverse ecosystem developed by successive colonization of more than 600 bacterial taxa. Development starts with the attachment of early colonizers such as Actinomyces species and oral streptococci on the acquired pellicle and tooth enamel. These bacteria not only adhere to tooth surface but also interact with each other and lay foundation for attachment of bridging colonizer such as Fusobacterium nucleatum followed by late colonizers including the red complex species: Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola-the founders of periodontal disease. As the biofilm progresses from supragingival sites to subgingival sites, the environment changes from aerobic to anaerobic thus favoring the growth of mainly Gram-negative obligate anaerobes while restricting the growth of the early Gram-positive facultative aerobes. Microbes present at supragingival level are mainly related to gingivitis and root-caries whereas subgingival species advance the destruction of teeth supporting tissues and thus causing periodontitis. This review summarizes our present understanding and recent developments on the characteristic features of supra- and subgingival biofilms, interaction between different genera and species of bacteria constituting these biofilms and draws our attention to the role of some of the recently discovered members of the oral community.
Collapse
Affiliation(s)
- A. Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA-92354
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA-92354
| | - Arunima Mishra
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA-92354
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA-92354
- Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Aminocella lysinolytica gen. nov., sp. nov., a l-lysine-degrading, strictly anaerobic bacterium in the class Clostridia isolated from a methanogenic reactor of cattle farms. Arch Microbiol 2014; 197:97-104. [DOI: 10.1007/s00203-014-1066-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
|
30
|
Aruni W, Chioma O, Fletcher HM. Filifactor alocis: The Newly Discovered Kid on the Block with Special Talents. J Dent Res 2014; 93:725-32. [PMID: 24898946 DOI: 10.1177/0022034514538283] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/07/2014] [Indexed: 01/05/2023] Open
Abstract
Infection-induced periodontal disease has been primarily focused on a small group of periodontal pathogens. A paradigm shift, based on data emerging from the oral microbiome project, now suggests the involvement of as-yet-unculturable and fastidious organisms. Collectively, these studies have demonstrated that there are changes in the periodontal status associated with shifts in the composition of the bacterial community in the periodontal pocket. In addition, it is likely that the emerging new pathogens may play a more significant role in the disease. One of the organisms previously unrecognized is Filifactor alocis. While this Gram-positive anaerobic rod has been identified in peri-implantitis, in endodontic infections, and in patients with localized aggressive periodontitis, its presence is now observed at significantly higher levels in patients with adult periodontitis or refractory periodontitis. Its colonization properties and its potential virulence attributes support the proposal that F. alocis should be included as a diagnostic indicator of periodontal disease. Moreover, these emerging characteristics would be consistent with the polymicrobial synergy and dysbiosis (PSD) periodontal pathogenesis model. Here, unique characteristics of F. alocis are discussed. F. alocis has specific factors that can modulate multiple changes in the microbial community and host cell proteome. It is likely that such variations at the molecular level are responsible for the functional changes required to mediate the pathogenic process.
Collapse
Affiliation(s)
- W Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - O Chioma
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Chang MC, Tsai YL, Chen YW, Chan CP, Huang CF, Lan WC, Lin CC, Lan WH, Jeng JH. Butyrate induces reactive oxygen species production and affects cell cycle progression in human gingival fibroblasts. J Periodontal Res 2012; 48:66-73. [PMID: 22834967 DOI: 10.1111/j.1600-0765.2012.01504.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Short-chain fatty acids, such as butyric acid and propionic acid, are metabolic by-products generated by periodontal microflora such as Porphyromonas gingivalis, and contribute to the pathogenesis of periodontitis. However, the effects of butyrate on the biological activities of gingival fibroblasts (GFs) are not well elucidated. MATERIAL AND METHODS Human GFs were exposed to various concentrations of butyrate (0.5-16 mm) for 24 h. Viable cells that excluded trypan blue were counted. Cell cycle distribution of GFs was analyzed by propidium iodide-staining flow cytometry. Cellular reactive oxygen species (ROS) production was measured by flow cytometry using 2',7'-dichlorofluorescein (DCF). Total RNA and protein lysates were isolated and subjected to RT-PCR using specific primers or to western blotting using specific antibodies, respectively. RESULTS Butyrate inhibited the growth of GFs, as indicated by a decrease in the number of viable cells. This event was associated with an induction of G0/G1 and G2/M cell cycle arrest by butyrate (4-16 mm) in GFs. However, no marked apoptosis of GFs was noted in this experimental condition. Butyrate (> 2 mm) inhibited the expression of cdc2, cdc25C and cyclinB1 mRNAs and reduced the levels of Cdc2, Cdc25C and cyclinB1 proteins in GFs, as determined using RT-PCR and western blotting, respectively. This toxic effect of butyrate was associated with the production of ROS. CONCLUSION These results suggest that butyrate generated by periodontal pathogens may be involved in the pathogenesis of periodontal diseases via the induction of ROS production and the impairment of cell growth, cell cycle progression and expression of cell cycle-related genes in GFs. These events are important in the initiation and prolongation of inflammatory processes in periodontal diseases.
