1
|
Paduvari R, Arekal R, Somashekara DM. Uncovering the mysteries of bacterial cytochrome c oxidases: A review on structural and molecular insights for potential application. Int J Biol Macromol 2025; 309:142773. [PMID: 40180098 DOI: 10.1016/j.ijbiomac.2025.142773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Cytochrome c oxidases are hemoproteins with a heme prosthetic group bound to the apoprotein. These complex enzymes are found embedded in the plasma membrane of the bacterial cells and play a vital role in the transfer of electrons from the electron transport chain to the oxygen molecule that acts as a terminal electron acceptor and gets reduced to water molecules. It helps establish a proton gradient across the plasma membrane by pumping hydrogen ions into the periplasmic space, generating adenosine triphosphate through oxidative phosphorylation. Bacteria have various cytochrome c oxidases based on the ecological niche that are differentially expressed with varying environmental conditions. Cytochrome c oxidases are made of different subunits with a distinct heme‑copper binuclear active site that catalyzes oxygen molecule reduction. Since these complex enzymes play a vital role in cellular respiration, the structure of cytochrome c oxidases remains conserved in many of the bacteria. Therefore, a detailed analysis of the structure of enzyme subunits, amino acid composition, and catalytic activity helps to design small molecules as drugs of clinical relevance for bacteria. The present review focuses on the structural details and molecular mechanisms such as proton pumping, electron transfer and the catalytic activity of oxygen reduction.
Collapse
Affiliation(s)
- Raghavendra Paduvari
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Roopashri Arekal
- Department of Microbiology, Biotechnology and Food Technology, Bangalore University, Bengaluru 560056, Karnataka, India
| | - Divyashree Mysore Somashekara
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India..
| |
Collapse
|
2
|
Smirnova I, Wu F, Brzezinski P. Stimulation of cytochrome c oxidase activity by detergents. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149509. [PMID: 39251013 DOI: 10.1016/j.bbabio.2024.149509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Cytochrome c oxidase (CytcO) is an integral membrane protein, which catalyzes four-electron reduction of oxygen linked to proton uptake and pumping. Amphipathic molecules bind in sites near the so-called K proton pathway of CytcO to reversibly modulate its activity. However, purification of CytcO for mechanistic studies typically involves the use of detergents, which may interfere with binding of these regulatory molecules. Here, we investigated the CytcO enzymatic activity as well as intramolecular electron transfer linked to proton transfer upon addition of different detergents to bovine heart mitoplasts. The CytcO activity increased upon addition of alkyl glucosides (DDM and DM) and the steroid analog GDN. The maximum stimulating effect was observed for DDM and DM, and the half-stimulating effect correlated with their CMC values. With GDN the stimulation effect was smaller and occurred at a concentration higher than CMC. A kinetic analysis suggests that the stimulation of activity is due to removal of a ligand bound near the K proton pathway, which indicates that in the native membrane this site is occupied to yield a lower than maximal possible CytcO activity. Possible functional consequences are discussed.
Collapse
Affiliation(s)
- Irina Smirnova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fei Wu
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
3
|
Covian R, Edwards LO, Lucotte BM, Balaban RS. Spectroscopic identification of the catalytic intermediates of cytochrome c oxidase in respiring heart mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148934. [PMID: 36379270 PMCID: PMC9998343 DOI: 10.1016/j.bbabio.2022.148934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
The catalytic cycle of cytochrome c oxidase (COX) couples the reduction of oxygen to the translocation of protons across the inner mitochondrial membrane and involves several intermediate states of the heme a3-CuB binuclear center with distinct absorbance properties. The absorbance maximum close to 605 nm observed during respiration is commonly assigned to the fully reduced species of hemes a or a3 (R). However, by analyzing the absorbance of isolated enzyme and mitochondria in the Soret (420-450 nm), alpha (560-630 nm) and red (630-700 nm) spectral regions, we demonstrate that the Peroxy (P) and Ferryl (F) intermediates of the binuclear center are observed during respiration, while the R form is only detectable under nearly anoxic conditions in which electrons also accumulate in the higher extinction coefficient low spin a heme. This implies that a large fraction of COX (>50 %) is active, in contrast with assumptions that assign spectral changes only to R and/or reduced heme a. The concentration dependence of the COX chromophores and reduced c-type cytochromes on the transmembrane potential (ΔΨm) was determined in isolated mitochondria during substrate or apyrase titration to hydrolyze ATP. The cytochrome c-type redox levels indicated that soluble cytochrome c is out of equilibrium with respect to both Complex III and COX. Thermodynamic analyses confirmed that reactions involving the chromophores we assign as the P and F species of COX are ΔΨm-dependent, out of equilibrium, and therefore much slower than the ΔΨm-insensitive oxidation of the R intermediate, which is undetectable due to rapid oxygen binding.
Collapse
Affiliation(s)
- Raul Covian
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, United States of America.
| | - Lanelle O Edwards
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, United States of America
| | - Bertrand M Lucotte
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, United States of America
| | - Robert S Balaban
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, United States of America.
| |
Collapse
|
4
|
Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme. Proc Natl Acad Sci U S A 2021; 118:2107939118. [PMID: 34556577 PMCID: PMC8488605 DOI: 10.1073/pnas.2107939118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
Multiheme cytochromes have been identified as essential proteins for electron exchange between bacterial enzymes and redox substrates outside of the cell. In microbiology, these proteins contribute to efficient energy storage and conversion. For biotechnology, multiheme cytochromes contribute to the production of green fuels and electricity. Furthermore, these proteins inspire the design of molecular-scale electronic devices. Here, we report exceptionally high rates of heme-to-heme electron transfer in a multiheme cytochrome. We expect similarly high rates, among the highest reported for ground-state electron transfer in biology, in other multiheme cytochromes as the close-packed hemes adopt similar configurations despite very different amino acid sequences and protein folds. Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 μm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme–heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis. We observed rates of heme-to-heme electron transfer on the order of 109 s−1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser–Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-μs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies.
