1
|
Uddin MR, Khaniya U, Gupta C, Mao J, Ranepura GA, Wei RJ, Ortiz-Soto J, Singharoy A, Gunner MR. Finding the E-channel proton loading sites by calculating the ensemble of protonation microstates. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149518. [PMID: 39442784 DOI: 10.1016/j.bbabio.2024.149518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The aerobic electron transfer chain builds a proton gradient by proton coupled electron transfer reactions through a series of proteins. Complex I is the first enzyme in the sequence. Here transfer of two electrons from NADH to quinone yields four protons pumped from the membrane N- (negative, higher pH) side to the P- (positive, lower pH) side. Protons move through three linear antiporter paths, with a few amino acids and waters providing the route; and through the E-channel, a complex of competing paths, with clusters of interconnected protonatable residues. Proton loading sites (PLS) transiently bind protons as they are transported from N- to P-compartments. PLS can be individual residues or extended clusters of residues. The program MCCE uses Monte Carlos sampling to analyze the E-channel proton binding in equilibrium with individual Molecular Dynamics snapshots from trajectories of Thermus thermuphillus Complex I in the apo, quinone and quinol bound states. At pH 7, the five E-channel subunits (Nqo4, Nqo7, Nqo8, Nqo10, and Nqo11) take >25,000 protonation microstates, each with different residues protonated. The microstate explosion is tamed by analyzing interconnected clusters of residues along the proton transfer paths. A proton is bound and released from a cluster of five coupled residues on the protein N-side and to six coupled residues in the protein center. Loaded microstates bind protons to sites closer to the P-side in the forward pumping direction. MCCE microstate analysis identifies strongly coupled proton binding amongst individual residues in the two PLS clusters.
Collapse
Affiliation(s)
- Md Raihan Uddin
- Department of Physics, The City College of New York, NY 10031, USA; Graduate Program In Biochemistry, The Graduate Center of CUNY, 365 5th Avenue, NY 10031, USA
| | - Umesh Khaniya
- National Cancer Institute, NIH, Bethesda, MD 20814, USA; Ph.D. Program in Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Bio-design Institute, Arizona State University, Tempe, AZ, USA
| | - Junjun Mao
- Department of Physics, The City College of New York, NY 10031, USA
| | - Gehan A Ranepura
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Rongmei Judy Wei
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Jose Ortiz-Soto
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Bio-design Institute, Arizona State University, Tempe, AZ, USA
| | - M R Gunner
- Department of Physics, The City College of New York, NY 10031, USA; Graduate Program In Biochemistry, The Graduate Center of CUNY, 365 5th Avenue, NY 10031, USA.
| |
Collapse
|
2
|
Mostafa HIA, Elfiki AA. Bacteriorhodopsin of purple membrane reverses anisotropy outside the pH range of proton pumping based on logic gate realization. Sci Rep 2024; 14:29452. [PMID: 39604500 PMCID: PMC11603030 DOI: 10.1038/s41598-024-80512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
The bacteriorhodopsin of purple membrane is the first discovered light-sensing protein among ion transporting microbial rhodopsins, some of which (e.g. Archaerhodopsin 3) could be broadly used as tools in optogenetics having wide potential of medical applications. Since its discovery as early as in 1971, bacteriorhodopsin has attracted wide interests in nano-biotechnology, particularly in optoelectronics devices. Therefore, the present work has been motivated due to two topics; firstly, anisotropy demand became indispensible in bioelectronics; secondly, the stationary level of electric response in bacteriorhodopsin within the pH range of proton pumping (pH 3 - pH 10) implies, in turn, raising here a question about whether the electric anisotropy is implicated for reducing (or switching off) such level beyond such pH range. Noteworthy is that the purple membrane converts to blue form upon acidification, while to reddish purple form upon alkalization. In the present study, the acidic and alkaline forms of bacteriorhodopsin have exhibited most probable state of reversal for the dielectric anisotropy around pH 2.5 and pH 10.5, respectively. This is underscored by proposing a correlation seemingly found between disassembly of the crystalline structure of bacteriorhodopsin and the reversal of dielectric anisotropy, at such acidic and alkaline reversal pH's, in terms of the essence of the crystalline lattice. Most importantly, the results have substantiated dual frequency characteristics and logic gate-based dielectric anisotropy reversal to bacteriorhodopsin, which may implicate it for potential applications in bioelectronics.
Collapse
Affiliation(s)
- Hamdy I A Mostafa
- Department of Biophysics, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Abdo A Elfiki
- Department of Biophysics, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
3
|
Smitienko O, Feldman T, Shelaev I, Gostev F, Aybush A, Cherepanov D, Nadtochenko V, Ostrovsky M. Reversible Photochromic Reactions of Bacteriorhodopsin from Halobacterium salinarum at Femto- and Picosecond Times. Molecules 2024; 29:4847. [PMID: 39459214 PMCID: PMC11510181 DOI: 10.3390/molecules29204847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The operation of bacteriorhodopsin (BR) from the archaeon Halobacterium salinarum is based on the photochromic reaction of isomerization of the chromophore group (the retinal protonated Schiff base, RPSB) from the all-trans to the 13-cis form. The ultrafast dynamics of the reverse 13-cis → all-trans photoreaction was studied using femtosecond transient absorption spectroscopy in comparison with the forward photoreaction. The forward photoreaction was initiated by photoexcitation of BR by pulse I (540 nm). The reverse photoreaction was initiated by photoexcitation of the product K590 at an early stage of its formation (5 ps) by pulse II (660 nm). The conversion of the excited K590 to the ground state proceeds at times of 0.19, 1.1, and 16 ps with the relative contributions of ~20/60/20, respectively. All these decay channels lead to the formation of the initial state of BR as a product with a quantum yield of ~1. This state is preceded by vibrationally excited intermediates, the relaxation of which occurs in the 16 ps time range. Likely, the heterogeneity of the excited state of K590 is determined by the heterogeneity of its chromophore center. The forward photoreaction includes two components-0.52 and 3.5 ps, with the relative contributions of 91/9, respectively. The reverse photoreaction initiated from K590 proceeds more efficiently in the conical intersection (CI) region but on the whole at a lower rate compared to the forward photoreaction, due to significant heterogeneity of the potential energy surface.
Collapse
Affiliation(s)
- Olga Smitienko
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119334, Russia; (T.F.); (M.O.)
| | - Tatyana Feldman
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119334, Russia; (T.F.); (M.O.)
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia;
| | - Ivan Shelaev
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
| | - Fedor Gostev
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
| | - Arseniy Aybush
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia
| | - Dmitry Cherepanov
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia;
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
| | - Victor Nadtochenko
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia
| | - Mikhail Ostrovsky
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119334, Russia; (T.F.); (M.O.)
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia;
| |
Collapse
|
4
|
Noji T, Chiba Y, Saito K, Ishikita H. Energetics of the H-Bond Network in Exiguobacterium sibiricum Rhodopsin. Biochemistry 2024; 63:1505-1512. [PMID: 38745402 PMCID: PMC11155677 DOI: 10.1021/acs.biochem.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Exiguobacterium sibiricum rhodopsin (ESR) functions as a light-driven proton pump utilizing Lys96 for proton uptake and maintaining its activity over a wide pH range. Using a combination of methodologies including the linear Poisson-Boltzmann equation and a quantum mechanical/molecular mechanical approach with a polarizable continuum model, we explore the microscopic mechanisms underlying its pumping activity. Lys96, the primary proton uptake site, remains deprotonated owing to the loss of solvation in the ESR protein environment. Asp85, serving as a proton acceptor group for Lys96, does not form a low-barrier H-bond with His57. Instead, deprotonated Asp85 forms a salt-bridge with protonated His57, and the proton is predominantly located at the His57 moiety. Glu214, the only acidic residue at the end of the H-bond network exhibits a pKa value of ∼6, slightly elevated due to solvation loss. It seems likely that the H-bond network [Asp85···His57···H2O···Glu214] serves as a proton-conducting pathway toward the protein bulk surface.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yoshihiro Chiba
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
5
|
Sineshchekov OA, Govorunova EG, Li H, Wang Y, Spudich JL. Channel Gating in Kalium Channelrhodopsin Slow Mutants. J Mol Biol 2024; 436:168298. [PMID: 37802216 PMCID: PMC10932829 DOI: 10.1016/j.jmb.2023.168298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is the first discovered natural light-gated ion channel that shows higher selectivity to K+ than to Na+ and therefore is used to silence neurons with light (optogenetics). Replacement of the conserved cysteine residue in the transmembrane helix 3 (Cys110) with alanine or threonine results in a >1,000-fold decrease in the channel closing rate. The phenotype of the corresponding mutants in channelrhodopsin 2 is attributed to breaking of a specific interhelical hydrogen bond (the "DC gate"). Unlike CrChR2 and other ChRs with long distance "DC gates", the HcKCR1 structure does not reveal any hydrogen bonding partners to Cys110, indicating that the mutant phenotype is likely caused by disruption of direct interaction between this residue and the chromophore. In HcKCR1_C110A, fast photochemical conversions corresponding to channel gating were followed by dramatically slower absorption changes. Full recovery of the unphotolyzed state in HcKCR1_C110A was extremely slow with two time constants 5.2 and 70 min. Analysis of the light-minus-dark difference spectra during these slow processes revealed accumulation of at least four spectrally distinct blue light-absorbing photocycle intermediates, L, M1 and M2, and a UV light-absorbing form, typical of bacteriorhodopsin-like channelrhodopsins from cryptophytes. Our results contribute to better understanding of the mechanistic links between the chromophore photochemistry and channel conductance, and provide the basis for using HcKCR1_C110A as an optogenetic tool.