Collapse
Affiliation(s)
- M-C Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Filifactor alocis has virulence attributes that can enhance its persistence under oxidative stress conditions and mediate invasion of epithelial cells by porphyromonas gingivalis. Infect Immun 2011; 79:3872-86. [PMID: 21825062 DOI: 10.1128/iai.05631-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Filifactor alocis, a Gram-positive anaerobic rod, is one of the most abundant bacteria identified in the periodontal pockets of periodontitis patients. There is a gap in our understanding of its pathogenicity and ability to interact with other periodontal pathogens. To evaluate the virulence potential of F. alocis and its ability to interact with Porphyromonas gingivalis W83, several clinical isolates of F. alocis were characterized. F. alocis showed nongingipain protease and sialidase activities. In silico analysis revealed the molecular relatedness of several virulence factors from F. alocis and P. gingivalis. In contrast to P. gingivalis, F. alocis was relatively resistant to oxidative stress and its growth was stimulated under those conditions. Biofilm formation was significantly increased in coculture. There was an increase in adherence and invasion of epithelial cells in coculture compared with P. gingivalis or F. alocis monocultures. In those epithelial cells, endocytic vesicle-mediated internalization was observed only during coculture. The F. alocis clinical isolate had an increased invasive capacity in coculture with P. gingivalis compared to the ATCC 35896 strain. In addition, there was variation in the proteomes of the clinical isolates compared to the ATCC 35896 strain. Hypothetical proteins and those known to be important virulence factors in other bacteria were identified. These results indicate that F. alocis has virulence properties that may enhance its ability to survive and persist in the periodontal pocket and may play an important role in infection-induced periodontal disease.
Collapse
|
33
|
Fonteles CS, Guerra MH, Ribeiro TR, Mendonça DN, de Carvalho CB, Monteiro AJ, Toyama DO, Toyama MH, Fonteles MC. Association of free amino acids with caries experience and mutans streptococci levels in whole saliva of children with early childhood caries. Arch Oral Biol 2009; 54:80-5. [DOI: 10.1016/j.archoralbio.2008.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/24/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
|
34
|
Ganesan A, Chaussonnerie S, Tarrade A, Dauga C, Bouchez T, Pelletier E, Le Paslier D, Sghir A. Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum 'Synergistetes', isolated from an anaerobic sludge digester. Int J Syst Evol Microbiol 2008; 58:2003-12. [PMID: 18768595 DOI: 10.1099/ijs.0.65645-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel anaerobic, mesophilic, amino-acid-utilizing bacterium, strain 158T, was isolated from an anaerobic digester of a wastewater treatment plant. Cells of strain 158T were non-motile, rod-shaped (2.0-3.0 x 0.8-1.0 microm) and stained Gram-negative. Optimal growth occurred at 37 degrees C and pH 7.0 in an anaerobic basal medium containing 1 % Casamino acids. Strain 158T fermented arginine, histidine, lysine and serine and showed growth on yeast extract, brain-heart infusion (BHI) medium and tryptone, but not on carbohydrates, organic acids or alcohols. The end products of degradation were: acetate, butyrate, H2 and CO2 from arginine; acetate, propionate, butyrate, H2 and CO2 from lysine; and acetate, propionate, butyrate, valerate, H2 and CO2 from histidine, serine, BHI medium, Casamino acids and tryptone. The DNA G+C content was 55.8 mol%. The 16S rRNA gene sequence of strain 158T showed only 92.6 % sequence similarity with that of Synergistes jonesii, the only described species of the 'Synergistes' group. The major cellular fatty acids were iso-C(15:0) (16.63 %), iso-C(15:0) 3-OH (12.41 %) and C(17:1)omega6c (9.46 %) and the polar fatty acids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylamine; these fatty acid profiles did not resemble those of any recognized bacterial species. Due to the considerable differences in genotypic, phenotypic and phylogenetic characteristics between strain 158T and those of its nearest relative, it is proposed that strain 158T represents a novel species in a new genus, Cloacibacillus evryensis gen. nov., sp. nov., in the phylum 'Synergistetes'. The type strain is 158T (=DSM 19522T=JCM 14828T).