Collapse
|
5
|
Reidelbach M, Zimmer C, Meunier B, Rich PR, Sharma V. Electron Transfer Coupled to Conformational Dynamics in Cell Respiration. Front Mol Biosci 2021; 8:711436. [PMID: 34422907 PMCID: PMC8378252 DOI: 10.3389/fmolb.2021.711436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Cellular respiration is a fundamental process required for energy production in many organisms. The terminal electron transfer complex in mitochondrial and many bacterial respiratory chains is cytochrome c oxidase (CcO). This converts the energy released in the cytochrome c/oxygen redox reaction into a transmembrane proton electrochemical gradient that is used subsequently to power ATP synthesis. Despite detailed knowledge of electron and proton transfer paths, a central question remains as to whether the coupling between electron and proton transfer in mammalian mitochondrial forms of CcO is mechanistically equivalent to its bacterial counterparts. Here, we focus on the conserved span between H376 and G384 of transmembrane helix (TMH) X of subunit I. This conformationally-dynamic section has been suggested to link the redox activity with the putative H pathway of proton transfer in mammalian CcO. The two helix X mutants, Val380Met (V380M) and Gly384Asp (G384D), generated in the genetically-tractable yeast CcO, resulted in a respiratory-deficient phenotype caused by the inhibition of intra-protein electron transfer and CcO turnover. Molecular aspects of these variants were studied by long timescale atomistic molecular dynamics simulations performed on wild-type and mutant bovine and yeast CcOs. We identified redox- and mutation-state dependent conformational changes in this span of TMH X of bovine and yeast CcOs which strongly suggests that this dynamic module plays a key role in optimizing intra-protein electron transfers.
Collapse
Affiliation(s)
- Marco Reidelbach
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Christoph Zimmer
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Peter R Rich
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland.,HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Kruse F, Nguyen AD, Dragelj J, Schlesinger R, Heberle J, Mroginski MA, Weidinger IM. Characterisation of the Cyanate Inhibited State of Cytochrome c Oxidase. Sci Rep 2020; 10:3863. [PMID: 32123230 PMCID: PMC7052191 DOI: 10.1038/s41598-020-60801-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Heme-copper oxygen reductases are terminal respiratory enzymes, catalyzing the reduction of dioxygen to water and the translocation of protons across the membrane. Oxygen consumption is inhibited by various substances. Here we tested the relatively unknown inhibition of cytochrome c oxidase (CcO) with isocyanate. In contrast to other more common inhibitors like cyanide, inhibition with cyanate was accompanied with the rise of a metal to ligand charge transfer (MLCT) band around 638 nm. Increasing the cyanate concentration furthermore caused selective reduction of heme a. The presence of the CT band allowed for the first time to directly monitor the nature of the ligand via surface-enhanced resonance Raman (SERR) spectroscopy. Analysis of isotope sensitive SERR spectra in comparison with Density Functional Theory (DFT) calculations identified not only the cyanate monomer as an inhibiting ligand but suggested also presence of an uretdion ligand formed upon dimerization of two cyanate ions. It is therefore proposed that under high cyanate concentrations the catalytic site of CcO promotes cyanate dimerization. The two excess electrons that are supplied from the uretdion ligand lead to the observed physiologically inverse electron transfer from heme a3 to heme a.
Collapse
Affiliation(s)
- Fabian Kruse
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, 01069, Dresden, Germany
| | - Anh Duc Nguyen
- Technische Universität Berlin, Department of Chemistry, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Jovan Dragelj
- Technische Universität Berlin, Department of Chemistry, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Ramona Schlesinger
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Department of Chemistry, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Inez M Weidinger
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, 01069, Dresden, Germany.
| |
Collapse
|
7
|
Electron transfer between cytochrome c and the binuclear center of cytochrome oxidase. J Theor Biol 2019; 460:134-141. [DOI: 10.1016/j.jtbi.2018.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
|
8
|
Wikström M, Sharma V. Proton pumping by cytochrome c oxidase – A 40 year anniversary. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:692-698. [DOI: 10.1016/j.bbabio.2018.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022]
|
9
|
Rocha MC, Springett R. Spectral components of detergent-solubilized bovine cytochrome oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:555-566. [PMID: 29704499 DOI: 10.1016/j.bbabio.2018.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/21/2018] [Accepted: 04/23/2018] [Indexed: 11/27/2022]
Abstract
Cytochrome oxidase is the terminal oxidase of the mitochondrial electron transport chain and pumps 4 protons per oxygen reduced to water. Spectral shifts in the α-band of heme a have been observed in multiple studies and these shifts have the potential to shed light on the proton pumping intermediates. Previously we found that heme a had two spectral components in the α-band during redox titrations in living RAW 264.7 mouse macrophage cells, the classical 605 nm form and a blue-shifted 602 nm form. To confirm these spectral changes were not an artifact due to the complex milieu of the living cell, redox titrations were performed in the isolated detergent-solubilized bovine enzyme from both the Soret- and α-band using precise multiwavelength spectroscopy. This data verified the presence of the 602 nm form in the α-band, revealed a similar shift of heme a in the Soret-band and ruled out the reversal of calcium binding as the origin of the blue shift. The 602 nm form was found to be stabilized at high pH or by binding of azide, which is known to blue shift the α-band of heme a. Azide also stabilized the 602 nm form in the living cells. It is concluded there is a form of cytochrome oxidase in which heme a undergoes a blue shift to a 602 nm form and that redox titrations can be successfully performed in living cells where the oxidase operates in its authentic environment and in the presence of a proton motive force.