Collapse
Affiliation(s)
- Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yumei Wang
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Sato Y, Hashimoto T, Kato K, Okamura A, Hasegawa K, Shinone T, Tanaka Y, Tanaka Y, Tsukazaki T, Tsukamoto T, Demura M, Yao M, Kikukawa T. Multistep conformational changes leading to the gate opening of light-driven sodium pump rhodopsin. J Biol Chem 2023; 299:105393. [PMID: 37890784 PMCID: PMC10679507 DOI: 10.1016/j.jbc.2023.105393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Membrane transport proteins require a gating mechanism that opens and closes the substrate transport pathway to carry out unidirectional transport. The "gating" involves large conformational changes and is achieved via multistep reactions. However, these elementary steps have not been clarified for most transporters due to the difficulty of detecting the individual steps. Here, we propose these steps for the gate opening of the bacterial Na+ pump rhodopsin, which outwardly pumps Na+ upon illumination. We herein solved an asymmetric dimer structure of Na+ pump rhodopsin from the bacterium Indibacter alkaliphilus. In one protomer, the Arg108 sidechain is oriented toward the protein center and appears to block a Na+ release pathway to the extracellular (EC) medium. In the other protomer, however, this sidechain swings to the EC side and then opens the release pathway. Assuming that the latter protomer mimics the Na+-releasing intermediate, we examined the mechanism for the swing motion of the Arg108 sidechain. On the EC surface of the first protomer, there is a characteristic cluster consisting of Glu10, Glu159, and Arg242 residues connecting three helices. In contrast, this cluster is disrupted in the second protomer. Our experimental results suggested that this disruption is a key process. The cluster disruption induces the outward movement of the Glu159-Arg242 pair and simultaneously rotates the seventh transmembrane helix. This rotation resultantly opens a space for the swing motion of the Arg108 sidechain. Thus, cluster disruption might occur during the photoreaction and then trigger sequential conformation changes leading to the gate-open state.
Collapse
Affiliation(s)
- Yukino Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Tsubasa Hashimoto
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Akiko Okamura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Kaito Hasegawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Tsukasa Shinone
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshiki Tanaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Tomoya Tsukazaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Takashi Tsukamoto
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
7
|
Yang Q, Chen D. Na + Binding and Transport: Insights from Light-Driven Na +-Pumping Rhodopsin. Molecules 2023; 28:7135. [PMID: 37894614 PMCID: PMC10608830 DOI: 10.3390/molecules28207135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Na+ plays a vital role in numerous physiological processes across humans and animals, necessitating a comprehensive understanding of Na+ transmembrane transport. Among the various Na+ pumps and channels, light-driven Na+-pumping rhodopsin (NaR) has emerged as a noteworthy model in this field. This review offers a concise overview of the structural and functional studies conducted on NaR, encompassing ground/intermediate-state structures and photocycle kinetics. The primary focus lies in addressing key inquiries: (1) unraveling the translocation pathway of Na+; (2) examining the role of structural changes within the photocycle, particularly in the O state, in facilitating Na+ transport; and (3) investigating the timing of Na+ uptake/release. By delving into these unresolved issues and existing debates, this review aims to shed light on the future direction of Na+ pump research.
Collapse
Affiliation(s)
- Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Petrovskaya LE, Siletsky SA, Mamedov MD, Lukashev EP, Balashov SP, Dolgikh DA, Kirpichnikov MP. Features of the Mechanism of Proton Transport in ESR, Retinal Protein from Exiguobacterium sibiricum. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1544-1554. [PMID: 38105023 DOI: 10.1134/s0006297923100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 12/19/2023]
Abstract
Retinal-containing light-sensitive proteins - rhodopsins - are found in many microorganisms. Interest in them is largely explained by their role in light energy storage and photoregulation in microorganisms, as well as the prospects for their use in optogenetics to control neuronal activity, including treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, the retinal protein of Exiguobacterium sibiricum. What distinguishes ESR from homologous proteins is the presence of a lysine residue (Lys96) as a proton donor for the Schiff base. This feature, along with the hydrogen bond of the proton acceptor Asp85 with the His57 residue, determines functional characteristics of ESR as a proton pump. This review examines the results of ESR studies conducted using various methods, including direct electrometry. Comparison of the obtained data with the results of structural studies and with other retinal proteins allows us to draw conclusions about the mechanisms of transport of hydrogen ions in ESR and similar retinal proteins.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Sergei A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Eugene P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Dmitry A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
9
|
Wei RJ, Khaniya U, Mao J, Liu J, Batista VS, Gunner MR. Tools for analyzing protonation states and for tracing proton transfer pathways with examples from the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2023; 156:101-112. [PMID: 36307598 DOI: 10.1007/s11120-022-00973-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Protons participate in many reactions. In proteins, protons need paths to move in and out of buried active sites. The vectorial movement of protons coupled to electron transfer reactions establishes the transmembrane electrochemical gradient used for many reactions, including ATP synthesis. Protons move through hydrogen bonded chains of waters and hydroxy side chains via the Grotthuss mechanism and by proton binding and release from acidic and basic residues. MCCE analysis shows that proteins exist in a large number of protonation states. Knowledge of the equilibrium ensemble can provide a rational basis for setting protonation states in simulations that fix them, such as molecular dynamics (MD). The proton path into the QB site in the bacterial reaction centers (RCs) of Rb. sphaeroides is analyzed by MD to provide an example of the benefits of using protonation states found by the MCCE program. A tangled web of side chains and waters link the cytoplasm to QB. MCCE analysis of snapshots from multiple trajectories shows that changing the input protonation state of a residue in MD biases the trajectory shifting the proton affinity of that residue. However, the proton affinity of some residues is more sensitive to the input structure. The proton transfer networks derived from different trajectories are quite robust. There are some changes in connectivity that are largely restricted to the specific residues whose protonation state is changed. Trajectories with QB•- are compared with earlier results obtained with QB [Wei et. al Photosynthesis Research volume 152, pages153-165 (2022)] showing only modest changes. While introducing new methods the study highlights the difficulty of establishing the connections between protein conformation.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
10
|
Ghosh M, Misra R, Bhattacharya S, Majhi K, Jung KH, Sheves M. Retinal-Carotenoid Interactions in a Sodium-Ion-Pumping Rhodopsin: Implications on Oligomerization and Thermal Stability. J Phys Chem B 2023; 127:2128-2137. [PMID: 36857147 PMCID: PMC10026069 DOI: 10.1021/acs.jpcb.2c07502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Microbial rhodopsin (also called retinal protein)-carotenoid conjugates represent a unique class of light-harvesting (LH) complexes, but their specific interactions and LH properties are not completely elucidated as only few rhodopsins are known to bind carotenoids. Here, we report a natural sodium-ion (Na+)-pumping Nonlabens (Donghaeana) dokdonensis rhodopsin (DDR2) binding with a carotenoid salinixanthin (Sal) to form a thermally stable rhodopsin-carotenoid complex. Different spectroscopic studies were employed to monitor the retinal-carotenoid interaction as well as the thermal stability of the protein, while size-exclusion chromatography (SEC) and homology modeling are performed to understand the protein oligomerization process. In analogy with that of another Na+-pumping protein Krokinobacter eikastus rhodopsin 2 (KR2), we propose that DDR2 (studied concentration range: 2 × 10-6 to 4 × 10-5 M) remains mainly as a pentamer at room temperature and neutral pH, while heating above 55 °C partially converted it into a thermally less stable oligomeric form of the protein. This process is affected by both the pH and concentration. At high concentrations (4 × 10-5 to 2 × 10-4 M), the protein adopts a pentamer form reflected in the excitonic circular dichroism (CD) spectrum. In the presence of Sal, the thermal stability of DDR2 is increased significantly, and the pigment is stable even at 85 °C. The results presented could have implications in designing stable rhodopsin-carotenoid antenna complexes.
Collapse
Affiliation(s)
- Mihir Ghosh
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ramprasad Misra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sudeshna Bhattacharya
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Koushik Majhi
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, South Korea
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
11
|
Allen JP, Chamberlain KD, Williams JC. Identification of amino acid residues in a proton release pathway near the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2023; 155:23-34. [PMID: 36197600 DOI: 10.1007/s11120-022-00968-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Insight into control of proton transfer, a crucial attribute of cellular functions, can be gained from investigations of bacterial reaction centers. While the uptake of protons associated with the reduction of the quinone is well characterized, the release of protons associated with the oxidized bacteriochlorophyll dimer has been poorly understood. Optical spectroscopy and proton release/uptake measurements were used to examine the proton release characteristics of twelve mutant reaction centers, each containing a change in an amino acid residue near the bacteriochlorophyll dimer. The mutant reaction centers had optical spectra similar to wild-type and were capable of transferring electrons to the quinones after light excitation of the bacteriochlorophyll dimer. They exhibited a large range in the extent of proton release and in the slow recovery of the optical signal for the oxidized dimer upon continuous illumination. Key roles were indicated for six amino acid residues, Thr L130, Asp L155, Ser L244, Arg M164, Ser M190, and His M193. Analysis of the results points to a hydrogen-bond network that contains these residues, with several additional residues and bound water molecules, forming a proton transfer pathway. In addition to proton transfer, the properties of the pathway are proposed to be responsible for the very slow charge recombination kinetics observed after continuous illumination. The characteristics of this pathway are compared to proton transfer pathways near the secondary quinone as well as those found in photosystem II and cytochrome c oxidase.
