1
|
Pires PM, Santos D, Calisto F, Pereira M. The monotopic quinone reductases from Staphylococcus aureus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149488. [PMID: 38950690 DOI: 10.1016/j.bbabio.2024.149488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Staphylococcus aureus, a Gram-positive bacterium, is an opportunistic pathogen and one of the most frequent causes for community acquired and nosocomial infections that has become a major public health threat due to the increased incidence of its drug resistance. Although being a prominent pathogen, its energetic metabolism is still underexplored, and its respiratory enzymes have been escaping attention. S. aureus can adapt to different environmental conditions by performing both aerobic and anaerobic respirations, which is particularly important as it frequently colonizes niches with different oxygen concentrations. This adaptability is derived from the composition of its respiratory chain, specifically from the presence of terminal electron acceptor reductases. The plasticity of S. aureus energy metabolism is enlarged by the ten quinone reductases encoded in its genome, eight of them being monotopic proteins. The role of these proteins is critical as they connect the different catabolic pathways to the respiratory chain. In this work, we identify, describe, and revise the monotopic quinone reductases present in S. aureus, providing an integrated view of its respiratory chain.
Collapse
Affiliation(s)
- Patrícia M Pires
- University of Lisbon, Faculty of Sciences, Department of Chemistry and Biochemistry and BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - David Santos
- University of Lisbon, Faculty of Sciences, Department of Chemistry and Biochemistry and BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Filipa Calisto
- University of Lisbon, Faculty of Sciences, Department of Chemistry and Biochemistry and BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Manuela Pereira
- University of Lisbon, Faculty of Sciences, Department of Chemistry and Biochemistry and BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
2
|
Briki A, Olmos E, Delaunay S, Fournier F. Generalized modelling of effect of oxygenation and glucose concentration on Corynebacterium glutamicum growth and production kinetics. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Hamidieh F, Farnia P, Nowroozi J, Farnia P, Velayati AA. An Overview of Genetic Information of Latent Mycobacterium tuberculosis. Tuberc Respir Dis (Seoul) 2020; 84:1-12. [PMID: 33121230 PMCID: PMC7801807 DOI: 10.4046/trd.2020.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis has infected more than two billion individuals worldwide, of whom 5%–10% have clinically active disease and 90%–95% remain in the latent stage with a reservoir of viable bacteria in the macrophages for extended periods of time. The tubercle bacilli at this stage are usually called dormant, non-viable, and/or non-culturable microorganisms. The patients with latent bacilli will not have clinical pictures and are not infectious. The infections in about 2%–23% of the patients with latent status become reactivated for various reasons such as cancer, human immunodeficiency virus infection, diabetes, and/or aging. Many studies have examined the mechanisms involved in the latent state of Mycobacterium and showed that latency modified the expression of many genes. Therefore, several mechanisms will change in this bacterium. Hence, this study aimed to briefly examine the genes involved in the latent state as well as the changes that are caused by Mycobacterium tuberculosis. The study also evaluated the relationship between the functions of these genes.
Collapse
Affiliation(s)
- Faezeh Hamidieh
- Departement of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parissa Farnia
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamileh Nowroozi
- Departement of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Poopak Farnia
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Hards K, Adolph C, Harold LK, McNeil MB, Cheung CY, Jinich A, Rhee KY, Cook GM. Two for the price of one: Attacking the energetic-metabolic hub of mycobacteria to produce new chemotherapeutic agents. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 152:35-44. [PMID: 31733221 DOI: 10.1016/j.pbiomolbio.2019.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022]
Abstract
Cellular bioenergetics is an area showing promise for the development of new antimicrobials, antimalarials and cancer therapy. Enzymes involved in central carbon metabolism and energy generation are essential mediators of bacterial physiology, persistence and pathogenicity, lending themselves natural interest for drug discovery. In particular, succinate and malate are two major focal points in both the central carbon metabolism and the respiratory chain of Mycobacterium tuberculosis. Both serve as direct links between the citric acid cycle and the respiratory chain due to the quinone-linked reactions of succinate dehydrogenase, fumarate reductase and malate:quinone oxidoreductase. Inhibitors against these enzymes therefore hold the promise of disrupting two distinct, but essential, cellular processes at the same time. In this review, we discuss the roles and unique adaptations of these enzymes and critically evaluate the role that future inhibitors of these complexes could play in the bioenergetics target space.
Collapse
Affiliation(s)
- Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 1042, Auckland, New Zealand.
| | - Cara Adolph
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand
| | - Liam K Harold
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 1042, Auckland, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 1042, Auckland, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand
| | - Adrian Jinich
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 1042, Auckland, New Zealand.
| |
Collapse
|
5
|
Masud AJ, Kastaniotis AJ, Rahman MT, Autio KJ, Hiltunen JK. Mitochondrial acyl carrier protein (ACP) at the interface of metabolic state sensing and mitochondrial function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118540. [PMID: 31473256 DOI: 10.1016/j.bbamcr.2019.118540] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
Acyl carrier protein (ACP) is a principal partner in the cytosolic and mitochondrial fatty acid synthesis (FAS) pathways. The active form holo-ACP serves as FAS platform, using its 4'-phosphopantetheine group to present covalently attached FAS intermediates to the enzymes responsible for the acyl chain elongation process. Mitochondrial unacylated holo-ACP is a component of mammalian mitoribosomes, and acylated ACP species participate as interaction partners in several ACP-LYRM (leucine-tyrosine-arginine motif)-protein heterodimers that act either as assembly factors or subunits of the electron transport chain and Fe-S cluster assembly complexes. Moreover, octanoyl-ACP provides the C8 backbone for endogenous lipoic acid synthesis. Accumulating evidence suggests that mtFAS-generated acyl-ACPs act as signaling molecules in an intramitochondrial metabolic state sensing circuit, coordinating mitochondrial acetyl-CoA levels with mitochondrial respiration, Fe-S cluster biogenesis and protein lipoylation.
Collapse
Affiliation(s)
- Ali J Masud
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - M Tanvir Rahman
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
6
|
Ibraim IC, Parise MTD, Parise D, Sfeir MZT, de Paula Castro TL, Wattam AR, Ghosh P, Barh D, Souza EM, Góes-Neto A, Gomide ACP, Azevedo V. Transcriptome profile of Corynebacterium pseudotuberculosis in response to iron limitation. BMC Genomics 2019; 20:663. [PMID: 31429699 PMCID: PMC6701010 DOI: 10.1186/s12864-019-6018-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/06/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Iron is an essential micronutrient for the growth and development of virtually all living organisms, playing a pivotal role in the proliferative capability of many bacterial pathogens. The impact that the bioavailability of iron has on the transcriptional response of bacterial species in the CMNR group has been widely reported for some members of the group, but it hasn't yet been as deeply explored in Corynebacterium pseudotuberculosis. Here we describe for the first time a comprehensive RNA-seq whole transcriptome analysis of the T1 wild-type and the Cp13 mutant strains of C. pseudotuberculosis under iron restriction. The Cp13 mutant strain was generated by transposition mutagenesis of the ciuA gene, which encodes a surface siderophore-binding protein involved in the acquisition of iron. Iron-regulated acquisition systems are crucial for the pathogenesis of bacteria and are relevant targets to the design of new effective therapeutic approaches. RESULTS Transcriptome analyses showed differential expression in 77 genes within the wild-type parental T1 strain and 59 genes in Cp13 mutant under iron restriction. Twenty-five of these genes had similar expression patterns in both strains, including up-regulated genes homologous to the hemin uptake hmu locus and two distinct operons encoding proteins structurally like hemin and Hb-binding surface proteins of C. diphtheriae, which were remarkably expressed at higher levels in the Cp13 mutant than in the T1 wild-type strain. These hemin transport protein genes were found to be located within genomic islands associated with known virulent factors. Down-regulated genes encoding iron and heme-containing components of the respiratory chain (including ctaCEF and qcrCAB genes) and up-regulated known iron/DtxR-regulated transcription factors, namely ripA and hrrA, were also identified differentially expressed in both strains under iron restriction. CONCLUSION Based on our results, it can be deduced that the transcriptional response of C. pseudotuberculosis under iron restriction involves the control of intracellular utilization of iron and the up-regulation of hemin acquisition systems. These findings provide a comprehensive analysis of the transcriptional response of C. pseudotuberculosis, adding important understanding of the gene regulatory adaptation of this pathogen and revealing target genes that can aid the development of effective therapeutic strategies against this important pathogen.