Collapse
Affiliation(s)
- Mariana C Rocha
- Cardiovascular Division, King's College London, British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Roger Springett
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
10
|
Wikström M, Krab K, Sharma V. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. Chem Rev 2018; 118:2469-2490. [PMID: 29350917 PMCID: PMC6203177 DOI: 10.1021/acs.chemrev.7b00664] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
This review focuses on the type
A cytochrome c oxidases (CcO), which
are found in all mitochondria
and also in several aerobic bacteria. CcO catalyzes
the respiratory reduction of dioxygen (O2) to water by
an intriguing mechanism, the details of which are fairly well understood
today as a result of research for over four decades. Perhaps even
more intriguingly, the membrane-bound CcO couples
the O2 reduction chemistry to translocation of protons
across the membrane, thus contributing to generation of the electrochemical
proton gradient that is used to drive the synthesis of ATP as catalyzed
by the rotary ATP synthase in the same membrane. After reviewing the
structure of the core subunits of CcO, the active
site, and the transfer paths of electrons, protons, oxygen, and water,
we describe the states of the catalytic cycle and point out the few
remaining uncertainties. Finally, we discuss the mechanism of proton
translocation and the controversies in that area that still prevail.
Collapse
Affiliation(s)
- Mårten Wikström
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland
| | - Klaas Krab
- Department of Molecular Cell Physiology , Vrije Universiteit , P.O. Box 7161 , Amsterdam 1007 MC , The Netherlands
| | - Vivek Sharma
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland.,Department of Physics , University of Helsinki , P.O. Box 64 , Helsinki FI-00014 , Finland
| |
Collapse
|
11
|
Blumberger J. Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions. Chem Rev 2015; 115:11191-238. [DOI: 10.1021/acs.chemrev.5b00298] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jochen Blumberger
- Department of Physics and
Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
12
|
Wikström M, Sharma V, Kaila VRI, Hosler JP, Hummer G. New Perspectives on Proton Pumping in Cellular Respiration. Chem Rev 2015; 115:2196-221. [DOI: 10.1021/cr500448t] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten Wikström
- Institute
of Biotechnology, University of Helsinki, Biocenter 3 (Viikinkaari 1), PB
65, Helsinki 00014, Finland
| | - Vivek Sharma
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Ville R. I. Kaila
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany
| | - Jonathan P. Hosler
- Department
of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße
3, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
13
|
Affiliation(s)
- Shinya Yoshikawa
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| |
Collapse
|
14
|
Siletsky SA, Belevich I, Soulimane T, Verkhovsky MI, Wikström M. The fifth electron in the fully reduced caa3 from Thermus thermophilus is competent in proton pumping. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1-9. [DOI: 10.1016/j.bbabio.2012.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/26/2022]
|
15
|
Koutsoupakis C, Soulimane T, Varotsis C. Spectroscopic and kinetic investigation of the fully reduced and mixed valence states of ba3-cytochrome c oxidase from Thermus thermophilus: a Fourier transform infrared (FTIR) and time-resolved step-scan FTIR study. J Biol Chem 2012; 287:37495-507. [PMID: 22927441 DOI: 10.1074/jbc.m112.403600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complete understanding of a molecular mechanism of action requires the thermodynamic and kinetic characterization of different states and intermediates. Cytochrome c oxidase reduces O(2) to H(2)O, a reaction coupled to proton translocation across the membrane. Therefore, it is necessary to undertake a thorough characterization of the reduced form of the enzyme and the determination of the electron transfer processes and pathways between the redox-active centers. In this study Fourier transform infrared (FTIR) and time-resolved step-scan FTIR spectroscopy have been applied to study the fully reduced and mixed valence states of cytochrome ba(3) from Thermus thermophilus. We used as probe carbon monoxide (CO) to characterize both thermodynamically and kinetically the cytochrome ba(3)-CO complex in the 5.25-10.10 pH/pD range and to study the reverse intramolecular electron transfer initiated by the photolysis of CO in the two-electron reduced form. The time-resolved step-scan FTIR data revealed no pH/pD dependence in both the decay of the transient Cu(B)(1+)-CO complex and rebinding to heme a(3) rates, suggesting that no structural change takes place in the vicinity of the binuclear center. Surprisingly, photodissociation of CO from the mixed valence form of the enzyme does not lead to reverse electron transfer from the reduced heme a(3) to the oxidized low-spin heme b, as observed in all the other aa(3) and bo(3) oxidases previously examined. The heme b-heme a(3) electron transfer is guaranteed, and therefore, there is no need for structural rearrangements and complex synchronized cooperativities. Comparison among the available structures of ba(3)- and aa(3)-cytochrome c oxidases identifies possible active pathways involved in the electron transfer processes and key structural elements that contribute to the different behavior observed in cytochrome ba(3).
Collapse
Affiliation(s)
- Constantinos Koutsoupakis
- Department of Environmental Science and Technology, Cyprus University of Technology, P. O. Box 50329, 3603 Lemesos, Cyprus
| | | | | |
Collapse
|
16
|
Tipmanee V, Blumberger J. Kinetics of the terminal electron transfer step in cytochrome c oxidase. J Phys Chem B 2012; 116:1876-83. [PMID: 22243050 DOI: 10.1021/jp209175j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase (cco) catalyzes the oxygen reduction reaction in most aerobically respiring organisms. Decades of research have uncovered many aspects relating to structure and function of this enzyme. However, the origin of the unusually fast terminal electron transfer step from heme a to heme a(3) in cco has been the subject of intense discussions over recent years. Yet, no satisfactory consensus has been achieved. Carrying out large-scale molecular dynamics simulation of the protein embedded in a solvated membrane, we obtain a reorganization free energy λ = 0.57 eV. Evaluation of the quantized single-mode rate equation using the experimental rate and the computed reorganization free energy gives a value of 1.5 meV for the average electronic coupling (H(ab)) between heme a and heme a(3). Thus, according to our calculations, the nanosecond electron transfer (ET) is due to a small but significant activation barrier (ΔG(‡) = 0.12 eV) in combination with effective electronic coupling between the two cofactors. The activation free energy is caused predominantly by collective reorganization of protein residues. We show that our results are consistent with the weak temperature dependence observed in experiment if one allows for very minor variations in the donor-acceptor distance as the temperature changes.