Collapse
Affiliation(s)
- J P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
| | - K D Chamberlain
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - J C Williams
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| |
Collapse
|
12
|
Noji T, Ishikita H. Mechanism of Absorption Wavelength Shift of Bacteriorhodopsin During Photocycle. J Phys Chem B 2022; 126:9945-9955. [PMID: 36413506 DOI: 10.1021/acs.jpcb.2c04359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteriorhodopsin, a light-driven proton pump, alters the absorption wavelengths in the range of 410-617 nm during the photocycle. Here, we report the absorption wavelengths, calculated using 12 bacteriorhodopsin crystal structures (including the BR, BR13-cis, J, K0, KE, KL, L, M, N, and O state structures) and a combined quantum mechanical/molecular mechanical/polarizable continuum model (QM/MM/PCM) approach. The QM/MM/PCM calculations reproduced the experimentally measured absorption wavelengths with a standard deviation of 4 nm. The shifts in the absorption wavelengths can be explained mainly by the following four factors: (i) retinal Schiff base deformation/twist induced by the protein environment, leading to a decrease in the electrostatic interaction between the protein environment and the retinal Schiff base; (ii) changes in the protonation state of the protein environment, directly altering the electrostatic interaction between the protein environment and the retinal Schiff base; (iii) changes in the protonation state; or (iv) isomerization of the retinal Schiff base, where the absorption wavelengths of the isomers originally differ.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| |
Collapse
|
13
|
Kouyama T, Ihara K. Existence of two substates in the O intermediate of the bacteriorhodopsin photocycle. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183998. [PMID: 35753392 DOI: 10.1016/j.bbamem.2022.183998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/12/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The proton pumping cycle of bacteriorhodopsin (bR) is initiated when the retinal chromophore with the 13-trans configuration is photo-isomerized into the 13-cis configuration. To understand the recovery processes of the initial retinal configuration that occur in the late stage of the photocycle, we have performed a comprehensive analysis of absorption kinetics data collected at various pH levels and at different salt concentrations. The result of analysis revealed the following features of the late stages of the trans photocycle. i) Two substates occur in the O intermediate. ii) The visible absorption band of the first substate (O1) appears at a much shorter wavelength than that of the late substate (O2). iii) O1 is in rapid equilibrium with the preceding state (N), but O1 becomes less stable than N when an ionizable residue (X1) with a pKa value of 6.5 (in 2 M KCl) is deprotonated. iv) At a low pH and at a low salt concentration, the decay time constant of O2 is longer than those of the preceding states, but the relationship between these time constants is altered when the medium pH or the salt concentration is increased. On the basis of the present observations and previous studies on the structure of the chromophore in O, we suspect that the retinal chromophore in O1 takes on a distorted 13-cis configuration and the O1-to-O2 transition is accompanied by cis-to-trans isomerization about C13C14 bond.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Petrovskaya LE, Lukashev EP, Siletsky SA, Imasheva ES, Wang JM, Mamedov MD, Kryukova EA, Dolgikh DA, Rubin AB, Kirpichnikov MP, Balashov SP, Lanyi JK. Proton transfer reactions in donor site mutants of ESR, a retinal protein from Exiguobacterium sibiricum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112529. [PMID: 35878544 DOI: 10.1016/j.jphotobiol.2022.112529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Light-driven proton transport by microbial retinal proteins such as archaeal bacteriorhodopsin involves carboxylic residues as internal proton donors to the catalytic center which is a retinal Schiff base (SB). The proton donor, Asp96 in bacteriorhodopsin, supplies a proton to the transiently deprotonated Schiff base during the photochemical cycle. Subsequent proton uptake resets the protonated state of the donor. This two step process became a distinctive signature of retinal based proton pumps. Similar steps are observed also in many natural variants of bacterial proteorhodopsins and xanthorhodopsins where glutamic acid residues serve as a proton donor. Recently, however, an exception to this rule was found. A retinal protein from Exiguobacterium sibiricum, ESR, contains a Lys residue in place of Asp or Glu, which facilitates proton transfer from the bulk to the SB. Lys96 can be functionally replaced with the more common donor residues, Asp or Glu. Proton transfer to the SB in the mutants containing these replacements (K96E and K96D/A47T) is much faster than in the proteins lacking the proton donor (K96A and similar mutants), and in the case of K96D/A47T, comparable with that in the wild type, indicating that carboxylic residues can replace Lys96 as proton donors in ESR. We show here that there are important differences in the functioning of these residues in ESR from the way Asp96 functions in bacteriorhodopsin. Reprotonation of the SB and proton uptake from the bulk occur almost simultaneously during the M to N transition (as in the wild type ESR at neutral pH), whereas in bacteriorhodopsin these two steps are well separated in time and occur during the M to N and N to O transitions, respectively.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia.
| | - Evgeniy P Lukashev
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
| | - Eleonora S Imasheva
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Jennifer M Wang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Mahir D Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Elena A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow 119334, Russia
| | - Dmitriy A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia; Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow 119334, Russia
| | - Andrei B Rubin
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| | - Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Application of direct electrometry in studies of microbial rhodopsins reconstituted in proteoliposomes. Biophys Rev 2022; 14:771-778. [PMID: 36124261 PMCID: PMC9481854 DOI: 10.1007/s12551-022-00986-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023] Open
Abstract
Microbial rhodopsins are the family of retinal-containing proteins that perform primarily the light-driven transmembrane ion transport and sensory functions. They are widely distributed in nature and can be used for optogenetic control of the cellular activities by light. Functioning of microbial rhodopsins results in generation of the transmembrane electric potential in response to a flash that can be measured by direct time-resolved electrometry. This method was developed by L. Drachev and his colleagues at the Belozersky Institute and successfully applied in the functional studies of microbial rhodopsins. First measurements were performed using bacteriorhodopsin from Halobacterium salinarum-the prototype member of the microbial retinal protein family. Later, direct electrometric studies were conducted with proteorhodopsin from Exiguobacterium sibiricum (ESR), the sodium pump from Dokdonia, and other proteins. They allowed detailed characterization of the charge transfer steps during the photocycle of microbial rhodopsins and provided new insights for profound understanding of their mechanism of action.
Collapse
|
16
|
Saito K, Xu T, Ishikita H. Correlation between C═O Stretching Vibrational Frequency and p Ka Shift of Carboxylic Acids. J Phys Chem B 2022; 126:4999-5006. [PMID: 35763701 PMCID: PMC9289881 DOI: 10.1021/acs.jpcb.2c02193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Identifying the pKa values of aspartic
acid (Asp) and glutamic acid (Glu) in active sites is essential for
understanding enzyme reaction mechanisms. In this study, we investigated
the correlation between the C=O stretching vibrational frequency
(νC=O) of protonated carboxylic acids and
the pKa values using density functional
theory calculations. In unsaturated carboxylic acids (e.g., benzoic
acid analogues), νC=O decreases as the pKa increases (the negative correlation), whereas
in saturated carboxylic acids (e.g., acetic acid analogues, Asp, and
Glu), νC=O increases as the pKa increases (the positive correlation) as long as the
structure of the H-bond network around the acid is identical. The
negative/positive correlation between νC=O and pKa can be rationalized by the presence
or absence of the C=C double bond. The pKa shift was estimated from the νC=O shift of Asp and Glu in proteins on the basis of the negative correlation
derived from benzoic acids. The previous estimations should be revisited
by using the positive correlation derived in this study, as demonstrated
by quantum mechanical/molecular mechanical calculations of νC=O and electrostatic calculations of pKa on a key Asp85 in the proton-transfer pathway of bacteriorhodopsin.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tianyang Xu
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
17
|
Brown LS. Light-driven proton transfers and proton transport by microbial rhodopsins - A biophysical perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183867. [PMID: 35051382 DOI: 10.1016/j.bbamem.2022.183867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
In the last twenty years, our understanding of the rules and mechanisms for the outward light-driven proton transport (and underlying proton transfers) by microbial rhodopsins has been changing dramatically. It transitioned from a very detailed atomic-level understanding of proton transport by bacteriorhodopsin, the prototypical proton pump, to a confounding variety of sequence motifs, mechanisms, directions, and modes of transport in its newly found homologs. In this review, we will summarize and discuss experimental data obtained on new microbial rhodopsin variants, highlighting their contribution to the refinement and generalization of the ideas crystallized in the previous century. In particular, we will focus on the proton transport (and transfers) vectoriality and their structural determinants, which, in many cases, remain unidentified.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
18
|
Kikukawa T. Unique Cl - pump rhodopsin with close similarity to H + pump rhodopsin. Biophys Physicobiol 2021; 18:317-326. [PMID: 35087698 PMCID: PMC8756000 DOI: 10.2142/biophysico.bppb-v18.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/20/2021] [Indexed: 12/01/2022] Open
Abstract
Microbial rhodopsin is a ubiquitous membrane protein in unicellular microorganisms. Similar to animal rhodopsin, this protein consists of seven transmembrane helices and the chromophore retinal. However, unlike animal rhodopsin, microbial rhodopsin acts as not only a photosignal receptor but also a light-activated ion transporter and light-switchable enzyme. In this article, the third Cl- pump microbial rhodopsin will be introduced. The physiological importance of Cl- pumps has not been clarified. Despite this, their mechanisms, especially that of the first Cl- pump halorhodopsin (HR), have been studied to characterize them as model proteins for membrane anion transporters. The third Cl- pump defines a phylogenetic cluster distinct from other microbial rhodopsins. However, this Cl- pump conserves characteristic residues for not only the Cl- pump HR but also the H+ pump bacteriorhodopsin (BR). Reflecting close similarity to BR, the third Cl- pump begins to pump H+ outwardly after single amino acid replacement. This mutation activates several residues that have no roles in the original Cl- pump function but act as important H+ relay residues in the H+ pump mutant. Thus, the third Cl- pump might be the model protein for functional differentiation because this rhodopsin seems to be the Cl- pump occurring immediately after functional differentiation from the BR-type H+ pump.
