1
|
Abstract
Deuterium, the stable isotope of hydrogen, is known to medicinal chemists for its utility in mechanistic, spectroscopic, and tracer studies. In fact, well-known applications utilizing deuterium exist within every subdiscipline in pharmaceutical discovery and development. Recent emphasis on incorporation of deuterium into the active pharmaceutical ingredient has come about as a result of inquiries into the potential for substantial benefits of the deuterium kinetic isotope effect on the safety and disposition of the drug substance. This Perspective traces the author's experience in reviving and expanding this potential utility, first suggested many decades prior by the discoverer of this, the simplest of all isotopes.
Collapse
Affiliation(s)
- Thomas G Gant
- Recondite Falls Discovery, LLC , Greengarden Blvd, Erie, Pennsylvania 16509 United States
| |
Collapse
|
2
|
Beg H, De SP, Ash S, Das D, Misra A. Polarizability, chemical hardness and ionization potential as descriptors to understand the mechanism of double proton transfer in acetamide dimer. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2012.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Wang Y, Zhao Y, Ming M, Wu J, Huang W, Ding J. Effect of Substitution of Proline-77 to Aspartate on the Light-Driven Proton Release of Bacteriorhodopsin. Photochem Photobiol 2012; 88:922-7. [DOI: 10.1111/j.1751-1097.2012.01146.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Beg H, De SP, Ash S, Misra A. Use of polarizability and chemical hardness to locate the transition state and the potential energy curve for double proton transfer reaction: A DFT based study. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2011.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Knör G, Monkowius U. Photosensitization and photocatalysis in bioinorganic, bio-organometallic and biomimetic systems. ADVANCES IN INORGANIC CHEMISTRY 2011. [DOI: 10.1016/b978-0-12-385904-4.00005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
|
7
|
Chang YH, Chuang LY, Hwang CC. Mechanism of proton transfer in the 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. J Biol Chem 2007; 282:34306-14. [PMID: 17893142 DOI: 10.1074/jbc.m706336200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni catalyzes the oxidation of androsterone with NAD(+) to form androstanedione and NADH with a concomitant releasing of protons to bulk solvent. To probe the proton transfer during the enzyme reaction, we used mutagenesis, chemical rescue, and kinetic isotope effects to investigate the release of protons. The kinetic isotope effects of (D)V and (D(2)O)V for wild-type enzyme are 1 and 2.1 at pL 10.4 (where L represents H, (2)H), respectively, and suggest a rate-limiting step in the intramolecular proton transfer. Substitution of alanine for Lys(159) changes the rate-limiting step to the hydride transfer, evidenced by an equal deuterium isotope effect of 1.8 on V(max) and V/K(androsterone) and no solvent kinetic isotope effect at saturating 3-(cyclohexylamino)propanesulfonic acid (CAPS). However, a value of 4.4 on V(max) is observed at 10 mm CAPS at pL 10.4, indicating a rate-limiting proton transfer. The rate of the proton transfer is blocked in the K159A and K159M mutants but can be rescued using exogenous proton acceptors, such as buffers, small primary amines, and azide. The Brønsted relationship between the log(V/K(d)(-base)Et) of the external amine (corrected for molecular size effects) and pK(a) is linear for the K159A mutant-catalyzed reaction at pH 10.4 (beta = 0.85 +/- 0.09) at 5 mm CAPS. These results show that proton transfer to the external base with a late transition state occurred in a rate-limiting step. Furthermore, a proton inventory on V/Et is bowl-shaped for both the wild-type and K159A mutant enzymes and indicates a two-proton transfer in the transition state from Tyr(155) to Lys(159) via 2'-OH of ribose.
Collapse
Affiliation(s)
- Yi-Hsun Chang
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, Taiwan
| | | | | |
Collapse
|
8
|
Gasanov R, Aliyeva S, Arao S, Ismailova A, Katsuta N, Kitade H, Yamada S, Kawamori A, Mamedov F. Comparative study of the water oxidizing reactions and the millisecond delayed chlorophyll fluorescence in photosystem II at different pH. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2007; 86:160-4. [PMID: 17067808 DOI: 10.1016/j.jphotobiol.2006.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 08/01/2006] [Indexed: 11/18/2022]
Abstract
Water splitting activity, the multiline EPR signal associated with S(2)-state of the CaMn(4)-cluster and the fast and slow phases of the induction curve of the millisecond delayed chlorophyll fluorescence from photosystem II (PSII) in the pH range of 4.5-8.5 were studied in the thylakoid membranes and purified PSII particles. It has been found that O(2) evolution and the multiline EPR signal were inhibited at acidic (pK approximately 5.3) and alkaline (pK approximately 8.1) pH values, and were maximal at pH 6.0-7.0. Our results indicate that the loss of O(2) evolution and the S(2)-state multiline EPR signal associated with the decrease of the millisecond delayed chlorophyll fluorescence only in alkaline region (pH 7.0-8.5). Possible correlations of the millisecond delayed chlorophyll fluorescence components with the donor side reactions in PSII are discussed.