Collapse
Affiliation(s)
- Varomyalin Tipmanee
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | |
Collapse
|
17
|
Näsvik Öjemyr L, von Ballmoos C, Gennis RB, Sligar SG, Brzezinski P. Reconstitution of respiratory oxidases in membrane nanodiscs for investigation of proton-coupled electron transfer. FEBS Lett 2011; 586:640-5. [PMID: 22209982 DOI: 10.1016/j.febslet.2011.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 12/31/2022]
Abstract
The function of membrane-bound transporters is commonly affected by the milieu of the hydrophobic, membrane-spanning part of the transmembrane protein. Consequently, functional studies of these proteins often involve incorporation into a native-like bilayer where the lipid components of the membrane can be controlled. The classical approach is to reconstitute the purified protein into liposomes. Even though the use of such liposomes is essential for studies of transmembrane transport processes in general, functional studies of the transporters themselves in liposomes suffer from several disadvantages. For example, transmembrane proteins can adopt two different orientations when reconstituted into liposomes, and one of these populations may be inaccessible to ligands, to changes in pH or ion concentration in the external solution. Furthermore, optical studies of proteins reconstituted in liposomes suffer from significant light scattering, which diminishes the signal-to-noise value of the measurements. One attractive approach to circumvent these problems is to use nanodiscs, which are phospholipid bilayers encircled by a stabilizing amphipathic helical membrane scaffold protein. These membrane nanodiscs are stable, soluble in aqueous solution without detergent and do not scatter light significantly. In the present study, we have developed a protocol for reconstitution of the aa(3)- and ba(3)-type cytochrome c oxidases into nanodiscs. Furthermore, we studied proton-coupled electron-transfer reactions in these enzymes with microsecond time resolution. The data show that the nanodisc membrane environment accelerates proton uptake in both oxidases.
Collapse
Affiliation(s)
- Linda Näsvik Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
18
|
Kim N, Ripple MO, Springett R. Spectral components of the α-band of cytochrome oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:779-87. [PMID: 21420929 PMCID: PMC3098939 DOI: 10.1016/j.bbabio.2011.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 11/30/2022]
Abstract
Oxidative redox titrations of the mitochondrial cytochromes were performed in near-anoxic RAW 264.7 cells by inhibiting complex I. Cytochrome oxidation changes were measured with multi-wavelength spectroscopy and the ambient redox potential was calculated from the oxidation state of endogenous cytochrome c. Two spectral components were separated in the α-band range of cytochrome oxidase and they were identified as the difference spectrum of heme a when it has a high (a(H)) or low (a(L)) midpoint potential (E(m)) by comparing their occupancy during redox titrations carried out when the membrane potential (ΔΨ) was dissipated with a protonophore to that predicted by the neoclassical model of redox cooperativity. The difference spectrum of a(L) has a maximum at 605nm whereas the spectrum of a(H) has a maximum at 602nm. The ΔΨ-dependent shift in the E(m) of a(H) was too great to be accounted for by electron transfer from cytochrome c to heme a against ΔΨ but was consistent with a model in which a(H) is formed after proton uptake against ΔΨ suggesting that the spectral changes are the result of protonation. A stochastic simulation was implemented to model oxidation states, proton uptake and E(m) changes during redox titrations. The redox anti-cooperativity between heme a and heme a(3), and proton binding, could be simulated with a model where the pump proton interacted with heme a and the substrate proton interacted with heme a(3) with anti-cooperativity between proton binding sites, but not with a single proton binding site coupled to both hemes.
Collapse
Affiliation(s)
- N Kim
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
| | | | | |
Collapse
|
19
|
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain that catalyzes respiratory reduction of dioxygen (O(2)) to water in all eukaryotes and many aerobic bacteria. CcO, and its homologs among the heme-copper oxidases, has an active site composed of an oxygen-binding heme and a copper center in the vicinity, plus another heme group that donates electrons to this site. In most oxidoreduction enzymes, electron transfer (eT) takes place by quantum-mechanical electron tunneling. Here we show by independent molecular dynamics and quantum-chemical methods that the heme-heme eT in CcO differs from the majority of cases in having an exceptionally low reorganization energy. We show that the rate of interheme eT in CcO may nevertheless be predicted by the Moser-Dutton equation if reinterpreted as the average of the eT rates between all individual atoms of the donor and acceptor weighed by the respective packing densities between them. We argue that this modification may be necessary at short donor/acceptor distances comparable to the donor/acceptor radii.
Collapse
|
20
|
Kaila VRI, Verkhovsky MI, Wikström M. Proton-coupled electron transfer in cytochrome oxidase. Chem Rev 2010; 110:7062-81. [PMID: 21053971 DOI: 10.1021/cr1002003] [Citation(s) in RCA: 413] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ville R I Kaila
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Program, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
21
|
Moser CC, Anderson JLR, Dutton PL. Guidelines for tunneling in enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1573-86. [PMID: 20460101 PMCID: PMC3509937 DOI: 10.1016/j.bbabio.2010.04.441] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 11/17/2022]
Abstract
Here we extend the engineering descriptions of simple, single-electron-tunneling chains common in oxidoreductases to quantify sequential oxidation-reduction rates of two-or-more electron cofactors and substrates. We identify when nicotinamides may be vulnerable to radical mediated oxidation-reduction and merge electron-tunneling expressions with the chemical rate expressions of Eyring. The work provides guidelines for the construction of new artificial oxidoreductases inspired by Nature but adopting independent design and redox engineering.