Collapse
Affiliation(s)
- Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060–0810, Japan
| |
Collapse
|
19
|
Greco JA, Wagner NL, Jensen RJ, Lawrence DB, Ranaghan MJ, Sandberg MN, Sandberg DJ, Birge RR. Activation of retinal ganglion cells using a biomimetic artificial retina. J Neural Eng 2021; 18. [PMID: 34768254 DOI: 10.1088/1741-2552/ac395c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/12/2021] [Indexed: 11/12/2022]
Abstract
Objective.Biomimetic protein-based artificial retinas offer a new paradigm for restoring vision for patients blinded by retinal degeneration. Artificial retinas, comprised of an ion-permeable membrane and alternating layers of bacteriorhodopsin (BR) and a polycation binder, are assembled using layer-by-layer electrostatic adsorption. Upon light absorption, the oriented BR layers generate a unidirectional proton gradient. The main objective of this investigation is to demonstrate the ability of the ion-mediated subretinal artificial retina to activate retinal ganglion cells (RGCs) of degenerated retinal tissue.Approach. Ex vivoextracellular recording experiments with P23H line 1 rats are used to measure the response of RGCs following selective stimulation of our artificial retina using a pulsed light source. Single-unit recording is used to evaluate the efficiency and latency of activation, while a multielectrode array (MEA) is used to assess the spatial sensitivity of the artificial retina films.Main results.The activation efficiency of the artificial retina increases with increased incident light intensity and demonstrates an activation latency of ∼150 ms. The results suggest that the implant is most efficient with 200 BR layers and can stimulate the retina using light intensities comparable to indoor ambient light. Results from using an MEA show that activation is limited to the targeted receptive field.Significance.The results of this study establish potential effectiveness of using an ion-mediated artificial retina to restore vision for those with degenerative retinal diseases, including retinitis pigmentosa.
Collapse
Affiliation(s)
- Jordan A Greco
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Nicole L Wagner
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America.,Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Ralph J Jensen
- VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, United States of America
| | - Daniel B Lawrence
- University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, United States of America
| | - Matthew J Ranaghan
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Megan N Sandberg
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Daniel J Sandberg
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Robert R Birge
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America.,Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, United States of America
| |
Collapse
|
20
|
Maag D, Mast T, Elstner M, Cui Q, Kubař T. O to bR transition in bacteriorhodopsin occurs through a proton hole mechanism. Proc Natl Acad Sci U S A 2021; 118:e2024803118. [PMID: 34561302 PMCID: PMC8488608 DOI: 10.1073/pnas.2024803118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Extensive classical and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations are used to establish the structural features of the O state in bacteriorhodopsin (bR) and its conversion back to the bR ground state. The computed free energy surface is consistent with available experimental data for the kinetics and thermodynamics of the O to bR transition. The simulation results highlight the importance of the proton release group (PRG, consisting of Glu194/204) and the conserved arginine 82 in modulating the hydration level of the protein cavity. In particular, in the O state, deprotonation of the PRG and downward rotation of Arg82 lead to elevated hydration level and a continuous water network that connects the PRG to the protonated Asp85. Proton exchange through this water network is shown by ∼0.1-μs semiempirical QM/MM free energy simulations to occur through the generation and propagation of a proton hole, which is relayed by Asp212 and stabilized by Arg82. This mechanism provides an explanation for the observation that the D85S mutant of bacteriorhodopsin pumps chloride ions. The electrostatics-hydration coupling mechanism and the involvement of all titration states of water are likely applicable to many biomolecules involved in bioenergetic transduction.
Collapse
Affiliation(s)
- Denis Maag
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Thilo Mast
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Physics, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
| |
Collapse
|
21
|
Zimányi L, Sipos Á, Sarlós F, Nagypál R, Groma GI. Machine-learning model selection and parameter estimation from kinetic data of complex first-order reaction systems. PLoS One 2021; 16:e0255675. [PMID: 34370771 PMCID: PMC8352076 DOI: 10.1371/journal.pone.0255675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022] Open
Abstract
Dealing with a system of first-order reactions is a recurrent issue in chemometrics, especially in the analysis of data obtained by spectroscopic methods applied on complex biological systems. We argue that global multiexponential fitting, the still common way to solve such problems, has serious weaknesses compared to contemporary methods of sparse modeling. Combining the advantages of group lasso and elastic net-the statistical methods proven to be very powerful in other areas-we created an optimization problem tunable from very sparse to very dense distribution over a large pre-defined grid of time constants, fitting both simulated and experimental multiwavelength spectroscopic data with high computational efficiency. We found that the optimal values of the tuning hyperparameters can be selected by a machine-learning algorithm based on a Bayesian optimization procedure, utilizing widely used or novel versions of cross-validation. The derived algorithm accurately recovered the true sparse kinetic parameters of an extremely complex simulated model of the bacteriorhodopsin photocycle, as well as the wide peak of hypothetical distributed kinetics in the presence of different noise levels. It also performed well in the analysis of the ultrafast experimental fluorescence kinetics data detected on the coenzyme FAD in a very wide logarithmic time window. We conclude that the primary application of the presented algorithms-implemented in available software-covers a wide area of studies on light-induced physical, chemical, and biological processes carried out with different spectroscopic methods. The demand for this kind of analysis is expected to soar due to the emerging ultrafast multidimensional infrared and electronic spectroscopic techniques that provide very large and complex datasets. In addition, simulations based on our methods could help in designing the technical parameters of future experiments for the verification of particular hypothetical models.
Collapse
Affiliation(s)
- László Zimányi
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Áron Sipos
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Ferenc Sarlós
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Rita Nagypál
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Physics, University of Szeged, Szeged, Hungary
| | - Géza I. Groma
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
22
|
Sasaki S, Tamogami J, Nishiya K, Demura M, Kikukawa T. Replaceability of Schiff base proton donors in light-driven proton pump rhodopsins. J Biol Chem 2021; 297:101013. [PMID: 34329681 PMCID: PMC8387761 DOI: 10.1016/j.jbc.2021.101013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Many H+-pump rhodopsins conserve “H+ donor” residues in cytoplasmic (CP) half channels to quickly transport H+ from the CP medium to Schiff bases at the center of these proteins. For conventional H+ pumps, the donors are conserved as Asp or Glu but are replaced by Lys in the minority, such as Exiguobacterium sibiricum rhodopsin (ESR). In dark states, carboxyl donors are protonated, whereas the Lys donor is deprotonated. As a result, carboxyl donors first donate H+ to the Schiff bases and then capture the other H+ from the medium, whereas the Lys donor first captures H+ from the medium and then donates it to the Schiff base. Thus, carboxyl and Lys-type H+ pumps seem to have different mechanisms, which are probably optimized for their respective H+-transfer reactions. Here, we examined these differences via replacement of donor residues. For Asp-type deltarhodopsin (DR), the embedded Lys residue distorted the protein conformation and did not act as the H+ donor. In contrast, for Glu-type proteorhodopsin (PR) and ESR, the embedded residues functioned well as H+ donors. These differences were further examined by focusing on the activation volumes during the H+-transfer reactions. The results revealed essential differences between archaeal H+ pump (DR) and eubacterial H+ pumps PR and ESR. Archaeal DR requires significant hydration of the CP channel for the H+-transfer reactions; however, eubacterial PR and ESR require the swing-like motion of the donor residue rather than hydration. Given this common mechanism, donor residues might be replaceable between eubacterial PR and ESR.
Collapse
Affiliation(s)
- Syogo Sasaki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan.
| | - Koki Nishiya
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
23
|
Kikuchi M, Kojima K, Nakao S, Yoshizawa S, Kawanishi S, Shibukawa A, Kikukawa T, Sudo Y. Functional expression of the eukaryotic proton pump rhodopsin OmR2 in Escherichia coli and its photochemical characterization. Sci Rep 2021; 11:14765. [PMID: 34285294 PMCID: PMC8292405 DOI: 10.1038/s41598-021-94181-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Microbial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.