Collapse
Affiliation(s)
- Izabela Coimbra Ibraim
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana Teixeira Dornelles Parise
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Doglas Parise
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michelle Zibetti Tadra Sfeir
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Thiago Luiz de Paula Castro
- Departamento de Biointeração, Instituto de Ciências da Saude, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Alice Rebecca Wattam
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA, USA
| | - Preetam Ghosh
- Department of Computer Science, Biological Networks Lab, Virginia Commonwealth University, Richmond, VA, USA
| | - Debmalya Barh
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Emannuel Maltempi Souza
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Aristóteles Góes-Neto
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Anne Cybelle Pinto Gomide
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Chatfield KC, Sparagna GC, Chau S, Phillips EK, Ambardekar AV, Aftab M, Mitchell MB, Sucharov CC, Miyamoto SD, Stauffer BL. Elamipretide Improves Mitochondrial Function in the Failing Human Heart. JACC Basic Transl Sci 2019; 4:147-157. [PMID: 31061916 PMCID: PMC6488757 DOI: 10.1016/j.jacbts.2018.12.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 01/28/2023]
Abstract
Mitochondrial function is impaired in explanted failing pediatric and adult human hearts. Elamipretide is a novel mitochondria-targeted drug that is targeted to cardiolipin on the inner mitochondrial membrane and improves coupling of the electron transport chain. Treatment of explanted human hearts with elamipretide improves human cardiac mitochondrial function. The study provides novel methods to evaluate the influence of compounds on mitochondria in the human heart and provides proof of principle for the use of elamipretide to improve mitochondrial energetics in failing myocardium due to multiple etiologies and irrespective of age.
Negative alterations of mitochondria are known to occur in heart failure (HF). This study investigated the novel mitochondrial-targeted therapeutic agent elamipretide on mitochondrial and supercomplex function in failing human hearts ex vivo. Freshly explanted failing and nonfailing ventricular tissue from children and adults was treated with elamipretide. Mitochondrial oxygen flux, complex (C) I and CIV activities, and in-gel activity of supercomplex assembly were measured. Mitochondrial function was impaired in the failing human heart, and mitochondrial oxygen flux, CI and CIV activities, and supercomplex-associated CIV activity significantly improved in response to elamipretide treatment. Elamipretide significantly improved failing human mitochondrial function.
Collapse
Affiliation(s)
- Kathryn C Chatfield
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, Colorado
| | - Genevieve C Sparagna
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Sarah Chau
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Elisabeth K Phillips
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Amrut V Ambardekar
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Muhammad Aftab
- Department of Surgery/Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado.,Department of Surgery, Veterans Administration Hospital, Denver, Colorado
| | - Max B Mitchell
- Department of Surgery/Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Carmen C Sucharov
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, Colorado
| | - Brian L Stauffer
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine/Division of Cardiology, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
8
|
Structural insights into the electron/proton transfer pathways in the quinol:fumarate reductase from Desulfovibrio gigas. Sci Rep 2018; 8:14935. [PMID: 30297797 PMCID: PMC6175931 DOI: 10.1038/s41598-018-33193-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/18/2018] [Indexed: 11/08/2022] Open
Abstract
The membrane-embedded quinol:fumarate reductase (QFR) in anaerobic bacteria catalyzes the reduction of fumarate to succinate by quinol in the anaerobic respiratory chain. The electron/proton-transfer pathways in QFRs remain controversial. Here we report the crystal structure of QFR from the anaerobic sulphate-reducing bacterium Desulfovibrio gigas (D. gigas) at 3.6 Å resolution. The structure of the D. gigas QFR is a homo-dimer, each protomer comprising two hydrophilic subunits, A and B, and one transmembrane subunit C, together with six redox cofactors including two b-hemes. One menaquinone molecule is bound near heme bL in the hydrophobic subunit C. This location of the menaquinone-binding site differs from the menaquinol-binding cavity proposed previously for QFR from Wolinella succinogenes. The observed bound menaquinone might serve as an additional redox cofactor to mediate the proton-coupled electron transport across the membrane. Armed with these structural insights, we propose electron/proton-transfer pathways in the quinol reduction of fumarate to succinate in the D. gigas QFR.
Collapse
|
9
|
Lancaster CRD, Betz YM, Heit S, Lafontaine MA. Transmembrane Electron and Proton Transfer in Diheme-Containing Succinate : Quinone Oxidoreductases. Isr J Chem 2017. [DOI: 10.1002/ijch.201600139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C. Roy D. Lancaster
- Department of Structural Biology; Center of Human and Molecular Biology (ZHMB); Saarland University; Faculty of Medicine Building 60 D-66421 Homburg (Saar) Germany
| | - Yamila M. Betz
- Department of Structural Biology; Center of Human and Molecular Biology (ZHMB); Saarland University; Faculty of Medicine Building 60 D-66421 Homburg (Saar) Germany
| | - Sabine Heit
- Department of Structural Biology; Center of Human and Molecular Biology (ZHMB); Saarland University; Faculty of Medicine Building 60 D-66421 Homburg (Saar) Germany
| | - Michael A. Lafontaine
- Department of Structural Biology; Center of Human and Molecular Biology (ZHMB); Saarland University; Faculty of Medicine Building 60 D-66421 Homburg (Saar) Germany
| |
Collapse
|
10
|
Selinski J, Hartmann A, Höfler S, Deckers-Hebestreit G, Scheibe R. Refined method to study the posttranslational regulation of alternative oxidases from Arabidopsis thaliana in vitro. PHYSIOLOGIA PLANTARUM 2016; 157:264-79. [PMID: 26798996 DOI: 10.1111/ppl.12418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 05/27/2023]
Abstract
In isolated membranes, posttranslational regulation of quinol oxidase activities can only be determined simultaneously for all oxidases - quinol oxidases as well as cytochrome c oxidases - because of their identical localization. In this study, a refined method to determine the specific activity of a single quinol oxidase is exemplarily described for the alternative oxidase (AOX) isoform AOX1A from Arabidopsis thaliana and its corresponding mutants, using the respiratory chain of an Escherichia coli cytochrome bo and bd-I oxidase double mutant as a source to provide electrons necessary for O2 reduction via quinol oxidases. A highly sensitive and reproducible experimental set-up with prolonged linear time intervals of up to 60 s is presented, which enables the determination of constant activity rates in E. coli membrane vesicles enriched in the quinol oxidase of interest by heterologous expression, using a Clark-type oxygen electrode to continuously follow O2 consumption. For the calculation of specific quinol oxidase activity, activity rates were correlated with quantitative signal intensity determinations of AOX1A present in a membrane-bound state by immunoblot analyses, simultaneously enabling normalization of specific activities between different AOX proteins. In summary, the method presented is a powerful tool to study specific activities of individual quinol oxidases, like the different AOX isoforms, and their corresponding mutants upon modification by addition of effectors/inhibitors, and thus to characterize their individual mode of posttranslational regulation in a membranous environment.