Collapse
Affiliation(s)
- Akila Ganesan
- CEA-Genoscope, 2 Rue Gaston Crémieux, 91057 Evry, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Uematsu H, Hossain MZ, Alam T, Ikeda T, Kuvatanasuchati J, Hoshino E. Degradation of serine-containing oligopeptides by Peptostreptococcus micros ATCC 33270. ACTA ACUST UNITED AC 2007; 22:381-3. [PMID: 17949340 DOI: 10.1111/j.1399-302x.2007.00374.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND/AIMS Microorganisms of Peptostreptococcus micros are asaccharolytic, anaerobic gram-positive cocci that are frequently isolated from human oral sites such as periodontal pockets. Preliminary study showed that several amino acids, including serine, enhanced slightly the growth of P. micros. Therefore, we investigated the degradation of serine and serine-containing oligopeptides. METHODS Metabolic end products were determined with high-performance liquid chromatography. The related enzymatic activities in cell-free extract were also assayed. RESULTS Washed P. micros degraded serine-tripeptides (Ser-Ser-Ser), and produced formate, pyruvate, acetate, and ammonia. They also degraded serinyl-tyrosine (Ser-Tyr) to the same products. Related enzymatic activities, such as serine dehydratase, pyruvate formate-lyase, formate dehydrogenase, pyruvate oxidoreductase, phosphate acetyltransferase, and acetate kinase, were detected in the cell-free extract, indicating that the organisms produced ATP in the serine metabolism. CONCLUSION P. micros utilized serine-containing oligopeptides as exogenous metabolic substrates rather than serine itself, and degraded Ser-Ser-Ser and Ser-Tyr to formate, pyruvate, acetate, and ammonia with ATP generation.
Collapse
Affiliation(s)
- H Uematsu
- Oral Ecology in Health and Infection, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Gheren LW, Cortelli JR, Rodrigues E, Holzhausen M, Saad WA. Periodontal therapy reduces arginase activity in saliva of patients with chronic periodontitis. Clin Oral Investig 2007; 12:67-72. [PMID: 17701233 DOI: 10.1007/s00784-007-0146-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 07/20/2007] [Indexed: 11/28/2022]
Abstract
This present study evaluated the salivary arginase activity (SAA) in patients with chronic periodontitis and the effect of periodontal therapy on the activity of such enzyme. Thirty-six patients (mean age, 45.97 +/- 14.52), 18 chronic periodontitis subjects (test group), and 18 periodontally healthy individuals (control group) participated in the study. Clinical periodontal examinations included measurements of probing pocket depth (PD), clinical attachment level (CAL), plaque (PI), and gingival (GI) indexes. The test group received periodontal therapy according to individual needs. The saliva sample was collected from all study population at baseline (both groups) and 30 days after periodontal therapy (test group). SAA was determined by measuring the L: -ornithine formation from L-arginine and was expressed as mU/ml. The results showed that the mean values of SAA were statistically different between control and test groups. SAA was about 2.5 times higher in test than control groups. Thirty days after periodontal therapy, enzyme levels were 1.56 times lower than before periodontal therapy. We concluded that SAA is increased in chronic periodontitis subjects when compared to periodontally healthy individuals and that periodontal therapy significantly reduced SAA levels. It was suggested that in the near future, SAA may be used as a salivary marker of periodontal status.
Collapse
Affiliation(s)
- L W Gheren
- Dental Research, Department of Dentistry, University of Taubaté, Taubaté, SP, Brazil
| | | | | | | | | |
Collapse
|
37
|
Uematsu H, Sato N, Djais A, Hoshino E. Degradation of arginine by Slackia exigua ATCC 700122 and Cryptobacterium curtum ATCC 700683. ACTA ACUST UNITED AC 2006; 21:381-4. [PMID: 17064396 DOI: 10.1111/j.1399-302x.2006.00307.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Slackia exigua ATCC 700122(T) and Cryptobacterium curtum ATCC 700683(T) were our isolates from infected root canal and human periodontal pocket, respectively; they are asaccharolytic anaerobic gram-positive rods, which are predominant in the oral cavity. They utilize arginine, so our aim was to investigate the pathway of arginine degradation. Metabolic end products were determined with high-performance liquid chromatography. The related enzymatic activities in cell-free extract were also assayed. Both S. exigua and C. curtum degraded arginine and produced substantial amounts of citrulline, ornithine and ammonia. Arginine and citrulline supported the growth of both strains. As the related enzymatic activities, arginine deiminase, ornithine carbamoyltransferase and carbamate kinase activities were detected in the cell-free extract of S. exigua and C. curtum. Arginase and urease activities were not detected in either organism. These results suggest that arginine was metabolized by the arginine deiminase pathway. Both S. exigua and C. curtum degrade arginine via the arginine deiminase pathway.