Collapse
Affiliation(s)
- Masuzu Kikuchi
- Division of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Kojima
- Division of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Shin Nakao
- Division of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Shiho Kawanishi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, GI-CoRE, Hokkaido University, Sapporo, 001-0021, Japan
| | - Yuki Sudo
- Division of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan. .,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
24
|
Berselli G, Gimenez A, O’Connor A, Keyes TE. Robust Photoelectric Biomolecular Switch at a Microcavity-Supported Lipid Bilayer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29158-29169. [PMID: 34121400 PMCID: PMC8289237 DOI: 10.1021/acsami.1c06798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 05/08/2023]
Abstract
Biomolecular devices based on photo-responsive proteins have been widely proposed for medical, electrical, and energy storage and production applications. Also, bacteriorhodopsin (bR) has been extensively applied in such prospective devices as a robust photo addressable proton pump. As it is a membrane protein, in principle, it should function most efficiently when reconstituted into a fully fluid lipid bilayer, but in many model membranes, lateral fluidity of the membrane and protein is sacrificed for electrochemical addressability because of the need for an electroactive surface. Here, we reported a biomolecular photoactive device based on light-activated proton pump, bR, reconstituted into highly fluidic microcavity-supported lipid bilayers (MSLBs) on functionalized gold and polydimethylsiloxane cavity array substrates. The integrity of reconstituted bR at the MSLBs along with the lipid bilayer formation was evaluated by fluorescence lifetime correlation spectroscopy, yielding a protein lateral diffusion coefficient that was dependent on the bR concentration and consistent with the Saffman-Delbrück model. The photoelectrical properties of bR-MSLBs were evaluated from the photocurrent signal generated by bR under continuous and transient light illumination. The optimal conditions for a self-sustaining photoelectrical switch were determined in terms of protein concentration, pH, and light switch frequency of activation. Overall, a significant increase in the transient current was observed for lipid bilayers containing approximately 0.3 mol % bR with a measured photo-current of 250 nA/cm2. These results demonstrate that the platforms provide an appropriate lipid environment to support the proton pump, enabling its efficient operation. The bR-reconstituted MSLB model serves both as a platform to study the protein in a highly addressable biomimetic environment and as a demonstration of reconstitution of seven-helix receptors into MSLBs, opening the prospect of reconstitution of related membrane proteins including G-protein-coupled receptors on these versatile biomimetic substrates.
Collapse
Affiliation(s)
- Guilherme
B. Berselli
- School of Chemical Sciences, National
Centre for Sensor Research, Dublin City
University, Dublin D09 FW22, Ireland
| | - Aurélien
V. Gimenez
- School of Chemical Sciences, National
Centre for Sensor Research, Dublin City
University, Dublin D09 FW22, Ireland
| | - Alexandra O’Connor
- School of Chemical Sciences, National
Centre for Sensor Research, Dublin City
University, Dublin D09 FW22, Ireland
| | - Tia E. Keyes
- School of Chemical Sciences, National
Centre for Sensor Research, Dublin City
University, Dublin D09 FW22, Ireland
| |
Collapse
|
25
|
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021; 9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
26
|
Smitienko OA, Feldman TB, Petrovskaya LE, Nekrasova OV, Yakovleva MA, Shelaev IV, Gostev FE, Cherepanov DA, Kolchugina IB, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Comparative Femtosecond Spectroscopy of Primary Photoreactions of Exiguobacterium sibiricum Rhodopsin and Halobacterium salinarum Bacteriorhodopsin. J Phys Chem B 2021; 125:995-1008. [PMID: 33475375 DOI: 10.1021/acs.jpcb.0c07763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary stages of the Exiguobacterium sibiricum rhodopsin (ESR) photocycle were investigated by femtosecond absorption laser spectroscopy in the spectral range of 400-900 nm with a time resolution of 25 fs. The dynamics of the ESR photoreaction were compared with the reactions of bacteriorhodopsin (bR) in purple membranes (bRPM) and in recombinant form (bRrec). The primary intermediates of the ESR photocycle were similar to intermediates I, J, and K in bacteriorhodopsin photoconversion. The CONTIN program was applied to analyze the characteristic times of the observed processes and to clarify the reaction scheme. A similar photoreaction pattern was observed for all studied retinal proteins, including two consecutive dynamic Stokes shift phases lasting ∼0.05 and ∼0.15 ps. The excited state decays through a femtosecond reactive pathway, leading to retinal isomerization and formation of product J, and a picosecond nonreactive pathway that leads only to the initial state. Retinal photoisomerization in ESR takes 0.69 ps, compared with 0.48 ps in bRPM and 0.74 ps in bRrec. The nonreactive excited state decay takes 5 ps in ESR and ∼3 ps in bR. We discuss the similarity of the primary reactions of ESR and other retinal proteins.
Collapse
Affiliation(s)
| | - Tatiana B Feldman
- Emanuel Institute of Biochemical Physics, Moscow 119334, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Oksana V Nekrasova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | | | - Ivan V Shelaev
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia
| | | | - Irina B Kolchugina
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry A Dolgikh
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail P Kirpichnikov
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Moscow 119334, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
27
|
Inoue K. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:89-126. [PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
28
|
Functional Mechanism of Cl --Pump Rhodopsin and Its Conversion into H + Pump. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:55-71. [PMID: 33398807 DOI: 10.1007/978-981-15-8763-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cl--pump rhodopsin is the second discovered microbial rhodopsin. Although its physiological role has not been fully clarified, its functional mechanism has been studied as a model for anion transporters. After the success of neural activation by channel rhodopsin, the first Cl--pump halorhodopsin (HR) had become widely used as a neural silencer. The emergence of artificial and natural anion channel rhodopsins lowered the importance of HRs. However, the longer absorption maxima of approximately 585-600 nm for HRs are still advantageous for applications in mammalian brains and collaborations with neural activators possessing shorter absorption maxima. In this chapter, the variation and functional mechanisms of Cl- pumps are summarized. After the discovery of HR, Cl--pump rhodopsins were confined to only extremely halophilic haloarchaea. However, after 2014, two Cl--pump groups were newly discovered in marine and terrestrial bacteria. These Cl- pumps are phylogenetically distinct from HRs and have unique characteristics. In particular, the most recently identified Cl- pump has close similarity with the H+ pump bacteriorhodopsin and was converted into the H+ pump by a single amino acid replacement.
Collapse
|
29
|
Zabelskii D, Alekseev A, Kovalev K, Rankovic V, Balandin T, Soloviov D, Bratanov D, Savelyeva E, Podolyak E, Volkov D, Vaganova S, Astashkin R, Chizhov I, Yutin N, Rulev M, Popov A, Eria-Oliveira AS, Rokitskaya T, Mager T, Antonenko Y, Rosselli R, Armeev G, Shaitan K, Vivaudou M, Büldt G, Rogachev A, Rodriguez-Valera F, Kirpichnikov M, Moser T, Offenhäusser A, Willbold D, Koonin E, Bamberg E, Gordeliy V. Viral rhodopsins 1 are an unique family of light-gated cation channels. Nat Commun 2020; 11:5707. [PMID: 33177509 PMCID: PMC7659345 DOI: 10.1038/s41467-020-19457-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/07/2020] [Indexed: 11/09/2022] Open
Abstract
Phytoplankton is the base of the marine food chain as well as oxygen and carbon cycles and thus plays a global role in climate and ecology. Nucleocytoplasmic Large DNA Viruses that infect phytoplankton organisms and regulate the phytoplankton dynamics encompass genes of rhodopsins of two distinct families. Here, we present a functional and structural characterization of two proteins of viral rhodopsin group 1, OLPVR1 and VirChR1. Functional analysis of VirChR1 shows that it is a highly selective, Na+/K+-conducting channel and, in contrast to known cation channelrhodopsins, it is impermeable to Ca2+ ions. We show that, upon illumination, VirChR1 is able to drive neural firing. The 1.4 Å resolution structure of OLPVR1 reveals remarkable differences from the known channelrhodopsins and a unique ion-conducting pathway. Thus, viral rhodopsins 1 represent a unique, large group of light-gated channels (viral channelrhodopsins, VirChR1s). In nature, VirChR1s likely mediate phototaxis of algae enhancing the host anabolic processes to support virus reproduction, and therefore, might play a major role in global phytoplankton dynamics. Moreover, VirChR1s have unique potential for optogenetics as they lack possibly noxious Ca2+ permeability. Nucleocytoplasmic Large DNA Viruses (NCLDV) that infect algae encode two distinct families of microbial rhodopsins. Here, the authors characterise two proteins form the viral rhodopsin group 1 OLPVR1 and VirChR1, present the 1.4 Å crystal structure of OLPVR1 and show that viral rhodopsins 1 are light-gated cation channels.