Collapse
Affiliation(s)
- Jennifer Selinski
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| | - Andreas Hartmann
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| | - Saskia Höfler
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| | - Gabriele Deckers-Hebestreit
- Division of Microbiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| | - Renate Scheibe
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| |
Collapse
|
11
|
Marreiros BC, Calisto F, Castro PJ, Duarte AM, Sena FV, Silva AF, Sousa FM, Teixeira M, Refojo PN, Pereira MM. Exploring membrane respiratory chains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1039-1067. [PMID: 27044012 DOI: 10.1016/j.bbabio.2016.03.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
Abstract
Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Paulo J Castro
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Afonso M Duarte
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
12
|
Uribe-Alvarez C, Chiquete-Félix N, Contreras-Zentella M, Guerrero-Castillo S, Peña A, Uribe-Carvajal S. Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations. Pathog Dis 2015; 74:ftv111. [PMID: 26610708 DOI: 10.1093/femspd/ftv111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus epidermidis has become a major health hazard. It is necessary to study its metabolism and hopefully uncover therapeutic targets. Cultivating S. epidermidis at increasing oxygen concentration [O2] enhanced growth, while inhibiting biofilm formation. Respiratory oxidoreductases were differentially expressed, probably to prevent reactive oxygen species formation. Under aerobiosis, S. epidermidis expressed high oxidoreductase activities, including glycerol-3-phosphate dehydrogenase, pyruvate dehydrogenase, ethanol dehydrogenase and succinate dehydrogenase, as well as cytochromes bo and aa3; while little tendency to form biofilms was observed. Under microaerobiosis, pyruvate dehydrogenase and ethanol dehydrogenase decreased while glycerol-3-phosphate dehydrogenase and succinate dehydrogenase nearly disappeared; cytochrome bo was present; anaerobic nitrate reductase activity was observed; biofilm formation increased slightly. Under anaerobiosis, biofilms grew; low ethanol dehydrogenase, pyruvate dehydrogenase and cytochrome bo were still present; nitrate dehydrogenase was the main terminal electron acceptor. KCN inhibited the aerobic respiratory chain and increased biofilm formation. In contrast, methylamine inhibited both nitrate reductase and biofilm formation. The correlation between the expression and/or activity or redox enzymes and biofilm-formation activities suggests that these are possible therapeutic targets to erradicate S. epidermidis.
Collapse
Affiliation(s)
- Cristina Uribe-Alvarez
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Natalia Chiquete-Félix
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Martha Contreras-Zentella
- Department of Cellular and Developmental Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Sergio Guerrero-Castillo
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Antonio Peña
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| |
Collapse
|
13
|
Angerer H. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes. BIOLOGY 2015; 4:133-50. [PMID: 25686363 PMCID: PMC4381221 DOI: 10.3390/biology4010133] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/04/2015] [Indexed: 01/18/2023]
Abstract
In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine) motif proteins (LYRMs) of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6) or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1) of the oxidative phosphorylation (OXPHOS) core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM) independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria.
Collapse
Affiliation(s)
- Heike Angerer
- Goethe University Frankfurt, Medical School, Institute of Biochemistry II, Structural Bioenergetics Group, Max-von-Laue Street 9, Frankfurt am Main 60438, Germany.
| |
Collapse
|
14
|
Abstract
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes.
Collapse
|
15
|
Essentiality of succinate dehydrogenase in Mycobacterium smegmatis and its role in the generation of the membrane potential under hypoxia. mBio 2014; 5:mBio.01093-14. [PMID: 25118234 PMCID: PMC4145680 DOI: 10.1128/mbio.01093-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Succinate:quinone oxidoreductase (Sdh) is a membrane-bound complex that couples the oxidation of succinate to fumarate in the cytoplasm to the reduction of quinone to quinol in the membrane. Mycobacterial species harbor genes for two putative sdh operons, but the individual roles of these two operons are unknown. In this communication, we show that Mycobacterium smegmatis mc2155 expresses two succinate dehydrogenases designated Sdh1 and Sdh2. Sdh1 is encoded by a five-gene operon (MSMEG_0416-MSMEG_0420), and Sdh2 is encoded by a four-gene operon (MSMEG_1672-MSMEG_1669). These two operons are differentially expressed in response to carbon limitation, hypoxia, and fumarate, as monitored by sdh promoter-lacZ fusions. While deletion of the sdh1 operon did not yield any growth phenotypes on succinate or other nonfermentable carbon sources, the sdh2 operon could be deleted only in a merodiploid background, demonstrating that Sdh2 is essential for growth. Sdh activity and succinate-dependent proton pumping were detected in cells grown aerobically, as well as under hypoxia. Fumarate reductase activity was absent under these conditions, indicating that neither Sdh1 nor Sdh2 could catalyze the reverse reaction. Sdh activity was inhibited by the Sdh inhibitor 3-nitroproprionate (3NP), and treatment with 3NP dissipated the membrane potential of wild-type or Δsdh1 mutant cells under hypoxia but not that of cells grown aerobically. These data imply that Sdh2 is the generator of the membrane potential under hypoxia, an essential role for the cell. Complex II or succinate dehydrogenase (Sdh) is a major respiratory enzyme that couples the oxidation of succinate to fumarate in the cytoplasm to the reduction of quinone to quinol in the membrane. Mycobacterial species harbor genes for two putative sdh operons, sdh1 and sdh2, but the individual roles of these two operons are unknown. In this communication, we show that sdh1 and sdh2 are differentially expressed in response to energy limitation, oxygen tension, and alternative electron acceptor availability, suggesting distinct functional cellular roles. Sdh2 was essential for growth and generation of the membrane potential in hypoxic cells. Given the essentiality of succinate dehydrogenase and oxidative phosphorylation in the growth cycle of Mycobacterium tuberculosis, the potential exists to develop new antituberculosis agents against the mycobacterial succinate dehydrogenase. This enzyme has been proposed as a potential target for the development of new chemotherapeutic agents against intracellular parasites and mitochondrion-associated disease.
Collapse
|
16
|
Black PA, Warren RM, Louw GE, van Helden PD, Victor TC, Kana BD. Energy metabolism and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014; 58:2491-503. [PMID: 24614376 PMCID: PMC3993223 DOI: 10.1128/aac.02293-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant source of global morbidity and mortality, further exacerbated by its ability to readily evolve drug resistance. It is well accepted that drug resistance in M. tuberculosis is driven by the acquisition of chromosomal mutations in genes encoding drug targets/promoter regions; however, a comprehensive description of the molecular mechanisms that fuel drug resistance in the clinical setting is currently lacking. In this context, there is a growing body of evidence suggesting that active extrusion of drugs from the cell is critical for drug tolerance. M. tuberculosis encodes representatives of a diverse range of multidrug transporters, many of which are dependent on the proton motive force (PMF) or the availability of ATP. This suggests that energy metabolism and ATP production through the PMF, which is established by the electron transport chain (ETC), are critical in determining the drug susceptibility of M. tuberculosis. In this review, we detail advances in the study of the mycobacterial ETC and highlight drugs that target various components of the ETC. We provide an overview of some of the efflux pumps present in M. tuberculosis and their association, if any, with drug transport and concomitant effects on drug resistance. The implications of inhibiting drug extrusion, through the use of efflux pump inhibitors, are also discussed.