Collapse
Affiliation(s)
- Christopher C Moser
- Dept. Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
22
|
Functional interactions between membrane-bound transporters and membranes. Proc Natl Acad Sci U S A 2010; 107:15763-7. [PMID: 20798065 DOI: 10.1073/pnas.1006109107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One key role of many cellular membranes is to hold a transmembrane electrochemical ion gradient that stores free energy, which is used, for example, to generate ATP or to drive transmembrane transport processes. In mitochondria and many bacteria, the gradient is maintained by proton-transport proteins that are part of the respiratory (electron-transport) chain. Even though our understanding of the structure and function of these proteins has increased significantly, very little is known about the specific role of functional protein-membrane and membrane-mediated protein-protein interactions. Here, we have investigated the effect of membrane incorporation on proton-transfer reactions within the membrane-bound proton pump cytochrome c oxidase. The results show that the membrane acts to accelerate proton transfer into the enzyme's catalytic site and indicate that the intramolecular proton pathway is wired via specific amino acid residues to the two-dimensional space defined by the membrane surface. We conclude that the membrane not only acts as a passive barrier insulating the interior of the cell from the exterior solution, but also as a component of the energy-conversion machinery.
Collapse
|
23
|
Moser CC, Chobot SE, Page CC, Dutton PL. Distance metrics for heme protein electron tunneling. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:1032-7. [PMID: 18471429 PMCID: PMC2536628 DOI: 10.1016/j.bbabio.2008.04.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/17/2008] [Accepted: 04/13/2008] [Indexed: 11/20/2022]
Abstract
There is no doubt that distance is the principal parameter that sets the order of magnitude for electron-tunneling rates in proteins. However, there continue to be varying ways to measure electron-tunneling distances in proteins. This distance uncertainty blurs the issue of whether the intervening protein medium has been naturally selected to speed or slow any particular electron-tunneling reaction. For redox cofactors lacking metals, an edge of the cofactor can be defined that approximates the extent in space that includes most of the wavefunction associated with its tunneling electron. Beyond this edge, the wavefunction tails off much more dramatically in space. The conjugated porphyrin ring seems a reasonable edge for the metal-free pheophytins and bacteriopheophytins of photosynthesis. For a metal containing redox cofactor such as heme, an appropriate cofactor edge is more ambiguous. Electron-tunneling distance may be measured from the conjugated heme macrocycle edge or from the metal, which can be up to 4.8 A longer. In a typical protein medium, such a distance difference normally corresponds to a approximately 1000 fold decrease in tunneling rate. To address this ambiguity, we consider both natural heme protein electron transfer and light-activated electron transfer in ruthenated heme proteins. We find that the edge of the conjugated heme macrocycle provides a reliable and useful tunneling distance definition consistent with other biological electron-tunneling reactions. Furthermore, with this distance metric, heme axially- and edge-oriented electron transfers appear similar and equally well described by a simple square barrier tunneling model. This is in contrast to recent reports for metal-to-metal metrics that require exceptionally poor donor/acceptor couplings to explain heme axially-oriented electron transfers.
Collapse
Affiliation(s)
- Christopher C Moser
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
24
|
Belevich I, Verkhovsky MI. Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxid Redox Signal 2008; 10:1-29. [PMID: 17949262 DOI: 10.1089/ars.2007.1705] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytochrome c oxidase (CcO) is a terminal protein of the respiratory chain in eukaryotes and some bacteria. It catalyzes most of the biologic oxygen consumption on earth done by aerobic organisms. During the catalytic reaction, CcO reduces dioxygen to water and uses the energy released in this process to maintain the electrochemical proton gradient by functioning as a redox-linked proton pump. Even though the structures of several terminal oxidases are known, they are not sufficient in themselves to explain the molecular mechanism of proton pumping. Thus, additional extensive studies of CcO by varieties of biophysical and biochemical approaches are involved to shed light on the mechanism of proton translocation. In this review, we summarize the current level of knowledge about CcO, including the latest model developed to explain the CcO proton-pumping mechanism.
Collapse
Affiliation(s)
- Ilya Belevich
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
25
|
Abstract
Biological electron transfer (eT) between redox-active cofactors is thought to occur by quantum-mechanical tunneling. However, in many cases the observed rate is limited by other reactions coupled to eT, such as proton transfer, conformational changes, or catalytic chemistry at an active site. A prominent example of this phenomenon is the eT between the heme groups of mitochondrial cytochrome c oxidase, which has been reported to take place in several different time domains. The question of whether pure eT tunneling in the nanosecond regime between the heme groups can be observed has been the subject of some experimental controversy. Here, we report direct observations of eT between the heme groups of the quinol oxidase cytochrome bo(3) from Escherichia coli, where the reaction is initiated by photolysis of carbon monoxide from heme o(3). eT from CO-dissociated ferrous heme o(3) to the low-spin ferric heme b takes place at a rate of (1.2 ns)(-1) at 20 degrees C as determined by optical spectroscopy. These results establish heme-heme electron tunneling in the bo(3) enzyme, a bacterial relative to the mitochondrial cytochrome c oxidase. The properties of eT between the closely lying heme groups in the heme-copper oxidases are discussed in terms of the reorganization energy for the process, and two methods for assessing the rate of electron tunneling are presented.
Collapse
|
26
|
Ultrafast dynamics of ligands within heme proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:15-31. [PMID: 17996720 DOI: 10.1016/j.bbabio.2007.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 10/10/2007] [Accepted: 10/15/2007] [Indexed: 11/21/2022]
Abstract
Physiological bond formation and bond breaking events between proteins and ligands and their immediate consequences are difficult to synchronize and study in general. However, diatomic ligands can be photodissociated from heme, and thus in heme proteins ligand release and rebinding dynamics and trajectories have been studied on timescales of the internal vibrations of the protein that drive many biochemical reactions, and longer. The rapidly expanding number of characterized heme proteins involved in a large variety of functions allows comparative dynamics-structure-function studies. In this review, an overview is given of recent progress in this field, and in particular on initial sensing processes in signaling proteins, and on ligand and electron transfer dynamics in oxidases and cytochromes.