Collapse
Affiliation(s)
- Dmitrii Zabelskii
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey Alekseev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Kirill Kovalev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany.,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Taras Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dmytro Soloviov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Joint Institute for Nuclear Research, Dubna, Russia.,Institute for Safety Problems of Nuclear Power Plants, NAS of Ukraine, Kyiv, 03680, Ukraine
| | - Dmitry Bratanov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ekaterina Savelyeva
- Institute of Biological Information Processing (IBI-3: Bioelectronics), Forschungszentrum Jülich GmbH, Jülich, Germany.,Laboratory of Functional Materials and Devices for Nanoelectronics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Center of Shared Research Facilities, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elizaveta Podolyak
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmytro Volkov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Svetlana Vaganova
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roman Astashkin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Natalia Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Maksim Rulev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,European Synchrotron Radiation Facility, Grenoble, France
| | | | - Ana-Sofia Eria-Oliveira
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Tatiana Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Thomas Mager
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Yuri Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Riccardo Rosselli
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain.,Department of Marine Microbiology and Biogeochemistry, Royal Netherland Institute for Sea Research (NIOZ), and Utrecht University, Den Burg, The Netherlands
| | - Grigoriy Armeev
- Biological Faculty, M. V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Konstantin Shaitan
- Biological Faculty, M. V. Lomonosov Moscow State University, Moscow, 119991, Russia.,N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Michel Vivaudou
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France
| | - Georg Büldt
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Joint Institute for Nuclear Research, Dubna, Russia
| | - Francisco Rodriguez-Valera
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Mikhail Kirpichnikov
- Biological Faculty, M. V. Lomonosov Moscow State University, Moscow, 119991, Russia.,M. M. Shemyakin-Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing (IBI-3: Bioelectronics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eugene Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Ernst Bamberg
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Gordeliy
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany. .,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany. .,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. .,Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany. .,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
30
|
His57 controls the efficiency of ESR, a light-driven proton pump from Exiguobacterium sibiricum at low and high pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148328. [PMID: 33075275 DOI: 10.1016/j.bbabio.2020.148328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
ESR, a light-driven proton pump from Exiguobacterium sibiricum, contains a lysine residue (Lys96) in the proton donor site. Substitution of Lys96 with a nonionizable residue greatly slows reprotonation of the retinal Schiff base. The recent study of electrogenicity of the K96A mutant revealed that overall efficiency of proton transport is decreased in the mutant due to back reactions (Siletsky et al., BBA, 2019). Similar to members of the proteorhodopsin and xanthorhodopsin families, in ESR the primary proton acceptor from the Schiff base, Asp85, closely interacts with His57. To examine the role of His57 in the efficiency of proton translocation by ESR, we studied the effects of H57N and H57N/K96A mutations on the pH dependence of light-induced pH changes in suspensions of Escherichia coli cells, kinetics of absorption changes and electrogenic proton transfer reactions during the photocycle. We found that at low pH (<5) the proton pumping efficiency of the H57N mutant in E. coli cells and its electrogenic efficiency in proteoliposomes is substantially higher than in the WT, suggesting that interaction of His57 with Asp85 sets the low pH limit for H+ pumping in ESR. The electrogenic components that correspond to proton uptake were strongly accelerated at low pH in the mutant indicating that Lys96 functions as a very efficient proton donor at low pH. In the H57N/K96A mutant, a higher H+ pumping efficiency compared with K96A was observed especially at high pH, apparently from eliminating back reactions between Asp85 and the Schiff base by the H57N mutation.
Collapse
|
31
|
Hasegawa M, Hosaka T, Kojima K, Nishimura Y, Nakajima Y, Kimura-Someya T, Shirouzu M, Sudo Y, Yoshizawa S. A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage. Sci Rep 2020; 10:16752. [PMID: 33028840 PMCID: PMC7541481 DOI: 10.1038/s41598-020-73606-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
Microbial rhodopsin is a photoreceptor protein found in various bacteria and archaea, and it is considered to be a light-utilization device unique to heterotrophs. Recent studies have shown that several cyanobacterial genomes also include genes that encode rhodopsins, indicating that these auxiliary light-utilizing proteins may have evolved within photoautotroph lineages. To explore this possibility, we performed a large-scale genomic survey to clarify the distribution of rhodopsin and its phylogeny. Our surveys revealed a novel rhodopsin clade, cyanorhodopsin (CyR), that is unique to cyanobacteria. Genomic analysis revealed that rhodopsin genes show a habitat-biased distribution in cyanobacterial taxa, and that the CyR clade is composed exclusively of non-marine cyanobacterial strains. Functional analysis using a heterologous expression system revealed that CyRs function as light-driven outward H+ pumps. Examination of the photochemical properties and crystal structure (2.65 Å resolution) of a representative CyR protein, N2098R from Calothrix sp. NIES-2098, revealed that the structure of the protein is very similar to that of other rhodopsins such as bacteriorhodopsin, but that its retinal configuration and spectroscopic characteristics (absorption maximum and photocycle) are distinct from those of bacteriorhodopsin. These results suggest that the CyR clade proteins evolved together with chlorophyll-based photosynthesis systems and may have been optimized for the cyanobacterial environment.
Collapse
Affiliation(s)
- Masumi Hasegawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan
| | - Toshiaki Hosaka
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Yu Nakajima
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8766, Japan
| | - Tomomi Kimura-Someya
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
32
|
Murabe K, Tsukamoto T, Aizawa T, Demura M, Kikukawa T. Direct Detection of the Substrate Uptake and Release Reactions of the Light-Driven Sodium-Pump Rhodopsin. J Am Chem Soc 2020; 142:16023-16030. [PMID: 32844642 DOI: 10.1021/jacs.0c07264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
For membrane transporters, substrate uptake and release reactions are major events during their transport cycles. Despite the functional importance of these events, it is difficult to identify their relevant structural intermediates because of the requirements of the experimental methods, which are to detect the timing of the formation and decay of intermediates and to detect the timing of substrate uptake and release. We report successfully achieving this for the light-driven Na+ pump rhodopsin (NaR). Here, a Na+-selective membrane, which consists of polyvinyl chloride and a Na+ ionophore, was employed to detect Na+ uptake and release. When one side of the membrane was covered by the lipid-reconstituted NaR, continuous illumination induced an increase in membrane potential, which reflected Na+ uptake by the photolyzed NaR. Via use of nanosecond laser pulses, two kinds of data were obtained during a single transport cycle: one was the flash-induced absorbance change in NaR to detect the formation and decay of structural intermediates, and the other was the flash-induced change in membrane potential, which reflects the transient Na+ uptake and release reactions. Their comparison clearly indicated that Na+ is captured and released during the formation and decay of the O intermediate, the red-shifted intermediate that appears in the latter half of the transport cycle.
Collapse
Affiliation(s)
- Keisuke Murabe
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Tsukamoto
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
33
|
Harris A, Lazaratos M, Siemers M, Watt E, Hoang A, Tomida S, Schubert L, Saita M, Heberle J, Furutani Y, Kandori H, Bondar AN, Brown LS. Mechanism of Inward Proton Transport in an Antarctic Microbial Rhodopsin. J Phys Chem B 2020; 124:4851-4872. [DOI: 10.1021/acs.jpcb.0c02767] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrew Harris
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Michalis Lazaratos
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Malte Siemers
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ethan Watt
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Anh Hoang
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Luiz Schubert
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Mattia Saita
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Leonid S. Brown
- Department of Physics, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
34
|
Chatterjee K, Dopfer O. Protonation of Naphthalene–(Water)n Nanoclusters: Intracluster Proton Transfer to Hydration Shell Revealed by Infrared Photodissociation Spectroscopy. J Phys Chem A 2020; 124:1134-1151. [DOI: 10.1021/acs.jpca.9b11779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
35
|
Fudim R, Szczepek M, Vierock J, Vogt A, Schmidt A, Kleinau G, Fischer P, Bartl F, Scheerer P, Hegemann P. Design of a light-gated proton channel based on the crystal structure of Coccomyxa rhodopsin. Sci Signal 2019; 12:12/573/eaav4203. [PMID: 30890657 DOI: 10.1126/scisignal.aav4203] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The light-driven proton pump Coccomyxa subellipsoidea rhodopsin (CsR) provides-because of its high expression in heterologous host cells-an opportunity to study active proton transport under controlled electrochemical conditions. In this study, solving crystal structure of CsR at 2.0-Å resolution enabled us to identify distinct features of the membrane protein that determine ion transport directivity and voltage sensitivity. A specific hydrogen bond between the highly conserved Arg83 and the nearby nonconserved tyrosine (Tyr14) guided our structure-based transformation of CsR into an operational light-gated proton channel (CySeR) that could potentially be used in optogenetic assays. Time-resolved electrophysiological and spectroscopic measurements distinguished pump currents from channel currents in a single protein and emphasized the necessity of Arg83 mobility in CsR as a dynamic extracellular barrier to prevent passive conductance. Our findings reveal that molecular constraints that distinguish pump from channel currents are structurally more confined than was generally expected. This knowledge might enable the structure-based design of novel optogenetic tools, which derive from microbial pumps and are therefore ion specific.
Collapse
Affiliation(s)
- Roman Fudim
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Michal Szczepek
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Johannes Vierock
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Arend Vogt
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Paul Fischer
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Franz Bartl
- Biophysical Chemistry, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Peter Hegemann
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.
| |
Collapse
|
36
|
Elimination of proton donor strongly affects directionality and efficiency of proton transport in ESR, a light-driven proton pump from Exiguobacterium sibiricum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:1-11. [DOI: 10.1016/j.bbabio.2018.09.365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/31/2018] [Accepted: 09/16/2018] [Indexed: 11/20/2022]
|
37
|
Hasemi T, Kikukawa T, Watanabe Y, Aizawa T, Miyauchi S, Kamo N, Demura M. Photochemical study of a cyanobacterial chloride-ion pumping rhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:136-146. [PMID: 30529327 DOI: 10.1016/j.bbabio.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Mastigocladopsis repens halorhodopsin (MrHR) is a Cl--pumping rhodopsin that belongs to a distinct cluster far from other Cl- pumps. We investigated its pumping function by analyzing its photocycle and the effect of amino acid replacements. MrHR can bind I- similar to Cl- but cannot transport it. I--bound MrHR undergoes a photocycle but lacks the intermediates after L, suggesting that, in the Cl--pumping photocycle, Cl- moves to the cytoplasmic (CP) channel during L decay. A photocycle similar to that of the I--bound form was also observed for a mutant of the Asp200 residue, which is superconserved and assumed to be deprotonated in most microbial rhodopsins. This residue is probably close to the Cl--binding site and the protonated Schiff base, in which a chromophore retinal binds to a specific Lys residue. However, the D200N mutation affected neither the Cl--binding affinity nor the absorption spectrum, but completely eliminated the Cl--pumping function. Thus, the Asp200 residue probably protonates in the dark state but deprotonates during the photocycle. Indeed, a H+ release was detected for photolyzed MrHR by using an indium‑tin oxide electrode, which acts as a good time-resolved pH sensor. This H+ release disappeared in the I--bound form of the wild-type and Cl--bound form of the D200N mutant. Thus, Asp200 residue probably deprotonates during L decay and then drives the Cl- movement to the CP channel.