Collapse
Affiliation(s)
- Philippa A. Black
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Gail E. Louw
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Thomas C. Victor
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Bavesh D. Kana
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
17
|
The bc:caa3 supercomplexes from the Gram positive bacterium Bacillus subtilis respiratory chain: A megacomplex organization? Arch Biochem Biophys 2013; 537:153-60. [DOI: 10.1016/j.abb.2013.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022]
|
18
|
Lancaster CRD. The di-heme family of respiratory complex II enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:679-87. [PMID: 23466335 DOI: 10.1016/j.bbabio.2013.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 01/28/2023]
Abstract
The di-heme family of succinate:quinone oxidoreductases is of particular interest, because its members support electron transfer across the biological membranes in which they are embedded. In the case of the di-heme-containing succinate:menaquinone reductase (SQR) from Gram-positive bacteria and other menaquinone-containing bacteria, this results in an electrogenic reaction. This is physiologically relevant in that it allows the transmembrane electrochemical proton potential Δp to drive the endergonic oxidation of succinate by menaquinone. In the case of the reverse reaction, menaquinol oxidation by fumarate, catalysed by the di-heme-containing quinol:fumarate reductase (QFR), evidence has been obtained that this electrogenic electron transfer reaction is compensated by proton transfer via a both novel and essential transmembrane proton transfer pathway ("E-pathway"). Although the reduction of fumarate by menaquinol is exergonic, it is obviously not exergonic enough to support the generation of a Δp. This compensatory "E-pathway" appears to be required by all di-heme-containing QFR enzymes and results in the overall reaction being electroneutral. In addition to giving a brief overview of progress in the characterization of other members of this diverse family, this contribution summarizes key evidence and progress in identifying constituents of the "E-pathway" within the framework of the crystal structure of the QFR from the anaerobic epsilon-proteobacterium Wolinella succinogenes at 1.78Å resolution. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- C Roy D Lancaster
- Department of Structural Biology, Saarland University, Homburg, Germany.
| |
Collapse
|
19
|
Al-Attar S, de Vries S. Energy transduction by respiratory metallo-enzymes: From molecular mechanism to cell physiology. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Iverson TM. Catalytic mechanisms of complex II enzymes: a structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:648-57. [PMID: 22995215 DOI: 10.1016/j.bbabio.2012.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 11/25/2022]
Abstract
Over a decade has passed since the elucidation of the first X-ray crystal structure of any complex II homolog. In the intervening time, the structures of five additional integral-membrane complex II enzymes and three homologs of the soluble domain have been determined. These structures have provided a framework for the analysis of enzymological studies of complex II superfamily enzymes, and have contributed to detailed proposals for reaction mechanisms at each of the two enzyme active sites, which catalyze dicarboxylate and quinone oxidoreduction, respectively. This review focuses on how structural data have augmented our understanding of catalysis by the superfamily. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- T M Iverson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
| |
Collapse
|
21
|
Verkhovskaya M, Bloch DA. Energy-converting respiratory Complex I: on the way to the molecular mechanism of the proton pump. Int J Biochem Cell Biol 2012; 45:491-511. [PMID: 22982742 DOI: 10.1016/j.biocel.2012.08.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 12/16/2022]
Abstract
In respiring organisms the major energy transduction flux employs the transmembrane electrochemical proton gradient as a physical link between exergonic redox reactions and endergonic ADP phosphorylation. Establishing the gradient involves electrogenic, transmembrane H(+) translocation by the membrane-embedded respiratory complexes. Among others, Complex I (NADH:ubiquinone oxidoreductase) is the most structurally complex and functionally enigmatic respiratory enzyme; its molecular mechanism is as yet unknown. Here we highlight recent progress and discuss the catalytic events during Complex I turnover in relation to their role in energy conversion and to the enzyme structure.
Collapse
Affiliation(s)
- Marina Verkhovskaya
- Helsinki Bioenergetics Group, Institute of Biotechnology, PO Box 65 (Viikinkaari 1) FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
22
|
Verkhovsky M, Bloch DA, Verkhovskaya M. Tightly-bound ubiquinone in the Escherichia coli respiratory Complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1550-6. [DOI: 10.1016/j.bbabio.2012.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 12/12/2022]
|
23
|
Dresler J, Klimentova J, Stulik J. Francisella tularensis membrane complexome by blue native/SDS-PAGE. J Proteomics 2011; 75:257-69. [DOI: 10.1016/j.jprot.2011.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/09/2011] [Accepted: 05/03/2011] [Indexed: 12/11/2022]
|
24
|
Kolaj-Robin O, O'Kane SR, Nitschke W, Léger C, Baymann F, Soulimane T. Biochemical and biophysical characterization of succinate: quinone reductase from Thermus thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:68-79. [PMID: 20951673 DOI: 10.1016/j.bbabio.2010.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
Abstract
Enzymes serving as respiratory complex II belong to the succinate:quinone oxidoreductases superfamily that comprises succinate:quinone reductases (SQRs) and quinol:fumarate reductases. The SQR from the extreme thermophile Thermus thermophilus has been isolated, identified and purified to homogeneity. It consists of four polypeptides with apparent molecular masses of 64, 27, 14 and 15kDa, corresponding to SdhA (flavoprotein), SdhB (iron-sulfur protein), SdhC and SdhD (membrane anchor proteins), respectively. The existence of [2Fe-2S], [4Fe-4S] and [3Fe-4S] iron-sulfur clusters within the purified protein was confirmed by electron paramagnetic resonance spectroscopy which also revealed a previously unnoticed influence of the substrate on the signal corresponding to the [2Fe-2S] cluster. The enzyme contains two heme b cofactors of reduction midpoint potentials of -20mV and -160mV for b(H) and b(L), respectively. Circular dichroism and blue-native polyacrylamide gel electrophoresis revealed that the enzyme forms a trimer with a predominantly helical fold. The optimum temperature for succinate dehydrogenase activity is 70°C, which is in agreement with the optimum growth temperature of T. thermophilus. Inhibition studies confirmed sensitivity of the enzyme to the classical inhibitors of the active site, as there are sodium malonate, sodium diethyl oxaloacetate and 3-nitropropionic acid. Activity measurements in the presence of the semiquinone analog, nonyl-4-hydroxyquinoline-N-oxide (NQNO) showed that the membrane part of the enzyme is functionally connected to the active site. Steady-state kinetic measurements showed that the enzyme displays standard Michaelis-Menten kinetics at a low temperature (30°C) with a K(M) for succinate of 0.21mM but exhibits deviation from it at a higher temperature (70°C). This is the first example of complex II with such a kinetic behavior suggesting positive cooperativity with k' of 0.39mM and Hill coefficient of 2.105. While the crystal structures of several SQORs are already available, no crystal structure of type A SQOR has been elucidated to date. Here we present for the first time a detailed biophysical and biochemical study of type A SQOR-a significant step towards understanding its structure-function relationship.
Collapse
Affiliation(s)
- Olga Kolaj-Robin
- Chemical and Environmental Sciences Department and Materials & Surface Science Institute, University of Limerick, Limerick, Ireland
| | | | | | | | | | | |
Collapse
|
25
|
Shabbiri K, Ahmad W, Syed Q, Adnan A. Isolation and Purification of Complex II from Proteus Mirabilis Strain ATCC 29245. Braz J Microbiol 2010; 41:796-804. [PMID: 24031557 PMCID: PMC3768646 DOI: 10.1590/s1517-83822010005000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 03/16/2010] [Indexed: 11/21/2022] Open
Abstract
A respiratory complex was isolated from plasma membrane of pathogenic Proteus mirabilis strain ATCC 29245. It was identified as complex II consisting of succinate:quinone oxidoreductase (EC 1.3.5.1) containing single heme b. The complex II was purified by ion-exchange chromatography and gel filtration. The molecular weight of purified complex was 116.5 kDa and it was composed of three subunits with molecular weights of 19 kDa, 29 kDa and 68.5 kDa. The complex II contained 9.5 nmoles of cytochrome b per mg protein. Heme staining indicated that the 19 kDa subunit was cytochrome b. Its reduced form showed absorptions peaks at 557.0, 524.8 and 424.4 nm. The α-band was shifted from 557.0 nm to 556.8 nm in pyridine ferrohemochrome spectrum. The succinate: quinone oxidoreductase activity was found to be high in this microorganism.