Collapse
|
27
|
Siegbahn PEM, Blomberg MRA. Energy diagrams and mechanism for proton pumping in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1143-56. [PMID: 17692282 DOI: 10.1016/j.bbabio.2007.06.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/15/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
The powerful technique of energy diagrams has been used to analyze the mechanism for proton pumping in cytochrome c oxidase. Energy levels and barriers are derived starting out from recent kinetic experiments for the O to E transition, and are then refined using general criteria and a few additional experimental facts. Both allowed and non-allowed pathways are obtained in this way. A useful requirement is that the forward and backward rate should approach each other for the full membrane gradient. A key finding is that an electron on heme a (or the binuclear center) must have a significant lowering effect on the barrier for proton uptake, in order to prevent backflow from the pump-site to the N-side. While there is no structural gating in the present mechanism, there is thus an electronic gating provided by the electron on heme a. A quantitative analysis of the energy levels in the diagrams, leads to Prop-A of heme a(3) as the most likely position for the pump-site, and the Glu278 region as the place for the transition state for proton uptake. Variations of key redox potentials and pK(a) values during the pumping process are derived for comparison to experiments.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
| | | |
Collapse
|
28
|
Wikström M, Verkhovsky MI. Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1200-14. [PMID: 17689487 DOI: 10.1016/j.bbabio.2007.06.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/24/2007] [Accepted: 06/26/2007] [Indexed: 11/24/2022]
Abstract
Recent time-resolved optical and electrometric experiments have provided a sequence of events for the proton-translocating mechanism of cytochrome c oxidase. These data also set limits for the mechanistic, kinetic, and thermodynamic parameters of the proton pump, which are analysed here in some detail. The analysis yields limit values for the pK of the "pump site", its modulation during the proton-pumping process, and suggests its identity in the structure. Special emphasis is made on side-reactions that may short-circuit the pump, and the means by which these may be avoided. We will also discuss the most prominent proton pumping mechanisms proposed to date in relation to these data.
Collapse
Affiliation(s)
- Mårten Wikström
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Programme, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland.
| | | |
Collapse
|
29
|
|
30
|
Belevich I, Bloch DA, Belevich N, Wikström M, Verkhovsky MI. Exploring the proton pump mechanism of cytochrome c oxidase in real time. Proc Natl Acad Sci U S A 2007; 104:2685-90. [PMID: 17293458 PMCID: PMC1796784 DOI: 10.1073/pnas.0608794104] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase catalyzes most of the biological oxygen consumption on Earth, a process responsible for energy supply in aerobic organisms. This remarkable membrane-bound enzyme also converts free energy from O(2) reduction to an electrochemical proton gradient by functioning as a redox-linked proton pump. Although the structures of several oxidases are known, the molecular mechanism of redox-linked proton translocation has remained elusive. Here, correlated internal electron and proton transfer reactions were tracked in real time by spectroscopic and electrometric techniques after laser-activated electron injection into the oxidized enzyme. The observed kinetics establish the long-sought reaction sequence of the proton pump mechanism and describe some of its thermodynamic properties. The 10-micros electron transfer to heme a raises the pK(a) of a "pump site," which is loaded by a proton from the inside of the membrane in 150 micros. This loading increases the redox potentials of both hemes a and a(3), which allows electron equilibration between them at the same rate. Then, in 0.8 ms, another proton is transferred from the inside to the heme a(3)/Cu(B) center, and the electron is transferred to Cu(B). Finally, in 2.6 ms, the preloaded proton is released from the pump site to the opposite side of the membrane.
Collapse
Affiliation(s)
- Ilya Belevich
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Dmitry A. Bloch
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Nikolai Belevich
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Mårten Wikström
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Michael I. Verkhovsky
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
- *To whom correspondence should be addressed at:
Institute of Biotechnology, University of Helsinki, Biocenter 3, P.O. Box 65, Viikinkaari 1, FI–00014, Helsinki, Finland. E-mail:
| |
Collapse
|
31
|
Moser CC, Page CC, Dutton PL. Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase. Philos Trans R Soc Lond B Biol Sci 2006; 361:1295-305. [PMID: 16873117 PMCID: PMC1647310 DOI: 10.1098/rstb.2006.1868] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biological electron transfer is designed to connect catalytic clusters by chains of redox cofactors. A review of the characterized natural redox proteins with a critical eye for molecular scale measurement of variation and selection related to physiological function shows no statistically significant differences in the protein medium lying between cofactors engaged in physiologically beneficial or detrimental electron transfer. Instead, control of electron tunnelling over long distances relies overwhelmingly on less than 14 A spacing between the cofactors in a chain. Near catalytic clusters, shorter distances (commonly less than 7 A) appear to be selected to generate tunnelling frequencies sufficiently high to scale the barriers of multi-electron, bond-forming/-breaking catalysis at physiological rates. We illustrate this behaviour in a tunnelling network analysis of cytochrome c oxidase. In order to surmount the large, thermally activated, adiabatic barriers in the 5-10 kcal mol-1 range expected for H+ motion and O2 reduction at the binuclear centre of oxidase on the 10(3)-10(5) s-1 time-scale of respiration, electron access with a tunnelling frequency of 10(9) or 10(10) s-1 is required. This is provided by selecting closely placed redox centres, such as haem a (6.9 A) or tyrosine (4.9 A). A corollary is that more distantly placed redox centres, such as CuA, cannot rapidly scale the catalytic site barrier, but must send their electrons through more closely placed centres, avoiding direct short circuits that might circumvent proton pumping coupled to haems a to a3 electron transfer. The selection of distances and energetic barriers directs electron transfer from CuA to haem a rather than a3, without any need for delicate engineering of the protein medium to 'hard wire' electron transfer. Indeed, an examination of a large number of oxidoreductases provides no evidence of such naturally selected wiring of electron tunnelling pathways.