Collapse
Affiliation(s)
- Takatoshi Hasemi
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0810, Japan.
| | - Yumi Watanabe
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0810, Japan
| | - Seiji Miyauchi
- Graduate School of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
38
|
X-ray structure analysis of bacteriorhodopsin at 1.3 Å resolution. Sci Rep 2018; 8:13123. [PMID: 30177765 PMCID: PMC6120890 DOI: 10.1038/s41598-018-31370-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 11/12/2022] Open
Abstract
Bacteriorhodopsin (bR) of Halobacterium salinarum is a membrane protein that acts as a light-driven proton pump. bR and its homologues have recently been utilized in optogenetics and other applications. Although the structures of those have been reported so far, the resolutions are not sufficient for elucidation of the intrinsic structural features critical to the color tuning and ion pumping properties. Here we report the accurate crystallographic analysis of bR in the ground state. The influence of X-rays was suppressed by collecting the data under a low irradiation dose at 15 K. Consequently, individual atoms could be separately observed in the electron density map at better than 1.3 Å resolution. Residues from Thr5 to Ala233 were continuously constructed in the model. The twist of the retinal polyene was determined to be different from those in the previous models. Two conformations were observed for the proton release region. We discuss the meaning of these fine structural features.
Collapse
|
39
|
Tamogami J, Kikukawa T, Ohkawa K, Ohsawa N, Nara T, Demura M, Miyauchi S, Kimura-Someya T, Shirouzu M, Yokoyama S, Shimono K, Kamo N. Interhelical interactions between D92 and C218 in the cytoplasmic domain regulate proton uptake upon N-decay in the proton transport of Acetabularia rhodopsin II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:35-45. [PMID: 29684719 DOI: 10.1016/j.jphotobiol.2018.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/07/2018] [Accepted: 04/07/2018] [Indexed: 01/01/2023]
Abstract
Acetabularia rhodopsin II (ARII or Ace2), an outward light-driven algal proton pump found in the giant unicellular marine alga Acetabularia acetabulum, has a unique property in the cytoplasmic (CP) side of its channel. The X-ray crystal structure of ARII in a dark state suggested the formation of an interhelical hydrogen bond between C218ARII and D92ARII, an internal proton donor to the Schiff base (Wada et al., 2011). In this report, we investigated the photocycles of two mutants at position C218ARII: C218AARII which disrupts the interaction with D92ARII, and C218SARII which potentially forms a stronger hydrogen bond. Both mutants exhibited slower photocycles compared to the wild-type pump. Together with several kinetic changes of the photoproducts in the first half of the photocycle, these replacements led to specific retardation of the N-to-O transition in the second half of the photocycle. In addition, measurements of the flash-induced proton uptake and release using a pH-sensitive indium-tin oxide electrode revealed a concomitant delay in the proton uptake. These observations strongly suggest the importance of a native weak hydrogen bond between C218ARII and D92ARII for proper proton translocation in the CP channel during N-decay. A putative role for the D92ARII-C218ARII interhelical hydrogen bond in the function of ARII is discussed.
Collapse
Affiliation(s)
- Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Keisuke Ohkawa
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Noboru Ohsawa
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan; RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Toshifumi Nara
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Seiji Miyauchi
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan; Graduate School of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Tomomi Kimura-Someya
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan; RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan; RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan; RIKEN Structural Biology Laboratory, Yokohama 230-0045, Japan
| | - Kazumi Shimono
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan; Graduate School of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
40
|
Inoue S, Yoshizawa S, Nakajima Y, Kojima K, Tsukamoto T, Kikukawa T, Sudo Y. Spectroscopic characteristics ofRubricoccus marinusxenorhodopsin (RmXeR) and a putative model for its inward H+transport mechanism. Phys Chem Chem Phys 2018; 20:3172-3183. [DOI: 10.1039/c7cp05033j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
On the basis of functional and spectroscopic characterization, we propose a model for the inward proton transport inRmXeR, a newly discovered microbial rhodopsin.
Collapse
Affiliation(s)
- Saki Inoue
- Graduate School of Medicine
- Dentistry and Pharmaceutical Sciences
- Okayama University
- Okayama 700-8530
- Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute
- The University of Tokyo
- Chiba 277-8564
- Japan
| | - Yu Nakajima
- Atmosphere and Ocean Research Institute
- The University of Tokyo
- Chiba 277-8564
- Japan
| | - Keiichi Kojima
- Graduate School of Medicine
- Dentistry and Pharmaceutical Sciences
- Okayama University
- Okayama 700-8530
- Japan
| | - Takashi Tsukamoto
- Graduate School of Medicine
- Dentistry and Pharmaceutical Sciences
- Okayama University
- Okayama 700-8530
- Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 060-0810
- Japan
- Global Station for Soft Matter
| | - Yuki Sudo
- Graduate School of Medicine
- Dentistry and Pharmaceutical Sciences
- Okayama University
- Okayama 700-8530
- Japan
| |
Collapse
|
41
|
pH-sensitive vibrational probe reveals a cytoplasmic protonated cluster in bacteriorhodopsin. Proc Natl Acad Sci U S A 2017; 114:E10909-E10918. [PMID: 29203649 DOI: 10.1073/pnas.1707993114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Infrared spectroscopy has been used in the past to probe the dynamics of internal proton transfer reactions taking place during the functional mechanism of proteins but has remained mostly silent to protonation changes in the aqueous medium. Here, by selectively monitoring vibrational changes of buffer molecules with a temporal resolution of 6 µs, we have traced proton release and uptake events in the light-driven proton-pump bacteriorhodopsin and correlate these to other molecular processes within the protein. We demonstrate that two distinct chemical entities contribute to the temporal evolution and spectral shape of the continuum band, an unusually broad band extending from 2,300 to well below 1,700 cm-1 The first contribution corresponds to deprotonation of the proton release complex (PRC), a complex in the extracellular domain of bacteriorhodopsin where an excess proton is shared by a cluster of internal water molecules and/or ionic E194/E204 carboxylic groups. We assign the second component of the continuum band to the proton uptake complex, a cluster with an excess proton reminiscent to the PRC but located in the cytoplasmic domain and possibly stabilized by D38. Our findings refine the current interpretation of the continuum band and call for a reevaluation of the last proton transfer steps in bacteriorhodopsin.
Collapse
|
42
|
Bacteriorhodopsin-like channelrhodopsins: Alternative mechanism for control of cation conductance. Proc Natl Acad Sci U S A 2017; 114:E9512-E9519. [PMID: 29078348 DOI: 10.1073/pnas.1710702114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recently discovered cation-conducting channelrhodopsins in cryptophyte algae are far more homologous to haloarchaeal rhodopsins, in particular the proton pump bacteriorhodopsin (BR), than to earlier known channelrhodopsins. They uniquely retain the two carboxylate residues that define the vectorial proton path in BR in which Asp-85 and Asp-96 serve as acceptor and donor, respectively, of the photoactive site Schiff base (SB) proton. Here we analyze laser flash-induced photocurrents and photochemical conversions in Guillardia theta cation channelrhodopsin 2 (GtCCR2) and its mutants. Our results reveal a model in which the GtCCR2 retinylidene SB chromophore rapidly deprotonates to the Asp-85 homolog, as in BR. Opening of the cytoplasmic channel to cations in GtCCR2 requires the Asp-96 homolog to be unprotonated, as has been proposed for the BR cytoplasmic channel for protons. However, reprotonation of the GtCCR2 SB occurs not from the Asp-96 homolog, but by proton return from the earlier protonated acceptor, preventing vectorial proton translocation across the membrane. In GtCCR2, deprotonation of the Asp-96 homolog is required for cation channel opening and occurs >10-fold faster than reprotonation of the SB, which temporally correlates with channel closing. Hence in GtCCR2, cation channel gating is tightly coupled to intramolecular proton transfers involving the same residues that define the vectorial proton path in BR.
Collapse
|
43
|
Bila WC, Mariano RMDS, Silva VR, Dos Santos MESM, Lamounier JA, Ferriolli E, Galdino AS. Applications of deuterium oxide in human health. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2017; 53:327-343. [PMID: 28165769 DOI: 10.1080/10256016.2017.1281806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
The main aim goal of this review was to gather information about recent publications related to deuterium oxide (D2O), and its use as a scientific tool related to human health. Searches were made in electronic databases Pubmed, Scielo, Lilacs, Medline and Cochrane. Moreover, the following patent databases were consulted: EPO (Espacenet patent search), USPTO (United States Patent and Trademark Office) and Google Patents, which cover researches worldwide related to innovations using D2O.