Collapse
|
26
|
Hamann N, Bill E, Shokes JE, Scott RA, Bennati M, Hedderich R. The CCG-domain-containing subunit SdhE of succinate:quinone oxidoreductase from Sulfolobus solfataricus P2 binds a [4Fe-4S] cluster. J Biol Inorg Chem 2009; 14:457-70. [PMID: 19085017 PMCID: PMC2754724 DOI: 10.1007/s00775-008-0462-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 12/03/2008] [Indexed: 11/03/2022]
Abstract
In type E succinate:quinone reductase (SQR), subunit SdhE (formerly SdhC) is thought to function as monotopic membrane anchor of the enzyme. SdhE contains two copies of a cysteine-rich sequence motif (CX(n)CCGX(m)CXXC), designated as the CCG domain in the Pfam database and conserved in many proteins. On the basis of the spectroscopic characterization of heterologously produced SdhE from Sulfolobus tokodaii, the protein was proposed in a previous study to contain a labile [2Fe-2S] cluster ligated by cysteine residues of the CCG domains. Using UV/vis, electron paramagnetic resonance (EPR), (57)Fe electron-nuclear double resonance (ENDOR) and Mössbauer spectroscopies, we show that after an in vitro cluster reconstitution, SdhE from S. solfataricus P2 contains a [4Fe-4S] cluster in reduced (2+) and oxidized (3+) states. The reduced form of the [4Fe-4S](2+) cluster is diamagnetic. The individual iron sites of the reduced cluster are noticeably heterogeneous and show partial valence localization, which is particularly strong for one unique ferrous site. In contrast, the paramagnetic form of the cluster exhibits a characteristic rhombic EPR signal with g (zyx) = 2.015, 2.008, and 1.947. This EPR signal is reminiscent of a signal observed previously in intact SQR from S. tokodaii with g (zyx) = 2.016, 2.00, and 1.957. In addition, zinc K-edge X-ray absorption spectroscopy indicated the presence of an isolated zinc site with an S(3)(O/N)(1) coordination in reconstituted SdhE. Since cysteine residues in SdhE are restricted to the two CCG domains, we conclude that these domains provide the ligands to both the iron-sulfur cluster and the zinc site.
Collapse
Affiliation(s)
- Nils Hamann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
- Present Address: Richter-Helm BioLogics, Habichthorst 30, 22459 Hamburg, Germany
| | - Eckhard Bill
- Max Planck Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany
| | - Jacob E. Shokes
- Department of Chemistry, University of Georgia, Athens, GA 30602-2556 USA
| | - Robert A. Scott
- Department of Chemistry, University of Georgia, Athens, GA 30602-2556 USA
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Reiner Hedderich
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| |
Collapse
|
27
|
Limited reversibility of transmembrane proton transfer assisting transmembrane electron transfer in a dihaem-containing succinate:quinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:593-600. [PMID: 19254686 DOI: 10.1016/j.bbabio.2009.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 11/20/2022]
Abstract
Membrane protein complexes can support both the generation and utilisation of a transmembrane electrochemical proton potential (Deltap), either by supporting transmembrane electron transfer coupled to protolytic reactions on opposite sides of the membrane or by supporting transmembrane proton transfer. The first mechanism has been unequivocally demonstrated to be operational for Deltap-dependent catalysis of succinate oxidation by quinone in the case of the dihaem-containing succinate:menaquinone reductase (SQR) from the Gram-positive bacterium Bacillus licheniformis. This is physiologically relevant in that it allows the transmembrane potential Deltap to drive the endergonic oxidation of succinate by menaquinone by the dihaem-containing SQR of Gram-positive bacteria. In the case of a related but different respiratory membrane protein complex, the dihaem-containing quinol:fumarate reductase (QFR) of the epsilon-proteobacterium Wolinella succinogenes, evidence has been obtained that both mechanisms are combined, so as to facilitate transmembrane electron transfer by proton transfer via a both novel and essential compensatory transmembrane proton transfer pathway ("E-pathway"). Although the reduction of fumarate by menaquinol is exergonic, it is obviously not exergonic enough to support the generation of a Deltap. This compensatory "E-pathway" appears to be required by all dihaem-containing QFR enzymes and results in the overall reaction being electroneutral. However, here we show that the reverse reaction, the oxidation of succinate by quinone, as catalysed by W. succinogenes QFR, is not electroneutral. The implications for transmembrane proton transfer via the E-pathway are discussed.
Collapse
|
28
|
Tomasiak TM, Maklashina E, Cecchini G, Iverson TM. A threonine on the active site loop controls transition state formation in Escherichia coli respiratory complex II. J Biol Chem 2008; 283:15460-8. [PMID: 18385138 PMCID: PMC2397489 DOI: 10.1074/jbc.m801372200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/26/2008] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, the complex II superfamily members succinate:ubiquinone oxidoreductase (SQR) and quinol:fumarate reductase (QFR) participate in aerobic and anaerobic respiration, respectively. Complex II enzymes catalyze succinate and fumarate interconversion at the interface of two domains of the soluble flavoprotein subunit, the FAD binding domain and the capping domain. An 11-amino acid loop in the capping domain (Thr-A234 to Thr-A244 in quinol:fumarate reductase) begins at the interdomain hinge and covers the active site. Amino acids of this loop interact with both the substrate and a proton shuttle, potentially coordinating substrate binding and the proton shuttle protonation state. To assess the loop's role in catalysis, two threonine residues were mutated to alanine: QFR Thr-A244 (act-T; Thr-A254 in SQR), which hydrogen-bonds to the substrate at the active site, and QFR Thr-A234 (hinge-T; Thr-A244 in SQR), which is located at the hinge and hydrogen-bonds the proton shuttle. Both mutations impair catalysis and decrease substrate binding. The crystal structure of the hinge-T mutation reveals a reorientation between the FAD-binding and capping domains that accompanies proton shuttle alteration. Taken together, hydrogen bonding from act-T to substrate may coordinate with interdomain motions to twist the double bond of fumarate and introduce the strain important for attaining the transition state.
Collapse
Affiliation(s)
- Thomas M. Tomasiak
- Departments of Pharmacology and Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, the Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121, and the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Elena Maklashina
- Departments of Pharmacology and Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, the Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121, and the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Gary Cecchini
- Departments of Pharmacology and Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, the Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121, and the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Tina M. Iverson
- Departments of Pharmacology and Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, the Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121, and the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
29
|
Kamensky Y, Liu W, Tsai AL, Kulmacz RJ, Palmer G. Axial ligation and stoichiometry of heme centers in adrenal cytochrome b561. Biochemistry 2007; 46:8647-58. [PMID: 17602662 PMCID: PMC2551744 DOI: 10.1021/bi700054g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cytochrome (cyt) b561 transports electrons across the membrane of chromaffin granules (CG) present in the adrenal medulla, supporting the biosynthesis of norepinephrine in the CG matrix. We have conducted a detailed characterization of cyt b561 using electron paramagnetic resonance (EPR) and optical spectroscopy on the wild-type and mutant forms of the cytochrome expressed in insect cells. The gz = 3.7 (low-potential heme) and gz = 3.1 (high-potential heme) signals were found to represent the only two authentic hemes of cyt b561; models that propose smaller or greater amounts of heme can be ruled out. We identified the axial ligands to hemes in cyt b561 by mutating four conserved histidines (His54 and His122 at the matrix-side heme center and His88 and His161 at the cytoplasmic-side heme center), thus confirming earlier structural models. Single mutations of any of these histidines produced a constellation of spectroscopic changes that involve not one but both heme centers. We hypothesize that the two hemes and their axial ligands in cyt b561 are integral parts of a structural unit that we term the "kernel". Histidine to glutamine substitutions in the cytoplasmic-side heme center but not in the matrix-side heme center led to the retention of a small fraction of the low-potential heme with gz = 3.7. We provisionally assign the low-potential heme to the matrix side of the membrane; this arrangement suggests that the membrane potential modulates electron transport across the CG membrane.