Collapse
Affiliation(s)
- Ralphreed Gasanov
- Biophysics Laboratory, Institute of Botany, National Academy of Sciences, Patamdar Road 40, Baku AZ-1073, Azerbaijan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Balzer B, Stock G. Modeling of decoherence and dissipation in nonadiabatic photoreactions by an effective-scaling nonsecular Redfield algorithm. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Abstract
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H(+) channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H(+) channels are expressed in many cells. During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H(+) channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
11
|
Chang CJ, Chng LL, Nocera DG. Proton-coupled O-O activation on a redox platform bearing a hydrogen-bonding scaffold. J Am Chem Soc 2003; 125:1866-76. [PMID: 12580614 DOI: 10.1021/ja028548o] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Porphyrin architectures bearing a hydrogen-bonding scaffold have been synthesized. The H-bond pendant allows proton-coupled electron transfer (PCET) to be utilized as a vehicle for effecting catalytic O-O bond activation chemistry. Suzuki cross-coupling reactions provide a modular synthetic strategy for the attachment of porphyrins to a rigid xanthene or dibenzofuran pillar bearing the H-bond pendant. The resulting HPX (hanging porphyrin xanthene) and HPD (hanging porphyrin dibenzofuran) systems permit both the orientation and acid-base properties of the hanging H-bonding group to be controlled. Comparative reactivity studies for the catalase-like disproportionation of hydrogen peroxide and the epoxidation of olefins by the HPX and HPD platforms with acid and ester hanging groups reveal that the introduction of a proton-transfer network, properly oriented to a redox-active platform, can orchestrate catalytic O-O bond activation. For the catalase and epoxidation reaction types, a marked reactivity enhancement is observed for the xanthene-bridged platform appended with a pendant carboxylic acid group, establishing that this approach can yield superior catalysts to analogues that do not control both proton and electron inventories.
Collapse
Affiliation(s)
- Christopher J Chang
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | | | |
Collapse
|
12
|
Kukushkin A, Poltev S, Khuznetsova S. Coupling of electron and proton transport in photosynthetic membranes: molecular mechanism. Bioelectrochemistry 2002; 56:9-12. [PMID: 12009433 DOI: 10.1016/s1567-5394(02)00021-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using the method of Modified Neglect of Diatomic Overlap (MNDO), the electronic structure of plastoquinol (PQH(2)) and plastoquinone (PQ) in neutral, singly (PQ(-)) and doubly (PQ(2-)) reduced states is studied. The conformational analysis performed on these molecules shows that in the lowest energy conformation, the angle between the first link of the tail backbone and the ring plane of neutral and singly reduced PQ and plastoquinol is nearly the same and differs by 15 degrees from that of doubly reduced PQ. Nevertheless, for all states of plastoquinone and for plastoquinol, the total energy changes by less than 0.2 eV when the studied angle is varied from 0 degrees to 180 degrees. As in Rhodobacter sphaeroides, the oxygen of the PQ ring is reported to form a hydrogen bond with a nitrogen in the ring of Histidine (His) L 190. The energy of the PQ-His complex was calculated for different redox states of PQ and for several values of the distance between the molecules (N-O distance from 0.2 to 0.5 nm). For every considered complexes, the total energy dependence on the proton position on the line connecting the N and O atoms was determined, to see if the hydrogen bond is formed. It is shown that for only singly reduced PQ this dependence has a symmetric two-well form, i.e. the hydrogen bond is formed. For neutral and doubly reduced PQ, the curve is also two-well but asymmetric, so that the proton is bound to His or to PQ, correspondingly. On the basis of these results, we propose the following scheme of electron-proton coupling. Negatively charged oxygens of PQ form H-bonds with proton donor groups of the surrounding protein and fix PQ in its pocket. While the negative charges of oxygens increase after quinone reduction, protons shift to PQ oxygens and form strong hydrogen bonds with them. Upon second PQ reduction, protons are torn away from surrounding amino acids and form covalent bonds with the quinol. Resulting PQH(2) detaches from its binding place and is replaced by a neutral PQ. The lacking protons on amino acids in the Q(B) pocket are replaced by a step-by-step transfer from the stroma bulk through the proton channels.
Collapse
Affiliation(s)
- A Kukushkin
- Faculty of Physics, Lomonosov Moscow State University, Vorobjevy Gory, 119899 Moscow, Russia.
| | | | | |
Collapse
|
13
|
Chamorro E, Toro-Labbe A, Fuentealba P. Theoretical Study of Intramolecular Proton Transfer Reactions in Some Thiooxalic Acid Derivatives. J Phys Chem A 2002. [DOI: 10.1021/jp0143185] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eduardo Chamorro
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile, and Departamento de Química-Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
| | - Alejandro Toro-Labbe
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile, and Departamento de Química-Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
| | - Patricio Fuentealba
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile, and Departamento de Química-Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
| |
Collapse
|