Collapse
Affiliation(s)
| | | | - P. Leslie Dutton
- Author and address for correspondence: 1005 Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104-6059, USA ()
| |
Collapse
|
32
|
Moser CC, Farid TA, Chobot SE, Dutton PL. Electron tunneling chains of mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1096-109. [PMID: 16780790 DOI: 10.1016/j.bbabio.2006.04.015] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/11/2006] [Accepted: 04/13/2006] [Indexed: 11/26/2022]
Abstract
The single, simple concept that natural selection adjusts distances between redox cofactors goes a long way towards encompassing natural electron transfer protein design. Distances are short or long as required to direct or insulate promiscuously tunneling single electrons. Along a chain, distances are usually 14 A or less. Shorter distances are needed to allow climbing of added energetic barriers at paired-electron catalytic centers in which substrate and the required number of cofactors form a compact cluster. When there is a short-circuit danger, distances between shorting centers are relatively long. Distances much longer than 14 A will support only very slow electron tunneling, but could act as high impedance signals useful in regulation. Tunneling simulations of the respiratory complexes provide clear illustrations of this simple engineering.
Collapse
Affiliation(s)
- Christopher C Moser
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, 1005, Stellar-Chance Laboratories, 422, Curie Boulevard, Philadelphia, PA 19104-6059, USA.
| | | | | | | |
Collapse
|
33
|
Verkhovsky MI, Belevich I, Bloch DA, Wikström M. Elementary steps of proton translocation in the catalytic cycle of cytochrome oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:401-7. [PMID: 16829227 DOI: 10.1016/j.bbabio.2006.05.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 05/18/2006] [Accepted: 05/18/2006] [Indexed: 11/30/2022]
Abstract
Proton translocation in the catalytic cycle of cytochrome c oxidase (CcO) proceeds sequentially in a four-stroke manner. Every electron donated by cytochrome c drives the enzyme from one of four relatively stable intermediates to another, and each of these transitions is coupled to proton translocation across the membrane, and to uptake of another proton for production of water in the catalytic site. Using cytochrome c oxidase from Paracoccus denitrificans we have studied the kinetics of electron transfer and electric potential generation during several such transitions, two of which are reported here. The extent of electric potential generation during initial electron equilibration between CuA and heme a confirms that this reaction is not kinetically linked to vectorial proton transfer, whereas oxidation of heme a is kinetically coupled to the main proton translocation events during functioning of the proton pump. We find that the rates and amplitudes in multiphase heme a oxidation are different in the OH-->EH and PM-->F steps of the catalytic cycle, and that this is reflected in the kinetics of electric potential generation. We discuss this difference in terms of different driving forces and relate our results, and data from the literature, to proposed mechanisms of proton pumping in cytochrome c oxidase.
Collapse
Affiliation(s)
- Michael I Verkhovsky
- Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, FIN-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
34
|
Larsen RW. Time-resolved thermodynamic profiles for CO photolsysis from the mixed valence form of bovine heart cytochrome c oxidase. Photochem Photobiol Sci 2006; 5:603-10. [PMID: 16761089 DOI: 10.1039/b516977a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoacoustic calorimetry has been utilized to probe the thermodynamics accompanying photodissociation of the CO mixed valence form of bovine heart cytochrome c oxidase (COMV CcO). At pH's below 9 photolysis of the COMV CcO results in three kinetic phases with the first phase occurring faster than the time resolution of the instrument (i.e., < approximately 50 ns), a second phase occurring with a lifetime of approximately 100 ns and a third phase occurring with a lifetime of approximately 2 micros. The corresponding volume and enthalpy changes for these processes are: DeltaH1, DeltaV1 = +79 +/- 10 kcal mol(-1), +9 +/- 1 mL mol(-1); DeltaH2, DeltaV2 = -79 +/- 5 kcal mol(-1), -9 +/- 2 mL mol(-1); DeltaH3, DeltaV3 = +54 +/- 7 kcal mol(-1), +8 +/- 1 mL mol(-1). At pH's above 9 only one phase is observed, a prompt phase occurring in < 50 ns. The overall volume change is negligible above pH 9 and the enthalpy change is +29 +/- 5 kcal mol(-1). The data are consistent with the prompt phase being associated with CO-Fe(a3) bond cleavage, CO-CuB+ bond formation, Fe(a3) low-spin to high-spin transition and fast electron transfer (ET) from heme a3 to heme a followed by proton transfer from Glu242 to Arg38 on an approximately 100 ns timescale. The slow phase is likely a combination of CO thermal dissociation from CuB and additional ET between heme a3 to heme a. Interestingly, this phase is not evident above pH 9 suggesting linkage between CO dissociation/ET and the protonation state of a group or groups near the binuclear center.
Collapse
Affiliation(s)
- Randy W Larsen
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
35
|
Jasaitis A, Rappaport F, Pilet E, Liebl U, Vos MH. Activationless electron transfer through the hydrophobic core of cytochrome c oxidase. Proc Natl Acad Sci U S A 2005; 102:10882-6. [PMID: 16037213 PMCID: PMC1182432 DOI: 10.1073/pnas.0503001102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electron transfer (ET) within proteins occurs by means of chains of redox intermediates that favor directional and efficient electron delivery to an acceptor. Individual ET steps are energetically characterized by the electronic coupling V, driving force DeltaG, and reorganization energy lambda. lambda reflects the nuclear rearrangement of the redox partners and their environment associated with the reactions; lambda approximately 700-1,100 meV (1 eV = 1.602 x 10(-19) J) has been considered as a typical value for intraprotein ET. In nonphotosynthetic systems, functional ET is difficult to assess directly. However, using femtosecond flash photolysis of the CO-poised membrane protein cytochrome c oxidase, the intrinsic rate constant of the low-DeltaG electron injection from heme a into the heme a(3)-Cu(B) active site was recently established at (1.4 ns)(-1). Here, we determine the temperature dependence of both the rate constant and DeltaG of this reaction and establish that this reaction is activationless. Using a quantum mechanical form of nonadiabatic ET theory and common assumptions for the coupled vibrational modes, we deduce that lambda is <200 meV. It is demonstrated that the previously accepted value of 760 meV actually originates from the temperature dependence of Cu(B)-CO bond breaking. We discuss that low-DeltaG, low-lambda reactions are common for efficiently channeling electrons through chains that are buried inside membrane proteins.