Collapse
Affiliation(s)
- Yury Kamensky
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, USA.
| | | | | | | | | |
Collapse
|
30
|
Kurokawa T, Sakamoto J. Purification and characterization of succinate:menaquinone oxidoreductase from Corynebacterium glutamicum. Arch Microbiol 2005; 183:317-24. [PMID: 15883782 DOI: 10.1007/s00203-005-0775-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/19/2004] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
Succinate:menaquinone oxidoreductase from Corynebacterium glutamicum, a high-G+C, Gram-positive bacterium, was purified to homogeneity. The enzyme contained two heme B molecules and three polypeptides with apparent molecular masses of 67, 29 and 23 kDa, which corresponded to SdhA (flavoprotein), SdhB (iron-sulfur protein), and SdhC (membrane anchor protein), respectively. In non-denaturating polyacrylamide gel electrophoresis, the enzyme migrated as a single band with an apparent molecular mass of 410 kDa, suggesting that it existed as a trimer. The succinate dehydrogenase activity assayed using 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone and 2,6-dichloroindophenol as the electron acceptor was inhibited by 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), and the Dixon plots were biphasic. In contrast, the succinate dehydrogenase activity assayed using phenazine methosulfate and 2,6-dichloroindophenol was inhibited by p-benzoquinone and not by HQNO. These findings suggested that the C. glutamicum succinate:menaquinone oxidoreductase had two quinone binding sites. In the phylogenetic tree of SdhA, Corynebacterium species do not belong to the high-G+C group, which includes Mycobacterium tuberculosis and Streptomyces coelicolor, but are rather close to the group of low-G+C, Gram-positive bacteria such as Bacillus subtilis. This situation may have arisen due to the horizontal gene transfer.
Collapse
Affiliation(s)
- Tatsuki Kurokawa
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken, 820-8502, Japan
| | | |
Collapse
|
31
|
Fernandes AS, Konstantinov AA, Teixeira M, Pereira MM. Quinone reduction by Rhodothermus marinus succinate:menaquinone oxidoreductase is not stimulated by the membrane potential. Biochem Biophys Res Commun 2005; 330:565-70. [PMID: 15796920 DOI: 10.1016/j.bbrc.2005.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Indexed: 11/23/2022]
Abstract
Succinate:quinone oxidoreductase (SQR), a di-haem enzyme purified from Rhodothermus marinus, reveals an HQNO-sensitive succinate:quinone oxidoreductase activity with several menaquinone analogues as electron acceptors that decreases with lowering the redox midpoint potential of the quinones. A turnover with the low-potential 2,3-dimethyl-1,4-naphthoquinone that is the closest analogue of menaquinone, although low, can be detected in liposome-reconstituted SQR. Reduction of the quinone is not stimulated by an imposed K+-diffusion membrane potential of a physiological sign (positive inside the vesicles). Nor does the imposed membrane potential increase the reduction level of the haems in R. marinus SQR poised with the succinate/fumarate redox couple. The data do not support a widely discussed hypothesis on the electrogenic transmembrane electron transfer from succinate to menaquinone catalysed by di-haem SQRs. The role of the membrane potential in regulation of the SQR activity is discussed.
Collapse
Affiliation(s)
- Andreia S Fernandes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2784-505 Oeiras, Portugal
| | | | | | | |
Collapse
|
32
|
Mhatre AN, Li Y, Feng L, Gasperin A, Lalwani AK. SDHB, SDHC, and SDHD mutation screen in sporadic and familial head and neck paragangliomas. Clin Genet 2004; 66:461-6. [PMID: 15479192 DOI: 10.1111/j.1399-0004.2004.00328.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations within three genes, SDHB, SDHC, and SDHD, encoding distinct subunits of a hetero-oligomeric protein known as the mitochondrial complex II, a component of the mitochondrial electron transport chain and the Krebs cycle have been implicated in the pathogenesis of hereditary paraganglioma (PGL). This study describes a mutation screen of SDHB, SDHC, and SDHD in blood and tumor samples of 14 sporadic and three familial cases of head and neck PGL (HNP). Germline mutations in SDHB and SDHD were identified in two of the three affected individuals with familial HNP. The SDHB mutation was a novel 3 base pair, in-frame deletion of AGC at nucleotide 583-585 encoding serine (delS195). The SDHD mutation was a C to T transition within codon 81 causing substitution of proline with leucine (P81L). In contrast to familial cases, no germline or somatic mutations were identified in the 14 sporadic cases of HNP. The presence of mutations within SDHB and SDHD in two of the three samples of familial PGLs and absence of mutations in sporadic cases is consistent with the significant contribution of these genes to familial but not sporadic PGL. The etiology of sporadic PGL remains to be elucidated.
Collapse
Affiliation(s)
- A N Mhatre
- Laboratory of Molecular Genetics, New York University, New York, NY, USA
| | | | | | | | | |
Collapse
|
33
|
Lancaster CRD, Groß R, Simon J. A third crystal form ofWolinella succinogenesquinol:fumarate reductase reveals domain closure at the site of fumarate reduction. ACTA ACUST UNITED AC 2003. [DOI: 10.1046/j.1432-1327.2001.02053.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Abstract
Complex II is the only membrane-bound component of the Krebs cycle and in addition functions as a member of the electron transport chain in mitochondria and in many bacteria. A recent X-ray structural solution of members of the complex II family of proteins has provided important insights into their function. One feature of the complex II structures is a linear electron transport chain that extends from the flavin and iron-sulfur redox cofactors in the membrane extrinsic domain to the quinone and b heme cofactors in the membrane domain. Exciting recent developments in relation to disease in humans and the formation of reactive oxygen species by complex II point to its overall importance in cellular physiology.
Collapse
Affiliation(s)
- Gary Cecchini
- Molecular Biology Division, Veterans Administration Medical Center, San Francisco, California 94121, USA.
| |
Collapse
|
35
|
Lancaster CRD. Wolinella succinogenesquinol:fumarate reductase and its comparison toE. colisuccinate:quinone reductase. FEBS Lett 2003; 555:21-8. [PMID: 14630313 DOI: 10.1016/s0014-5793(03)01100-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The three-dimensional structure of Wolinella succinogenes quinol:fumarate reductase (QFR), a dihaem-containing member of the superfamily of succinate:quinone oxidoreductases (SQOR), has been determined at 2.2 A resolution by X-ray crystallography [Lancaster et al., Nature 402 (1999) 377-385]. The structure and mechanism of W. succinogenes QFR and their relevance to the SQOR superfamily have recently been reviewed [Lancaster, Adv. Protein Chem. 63 (2003) 131-149]. Here, a comparison is presented of W. succinogenes QFR to the recently determined structure of the mono-haem containing succinate:quinone reductase from Escherichia coli [Yankovskaya et al., Science 299 (2003) 700-704]. In spite of differences in polypeptide and haem composition, the overall topology of the membrane anchors and their relative orientation to the conserved hydrophilic subunits is strikingly similar. A major difference is the lack of any evidence for a 'proximal' quinone site, close to the hydrophilic subunits, in W. succinogenes QFR.