Collapse
Affiliation(s)
- Wendell Costa Bila
- a Graduate Programme in Health Sciences , Federal University of São João Del Rei-West Centre Campus , Divinópolis , Brazil
| | - Reysla Maria da Silveira Mariano
- b Graduate Programme in Biochemistry and Molecular Biology , Federal University of São João del Rei , Divinópolis , Brazil
- c Graduate Program in Biotechnology , Federal University of São João del Rei , Divinópolis , Brazil
| | - Valmin Ramos Silva
- d Faculty of Medicine, School of Sciences of Santa Casa de Misericórdia of Vitória , Nossa Senhora da Glória Children's Hospital , Vitória , Brazil
| | | | - Joel Alves Lamounier
- a Graduate Programme in Health Sciences , Federal University of São João Del Rei-West Centre Campus , Divinópolis , Brazil
| | - Eduardo Ferriolli
- e Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Alexsandro Sobreira Galdino
- b Graduate Programme in Biochemistry and Molecular Biology , Federal University of São João del Rei , Divinópolis , Brazil
- c Graduate Program in Biotechnology , Federal University of São João del Rei , Divinópolis , Brazil
| |
Collapse
|
44
|
Niho A, Yoshizawa S, Tsukamoto T, Kurihara M, Tahara S, Nakajima Y, Mizuno M, Kuramochi H, Tahara T, Mizutani Y, Sudo Y. Demonstration of a Light-Driven SO42– Transporter and Its Spectroscopic Characteristics. J Am Chem Soc 2017; 139:4376-4389. [DOI: 10.1021/jacs.6b12139] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akiko Niho
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Susumu Yoshizawa
- Atmosphere
and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Takashi Tsukamoto
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Marie Kurihara
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shinya Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yu Nakajima
- Atmosphere
and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Misao Mizuno
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hikaru Kuramochi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasuhisa Mizutani
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Sudo
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
45
|
Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1741-1750. [DOI: 10.1016/j.bbabio.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/06/2016] [Accepted: 08/11/2016] [Indexed: 02/01/2023]
|
46
|
Lazarova T, Mlynarczyk K, Querol E, Tenchov B, Filipek S, Padrós E. Identification of Specific Effect of Chloride on the Spectral Properties and Structural Stability of Multiple Extracellular Glutamic Acid Mutants of Bacteriorhodopsin. PLoS One 2016; 11:e0162952. [PMID: 27657718 PMCID: PMC5033488 DOI: 10.1371/journal.pone.0162952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/31/2016] [Indexed: 11/18/2022] Open
Abstract
In the present work we combine spectroscopic, DSC and computational approaches to examine the multiple extracellular Glu mutants E204Q/E194Q, E204Q/E194Q/E9Q and E204Q/E194Q/E9Q/E74Q of bacteriorhodopsin by varying solvent ionic strength and composition. Absorption spectroscopy data reveal that the absorption maxima of multiple EC Glu mutants can be tuned by the chloride concentration in the solution. Visible Circular dichroism spectra imply that the specific binding of Cl- can modulate weakened exciton chromophore coupling and reestablish wild type-like bilobe spectral features of the mutants. The DSC data display reappearance of the reversible thermal transition, higher Tm of denaturation and an increase in the enthalpy of unfolding of the mutants in 1 M KCl solutions. Molecular dynamics simulations indicate high affinity binding of Cl- to Arg82 and to Gln204 and Gln194 residues in the mutants. Analysis of the experimental data suggests that simultaneous elimination of the negatively charged side chain of Glu194 and Glu204 is the major cause for mutants' alterations. Specific Cl- binding efficiently coordinates distorted hydrogen bonding interactions of the EC region and reconstitutes the conformation and structure stability of mutated bR in WT-like fashion.
Collapse
Affiliation(s)
- Tzvetana Lazarova
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail: (TL); (EP)
| | - Krzysztof Mlynarczyk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Enric Querol
- Institut de Biomedicina i Biotecnologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Boris Tenchov
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University – Sofia, Sofia, Bulgaria
| | - Slawomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Esteve Padrós
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail: (TL); (EP)
| |
Collapse
|
47
|
Nakamura S, Kikukawa T, Tamogami J, Kamiya M, Aizawa T, Hahn MW, Ihara K, Kamo N, Demura M. Photochemical characterization of actinorhodopsin and its functional existence in the natural host. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1900-1908. [PMID: 27659506 DOI: 10.1016/j.bbabio.2016.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/29/2022]
Abstract
Actinorhodopsin (ActR) is a light-driven outward H+ pump. Although the genes of ActRs are widely spread among freshwater bacterioplankton, there are no prior data on their functional expression in native cell membranes. Here, we demonstrate ActR phototrophy in the native actinobacterium. Genome analysis showed that Candidatus Rhodoluna planktonica, a freshwater actinobacterium, encodes one microbial rhodopsin (RpActR) belonging to the ActR family. Reflecting the functional expression of RpActR, illumination induced the acidification of the actinobacterial cell suspension and then elevated the ATP content inside the cells. The photochemistry of RpActR was also examined using heterologously expressed RpActR in Escherichia coli membranes. The purified RpActR showed λmax at 534nm and underwent a photocycle characterized by the very fast formation of M intermediate. The subsequent intermediate, named P620, could be assigned to the O intermediate in other H+ pumps. In contrast to conventional O, the accumulation of P620 remains prominent, even at high pH. Flash-induced absorbance changes suggested that there exists only one kind of photocycle at any pH. However, above pH7, RpActR shows heterogeneity in the H+ transfer sequences: one first captures H+ and then releases it during the formation and decay of P620, while the other first releases H+ prior to H+ uptake during P620 formation.
Collapse
Affiliation(s)
- Shintaro Nakamura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Masakatsu Kamiya
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Martin W Hahn
- Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
48
|
Ge X, Gunner MR. Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin. Proteins 2016; 84:639-54. [DOI: 10.1002/prot.25013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoxia Ge
- Physics Department; City College of New York; New York NY 10031
| | - M. R. Gunner
- Physics Department; City College of New York; New York NY 10031
| |
Collapse
|
49
|
Tamogami J, Sato K, Kurokawa S, Yamada T, Nara T, Demura M, Miyauchi S, Kikukawa T, Muneyuki E, Kamo N. Formation of M-Like Intermediates in Proteorhodopsin in Alkali Solutions (pH ≥ ∼8.5) Where the Proton Release Occurs First in Contrast to the Sequence at Lower pH. Biochemistry 2016; 55:1036-48. [DOI: 10.1021/acs.biochem.5b01196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Tamogami
- College
of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keitaro Sato
- Department
of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Sukuna Kurokawa
- Department
of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Takumi Yamada
- Department
of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Toshifumi Nara
- College
of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Makoto Demura
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Seiji Miyauchi
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty
of Pharmaceutical Sciences, Toho University, Funabashi 274-8510, Japan
| | - Takashi Kikukawa
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Eiro Muneyuki
- Department
of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Naoki Kamo
- College
of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
50
|
Mitsuoka K. A pKa calculation of residues in a proton pump, bacteriorhodopsin, from structures determined by electron crystallography. Microscopy (Oxf) 2016; 63 Suppl 1:i30-i31. [PMID: 25359831 DOI: 10.1093/jmicro/dfu057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacteriorhodopsin (bR) is a light-driven proton pump, which is a membrane protein found in halophilic archeae like Halobacterium salinarum and in eubacteria [1]. When the covalently bound retinal chromophore absorbs the light energy, it changes the conformation from all-trans to 13-cis. This configuration change initiates ion translocation across the cell membrane and a proton moves from inside to outside of the cell. The bR molecules are forming two-dimensional crystals on the membranes of halophilic archeae, and therefore the atomic model of bR was first determined by electron crystallography. The determined structure can be used to determine the pKa values, through which the charge states of ionizable residues in bR determine their pH-dependent properties. The pH-dependent properties are crucial for proton translocation from ionizable residues or to ionizable residues. Detection of the intermediate states of the reaction cycle (photocycle) produced spectroscopic information, which can predict the ionization state of the ionozable residues. In the transition from the L intermediate to the M intermediate, it is known that a proton moves from the Shiff base on the retinal chromophore to Asp85, while a proton is released to the extracellar side from proton-releasing groups including Glu194 and Glu204. Experimentally the pKa value of the proton release is determined to be about 9.7, while the pKa value of Asp85 was measured to change from 2.6 to 7.5 by the proton release from the proton-releasing groups [2]. Here we used the PROPKA program [3] to calculate the pKa values of Asp85 and the proton-releasing groups from the structures at pH 5.5 and at pH 10.0 determined by electron crystallography. The calculation showed that the pKa value of Asp85 changes from 5.3 to 6.1, which qualitatively show the similar changes with the measured difference. The largest change between the structures is the shift of Arg82 by the proton release from the proton-releasing groups. However, the calculation showed that the electrostatic change from the shift cannot explain the pKa change of Asp85. The calculation indicated that the breakage of a hydrogen bond between Thr89 and Asp85, which is resulted from the backbone shift caused by the side chain shift of Arg82, is the main cause of the pKa change. In addition, the structures showed the shift of a water molecule near Asp85, which could enhance the pKa change on Asp85. The pKa calculation using the structures determined by electron crystallography could be a valuable tool to understand the functions of proteins.jmicro;63/suppl_1/i30/JMI060TB1T1JMI060TB1RESIDUEpKaBURIEDSIDECHAINHYDROGEN BONDBACKBONEHYDROGEN BONDCOULOMBICINTERACTIONpH 10.0Asp856.14100%0.00 XXX 0 X0.00 XXX 0 X0.00 XXX 0 X0.00 XXX 0 X-0.05 ARG 82-1.91 LYS 216pH 5.5Asp855.27100%-0.83 THR 89 A-0.05 LYS 216 A0.00 XXX 0 X0.00 XXX 0 X-0.23 ARG 82-2.03 LYS 216.
Collapse
Affiliation(s)
- Kaoru Mitsuoka
- Technology Research Association for Next generation natural products chemistry, Japan Biological Informatics Consortium AIST Water Front 2-3-26 Aomi, Koto-ku, Tokyo, Japan, 135-0064
| |
Collapse
|