Collapse
Affiliation(s)
- H Uematsu
- Oral Ecology in Health and Infection, Niigata University Graduate School of Medical and Dental Sciences, Gakkocho-dori, Niigata, Japan
| | | | | | | |
Collapse
|
38
|
Jeng JH, Kuo MYP, Lee PH, Wang YJ, Lee MY, Lee JJ, Lin BR, Tai TF, Chang MC. Toxic and metabolic effect of sodium butyrate on SAS tongue cancer cells: Role of cell cycle deregulation and redox changes. Toxicology 2006; 223:235-47. [PMID: 16737765 DOI: 10.1016/j.tox.2006.04.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 04/15/2006] [Accepted: 04/19/2006] [Indexed: 12/12/2022]
Abstract
Butyrate is a metabolite produced by oral and colonic microorganism. Butyrate has been shown to reduce colon cancer, whereas its role in oral carcinogenesis is not clear. Butyrate concentration in dental plaque and saliva ranged from 0.2 to 16 mM. In this study, we found that sodium butyrate inhibited the growth of SAS tongue cancer cells by 32% and 53% at concentrations of 1 and 2mM, respectively. Low concentrations of sodium butyrate (1-8mM) induced G0/G1 cell cycle arrest of SAS cells, whereas concentrations of 4-16 mM elicited G2/M arrest and a slight increase in apoptotic cell populations. These events were concomitant with induction of intracellular reactive oxygen species (ROS) production. An elevation in p21 mRNA and protein level was noted in SAS cells by sodium butyrate. On the contrary, a decline of cyclin Bl, cdc2 and cdc25C mRNA and protein expression in SAS cells was found after exposure to sodium butyrate. In addition, no evident increase in cdc2 inhibitory phosphorylation was found in sodium butyrate-treated SAS cancer cells. Inclusion of N-acetyl-l-cysteine (NAC) (3mM), catalase (1000 U/ml) and dimethylthiourea (DMT, 5mM), and also SOD (500 U/ml) attenuated the sodium butyrate-induced ROS production in SAS cells. However, they were not able to prevent the cell cycle arrest, apoptosis and growth inhibition in SAS cells induced by 1, 2 and 16 mM of sodium butyrate. These results indicate that sodium butyrate is toxic and inhibits the tongue cancer cell growth via induction of cell cycle arrest and apoptosis. Sodium butyrate mediates these events by mechanisms additional to ROS production.
Collapse
Affiliation(s)
- Jiiang-Huei Jeng
- Laboratory of Dental Pharmacology and Toxicology, Department of Dentistry, National Taiwan University Hospital and Medical College, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dahlén G, Leonhardt A. A new checkerboard panel for testing bacterial markers in periodontal disease. ACTA ACUST UNITED AC 2006; 21:6-11. [PMID: 16390335 DOI: 10.1111/j.1399-302x.2005.00243.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND/AIMS Various microbiological methods have been used for testing bacterial markers for periodontitis and periodontal disease progression. Most studies have used only a limited number of well recognized bacterial species. The purpose of the present study was to evaluate the association of 13 more recently identified bacterial species in a new panel in comparison with 12 previously more recognized periodontotopathogens ('old panel') using the 'checkerboard' DNA-DNA hybridization method. METHODS Fifty individuals were chosen who showed at least one site with a probing pocket depth of 6 mm or more (disease) and bleeding on probing and at least one site with a probing pocket depth of 3 mm and without bleeding on probing (health). One diseased and one healthy site on each individual were sampled with the paperpoint technique and the samples were processed in the checkerboard technique against deoxigenin-labeled whole genomic probes to 25 subgingival species representing 12 well recognized and 13 newly identified periodontitis associated species. RESULTS Twenty-four (out of 25) species were detected more frequently in the subgingival plaque of diseased than healthy sites both at score 1 (> 10(4)) and score 3 (> 10(5)). A significant difference at the higher score (score 3) was noticed for all species of the old panel except for three (Streptococcus intermedius, Selenomonas noxia, and Eikenella corrodens). Of the species in the new panel only Prevotella tannerae, Filifactor alocis, and Porphyromonas endodontalis showed a statistical significant difference between diseased and healthy sites. CONCLUSION It was concluded that P. tannerae, F. alocis, and P. endodontalis should be added to the 12 species used for routine diagnostics of periodontitis-associated bacterial flora.
Collapse
Affiliation(s)
- G Dahlén
- Department of Oral Microbiology, Faculty of Odontology, Sahlgrenska Academy of Göteborg University, Sweden.
| | | |
Collapse
|