Collapse
Affiliation(s)
- C Roy D Lancaster
- Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Marie-Curie-Str. 15, D-60439 Frankfurt am Main, Germany.
| |
Collapse
|
36
|
Lancaster CRD. The structure of Wolinella succinogenes quinol: fumarate reductase and its relevance to the superfamily of succinate: quinone oxidoreductases. ADVANCES IN PROTEIN CHEMISTRY 2003; 63:131-49. [PMID: 12629969 DOI: 10.1016/s0065-3233(03)63006-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- C Roy D Lancaster
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60528 Frankfurt am Main, Germany
| |
Collapse
|
37
|
Abstract
Corynebacterium glutamicum is an aerobic bacterium that requires oxygen as exogenous electron acceptor for respiration. Recent molecular and biochemical analyses together with information obtained from the genome sequence showed that C. glutamicum possesses a branched electron transport chain to oxygen with some remarkable features. Reducing equivalents obtained by the oxidation of various substrates are transferred to menaquinone via at least eight different dehydrogenases, i.e. NADH dehydrogenase, succinate dehydrogenase, malate:quinone oxidoreductase, pyruvate:quinone oxidoreductase, D-lactate dehydrogenase, L-lactate dehydrogenase, glycerol-3-phosphate dehydrogenase and L-proline dehydrogenase. All these enzymes contain a flavin cofactor and, except succinate dehydrogenase, are single subunit peripheral membrane proteins located inside the cell. From menaquinol, the electrons are passed either via the cytochrome bc(1) complex to the aa(3)-type cytochrome c oxidase with low oxygen affinity, or to the cytochrome bd-type menaquinol oxidase with high oxygen affinity. The former branch is exceptional, in that it does not involve a separate cytochrome c for electron transfer from cytochrome c(1) to the Cu(A) center in subunit II of cytochrome aa(3). Rather, cytochrome c(1) contains two covalently bound heme groups, one of which presumably takes over the function of a separate cytochrome c. The bc(1) complex and cytochrome aa(3) oxidase form a supercomplex in C. glutamicum. The phenotype of defined mutants revealed that the bc(1)-aa(3) branch, but not the bd branch, is of major importance for aerobic growth in minimal medium. Changes of the efficiency of oxidative phosphorylation caused by qualitative changes of the respiratory chain or by a defective F(1)F(0)-ATP synthase were found to have strong effects on metabolism and amino acid production. Therefore, the system of oxidative phosphorylation represents an attractive target for improving amino acid productivity of C. glutamicum by metabolic engineering.
Collapse
Affiliation(s)
- Michael Bott
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | | |
Collapse
|
38
|
Lancaster CRD. Wolinella succinogenes quinol:fumarate reductase-2.2-A resolution crystal structure and the E-pathway hypothesis of coupled transmembrane proton and electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:215-31. [PMID: 12409197 DOI: 10.1016/s0005-2736(02)00571-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structure of the respiratory membrane protein complex quinol:fumarate reductase (QFR) from Wolinella succinogenes has been determined by X-ray crystallography at 2.2-A resolution [Nature 402 (1999) 377]. Based on the structure of the three protein subunits A, B, and C and the arrangement of the six prosthetic groups (a covalently bound FAD, three iron-sulfur clusters, and two haem b groups), a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b in the membrane to the site of fumarate reduction in the hydrophilic subunit A has been proposed. The structure of the membrane-integral dihaem cytochrome b reveals that all transmembrane helical segments are tilted with respect to the membrane normal. The "four-helix" dihaem binding motif is very different from other dihaem-binding transmembrane four-helix bundles, such as the "two-helix motif" of the cytochrome bc(1) complex and the "three-helix motif" of the formate dehydrogenase/hydrogenase group. The gamma-hydroxyl group of Ser C141 has an important role in stabilising a kink in transmembrane helix IV. By combining the results from site-directed mutagenesis, functional and electrochemical characterisation, and X-ray crystallography, a residue was identified which was found to be essential for menaquinol oxidation [Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13051]. The distal location of this residue in the structure indicates that the coupling of the oxidation of menaquinol to the reduction of fumarate in dihaem-containing succinate:quinone oxidoreductases could in principle be associated with the generation of a transmembrane electrochemical potential. However, it is suggested here that in W. succinogenes QFR, this electrogenic effect is counterbalanced by the transfer of two protons via a proton transfer pathway (the "E-pathway") in concert with the transfer of two electrons via the membrane-bound haem groups. According to this "E-pathway hypothesis", the net reaction catalysed by W. succinogenes QFR does not contribute directly to the generation of a transmembrane electrochemical potential.
Collapse
Affiliation(s)
- C Roy D Lancaster
- Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Heinrich-Hoffmann-Str. 7, D-60528 Frankfurt am Main, Germany.
| |
Collapse
|
39
|
Azarkina N, Konstantinov AA. Stimulation of menaquinone-dependent electron transfer in the respiratory chain of Bacillus subtilis by membrane energization. J Bacteriol 2002; 184:5339-47. [PMID: 12218020 PMCID: PMC135355 DOI: 10.1128/jb.184.19.5339-5347.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2002] [Accepted: 06/27/2002] [Indexed: 11/20/2022] Open
Abstract
Affiliation(s)
- N Azarkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | | |
Collapse
|
40
|
Lancaster CRD, Simon J. Succinate:quinone oxidoreductases from epsilon-proteobacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:84-101. [PMID: 11803019 DOI: 10.1016/s0005-2728(01)00230-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The epsilon-proteobacteria form a subdivision of the Proteobacteria including the genera Wolinella, Campylobacter, Helicobacter, Sulfurospirillum, Arcobacter and Dehalospirillum. The majority of these bacteria are oxidase-positive microaerophiles indicating an electron transport chain with molecular oxygen as terminal electron acceptor. However, numerous members of the epsilon-proteobacteria also grow in the absence of oxygen. The common presence of menaquinone and fumarate reduction activity suggests anaerobic fumarate respiration which was demonstrated for the rumen bacterium Wolinella succinogenes as well as for Sulfurospirillum deleyianum, Campylobacter fetus, Campylobacter rectus and Dehalospirillum multivorans. To date, complete genome sequences of Helicobacter pylori and Campylobacter jejuni are available. These bacteria and W. succinogenes contain the genes frdC, A and B encoding highly similar heterotrimeric enzyme complexes belonging to the family of succinate:quinone oxidoreductases. The crystal structure of the W. succinogenes quinol:fumarate reductase complex (FrdCAB) was solved recently, thus providing a model of succinate:quinone oxidoreductases from epsilon-proteobacteria. Succinate:quinone oxidoreductases are being discussed as possible therapeutic targets in the treatment of several pathogenic epsilon-proteobacteria.
Collapse
Affiliation(s)
- C Roy D Lancaster
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Frankfurt am Main, Germany.
| | | |
Collapse
|
41
|
|
42
|
Lemos RS, Fernandes AS, Pereira MM, Gomes CM, Teixeira M. Quinol:fumarate oxidoreductases and succinate:quinone oxidoreductases: phylogenetic relationships, metal centres and membrane attachment. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:158-70. [PMID: 11803024 DOI: 10.1016/s0005-2728(01)00239-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A comprehensive phylogenetic analysis of the core subunits of succinate:quinone oxidoreductases and quinol:fumarate oxidoreductases is performed, showing that the classification of the enzymes as type A to E based on the type of the membrane anchor fully correlates with the specific characteristics of the two core subunits. A special emphasis is given to the type E enzymes, which have an atypical association to the membrane, possibly involving anchor subunits with amphipathic helices. Furthermore, the redox properties of the SQR/QFR proteins are also reviewed, stressing out the recent observation of redox-Bohr effect upon haem reduction, observed for the Desulfovibrio gigas and Rhodothermus marinus enzymes, which indicates a direct protonation event at the haems or at a nearby residue. Finally, the possible contribution of these enzymes to the formation/dissipation of a transmembrane proton gradient is discussed, considering recent experimental and structural data.
Collapse
Affiliation(s)
- Rita S Lemos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboã, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
43
|
Cecchini G, Schröder I, Gunsalus RP, Maklashina E. Succinate dehydrogenase and fumarate reductase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:140-57. [PMID: 11803023 DOI: 10.1016/s0005-2728(01)00238-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron-sulfur subunit which contains three distinct iron-sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed.
Collapse
Affiliation(s)
- Gary Cecchini
- Molecular Biology Division, VA Medical Center, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
44
|
Kröger A, Biel S, Simon J, Gross R, Unden G, Lancaster CRD. Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:23-38. [PMID: 11803015 DOI: 10.1016/s0005-2728(01)00234-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wolinella succinogenes performs oxidative phosphorylation with fumarate instead of O2 as terminal electron acceptor and H2 or formate as electron donors. Fumarate reduction by these donors ('fumarate respiration') is catalyzed by an electron transport chain in the bacterial membrane, and is coupled to the generation of an electrochemical proton potential (Deltap) across the bacterial membrane. The experimental evidence concerning the electron transport and its coupling to Deltap generation is reviewed in this article. The electron transport chain consists of fumarate reductase, menaquinone (MK) and either hydrogenase or formate dehydrogenase. Measurements indicate that the Deltap is generated exclusively by MK reduction with H2 or formate; MKH2 oxidation by fumarate appears to be an electroneutral process. However, evidence derived from the crystal structure of fumarate reductase suggests an electrogenic mechanism for the latter process.
Collapse
Affiliation(s)
- Achim Kröger
- Institüt für Mikrobiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Rustin P, Rötig A. Inborn errors of complex II--unusual human mitochondrial diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:117-22. [PMID: 11803021 DOI: 10.1016/s0005-2728(01)00228-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The succinate dehydrogenase consists of only four subunits, all nuclearly encoded, and is part of both the respiratory chain and the Krebs cycle. Mutations in the four genes encoding the subunits of the mitochondrial respiratory chain succinate dehydrogenase have been recently reported in human and shown to be associated with a wide spectrum of clinical presentations. Although a comparatively rare deficiency in human, molecularly defined succinate dehydrogenase deficiency has already been found to cause encephalomyopathy in childhood, optic atrophy or tumor in adulthood. Because none of the typical housekeeping genes encoding this respiratory chain complex is known to present tissue-specific isoforms, the tissue-specific involvement represents a quite intriguing question, which is mostly addressed in this review. A differential impairment of electron flow through the respiratory chain, handling of oxygen, and/or metabolic blockade possibly associated with defects in the different subunits that can be advocated to account for tissue-specific involvement is discussed.
Collapse
Affiliation(s)
- Pierre Rustin
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant (INSERM U-393), Tour Lavoisier, Hôpital Necker-Enfants Malades, 149, rue de Sèvres, F-75743 Cedex 15, Paris, France.
| | | |
Collapse
|
46
|
Lancaster CR. Succinate:quinone oxidoreductases--what can we learn from Wolinella succinogenes quinol:fumarate reductase? FEBS Lett 2001; 504:133-41. [PMID: 11532445 DOI: 10.1016/s0014-5793(01)02706-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The structure of Wolinella succinogenes quinol:fumarate reductase by X-ray crystallography has been determined at 2.2-A resolution [Lancaster et al. (1999), Nature 402, 377-385]. Based on the structure of the three protein subunits A, B, and C and the arrangement of the six prosthetic groups (a covalently bound FAD, three iron-sulphur clusters, and two haem b groups) a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b in the membrane to the site of fumarate reduction in the hydrophilic subunit A has been proposed. By combining the results from site-directed mutagenesis, functional and electrochemical characterisation, and X-ray crystallography, a residue was identified which is essential for menaquinol oxidation. [Lancaster et al. (2000), Proc. Natl. Acad. Sci. USA 97, 13051-13056]. The location of this residue in the structure suggests that the coupling of the oxidation of menaquinol to the reduction of fumarate in dihaem-containing succinate:quinone oxidoreductases could be associated with the generation of a transmembrane electrochemical potential. Based on crystallographic analysis of three different crystal forms of the enzyme and the results from site-directed mutagenesis, we have derived a mechanism of fumarate reduction and succinate oxidation [Lancaster et al. (2001) Eur. J. Biochem. 268, 1820-1827], which should be generally relevant throughout the superfamily of succinate:quinone oxidoreductases.
Collapse
Affiliation(s)
- C R Lancaster
- Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany.
| |
Collapse
|
47
|
Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure. J Mol Cell Cardiol 2001; 33:1065-89. [PMID: 11444914 DOI: 10.1006/jmcc.2001.1378] [Citation(s) in RCA: 526] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria contribute to cardiac dysfunction and myocyte injury via a loss of metabolic capacity and by the production and release of toxic products. This article discusses aspects of mitochondrial structure and metabolism that are pertinent to the role of mitochondria in cardiac disease. Generalized mechanisms of mitochondrial-derived myocyte injury are also discussed, as are the strengths and weaknesses of experimental models used to study the contribution of mitochondria to cardiac injury. Finally, the involvement of mitochondria in the pathogenesis of specific cardiac disease states (ischemia, reperfusion, aging, ischemic preconditioning, and cardiomyopathy) is addressed.
Collapse
Affiliation(s)
- E J Lesnefsky
- Division of Cardiology, Case Western Reserve University and Geriatric Research, Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
48
|
Matsson M, Hederstedt L. The carboxin-binding site on Paracoccus denitrificans succinate:quinone reductase identified by mutations. J Bioenerg Biomembr 2001; 33:99-105. [PMID: 11456223 DOI: 10.1023/a:1010744330092] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Succinate:quinone reductase catalyzes electron transfer from succinate to quinone in aerobic respiration. Carboxin is a specific inhibitor of this enzyme from several different organisms. We have isolated mutant strains of the bacterium Paracoccus denitrificans that are resistant to carboxin due to mutations in the succinate:quinone reductase. The mutations identify two amino acid residues, His228 in SdhB and Asp89 in SdhD, that most likely constitute part of a carboxin-binding site. This site is in the same region of the enzyme as the proposed active site for ubiquinone reduction. From the combined mutant data and structural information derived from Escherichia coli and Wolinella succinogenes quinol:fumarate reductase, we suggest that carboxin acts by blocking binding of ubiquinone to the active site. The block would be either by direct exclusion of ubiquinone from the active site or by occlusion of a pore that leads to the active site.
Collapse
Affiliation(s)
- M Matsson
- Department of Microbiology, Lund University, Sweden
| | | |
Collapse
|
49
|
Lancaster CR, Gorss R, Haas A, Ritter M, Mäntele W, Simon J, Kröger A. Essential role of Glu-C66 for menaquinol oxidation indicates transmembrane electrochemical potential generation by Wolinella succinogenes fumarate reductase. Proc Natl Acad Sci U S A 2000; 97:13051-6. [PMID: 11186225 PMCID: PMC27176 DOI: 10.1073/pnas.220425797] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined structure of QFR from Wolinella succinogenes, the site of fumarate reduction in the flavoprotein subunit A of the enzyme was identified, but the site of menaquinol oxidation was not. In the crystal structure, the acidic residue Glu-66 of the membrane spanning, diheme-containing subunit C lines a cavity that could be occupied by the substrate menaquinol. Here we describe that, after replacement of Glu-C66 with Gln by site-directed mutagenesis, the resulting mutant is unable to grow on fumarate and the purified enzyme lacks quinol oxidation activity. X-ray crystal structure analysis of the Glu-C66-->Gln variant enzyme at 3.1-A resolution rules out any major structural changes compared with the wild-type enzyme. The oxidation-reduction potentials of the heme groups are not significantly affected. We conclude that Glu-C66 is an essential constituent of the menaquinol oxidation site. Because Glu-C66 is oriented toward a cavity leading to the periplasm, the release of two protons on menaquinol oxidation is expected to occur to the periplasm, whereas the uptake of two protons on fumarate reduction occurs from the cytoplasm. Thus our results indicate that the reaction catalyzed by W. succinogenes QFR generates a transmembrane electrochemical potential.
Collapse
Affiliation(s)
- C R Lancaster
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|