Collapse
Affiliation(s)
- Audrius Jasaitis
- Laboratory for Optical Biosciences, INSERM U696, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7645, Ecole Polytechnique-Ecole Nationale Supérieure de Techniques Avancées, 91128 Palaiseau Cedex, France
| | | | | | | | | |
Collapse
|
36
|
Miksovská J, Gennis RB, Larsen RW. Photothermal studies of CO photodissociation from mixed valence Escherichia coli cytochrome bo3. FEBS Lett 2005; 579:3014-8. [PMID: 15896790 DOI: 10.1016/j.febslet.2005.04.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 04/05/2005] [Accepted: 04/18/2005] [Indexed: 11/18/2022]
Abstract
Here, we report the volume and enthalpy changes accompanying CO photodissociation from the mixed valence form of cytochrome bo3 oxidase from Escherichia coli. The results of photoacoustic calorimetry indicate two kinetic phases with distinct volume and enthalpy changes accompanying CO photodissociation from heme o3 and its transfer to CuB. The first phase occurring on a timescale of <50 ns is characterized by a volume decrease of -1.3+/-0.3 mL mol-1 and enthalpy change of 32+/-1.6 kcal mol-1. Subsequently, a volume increase of 2.9 mL mol-1 with an enthalpy change of -5.3+/-2.5 kcal mol-1 is observed with the lifetime of approximately 250 ns (this phase has not been detected in previous optical studies). These volume and enthalpy changes differ from the volume and enthalpy changes observed for CO dissociation from fully reduced cytochrome bo3 oxidase indicating that the heme o3/CuB active site dynamics are affected by the redox state of heme b.
Collapse
Affiliation(s)
- Jaroslava Miksovská
- Department of Chemistry, University of South Florida, 4202 East Fowler Ave. SCA400, Tampa, FL 33620, USA
| | | | | |
Collapse
|
37
|
Wikström M, Ribacka C, Molin M, Laakkonen L, Verkhovsky M, Puustinen A. Gating of proton and water transfer in the respiratory enzyme cytochrome c oxidase. Proc Natl Acad Sci U S A 2005; 102:10478-81. [PMID: 16014708 PMCID: PMC1180778 DOI: 10.1073/pnas.0502873102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The membrane-bound enzyme cytochrome c oxidase is responsible for cell respiration in aerobic organisms and conserves free energy from O2 reduction into an electrochemical proton gradient by coupling the redox reaction to proton-pumping across the membrane. O2 reduction produces water at the bimetallic heme a3/CuB active site next to a hydrophobic cavity deep within the membrane. Water molecules in this cavity have been suggested to play an important role in the proton-pumping mechanism. Here, we show by molecular dynamics simulations that the conserved arginine/heme a3 delta-propionate ion pair provides a gate, which exhibits reversible thermal opening that is governed by the redox state and the water molecules in the cavity. An important role of this gate in the proton-pumping mechanism is supported by site-directed mutagenesis experiments. Transport of the product water out of the enzyme must be rigidly controlled to prevent water-mediated proton leaks that could compromise the proton-pumping function. Exit of product water is observed through the same arginine/propionate gate, which provides an explanation for the observed extraordinary spatial specificity of water expulsion from the enzyme.
Collapse
Affiliation(s)
- Mårten Wikström
- Helsinki Bioenergetics Group, Institute of Biotechnology, Program for Structural Biology and Biophysics, University of Helsinki, PB 65 (Viikinkaari 1), 00014 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
38
|
Victor BL, Baptista AM, Soares CM. Theoretical identification of proton channels in the quinol oxidase aa3 from Acidianus ambivalens. Biophys J 2004; 87:4316-25. [PMID: 15377522 PMCID: PMC1304938 DOI: 10.1529/biophysj.104.049353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 09/08/2004] [Indexed: 11/18/2022] Open
Abstract
Heme-copper oxidases are membrane proteins found in the respiratory chain of aerobic organisms. They are the terminal electron acceptors coupling the translocation of protons across the membrane with the reduction of oxygen to water. Because the catalytic process occurs in the heme cofactors positioned well inside the protein matrix, proton channels must exist. However, due to the high structural divergence among this kind of proteins, the proton channels previously described are not necessarily conserved. In this work we modeled the structure of the quinol oxidase from Acidianus ambivalens using comparative modeling techniques for identifying proton channels. Additionally, given the high importance that water molecules may have in this process, we have developed a methodology, within the context of comparative modeling, to identify high water probability zones and to deconvolute them into chains of ordered water molecules. From our results, and from the existent information from other proteins from the same superfamily, we were able to suggest three possible proton channels: one K-, one D-, and one Q-spatial homologous proton channels. This methodology can be applied to other systems where water molecules are important for their biological function.
Collapse
Affiliation(s)
- Bruno L Victor
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | | | | |
Collapse
|
39
|
Pilet E, Jasaitis A, Liebl U, Vos MH. Electron transfer between hemes in mammalian cytochrome c oxidase. Proc Natl Acad Sci U S A 2004; 101:16198-203. [PMID: 15534221 PMCID: PMC528948 DOI: 10.1073/pnas.0405032101] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fast intraprotein electron transfer reactions associated with enzymatic catalysis are often difficult to synchronize and therefore to monitor directly in non-light-driven systems. However, in the mitochondrial respiratory enzyme cytochrome oxidase aa(3), the kinetics of the final electron transfer step into the active site can be determined: reverse electron flow between the close-lying and chemically identical hemes a(3) and a can be initiated by flash photolysis of CO from reduced heme a(3) under conditions where heme a is initially oxidized. To follow this reaction, we used transient absorption spectroscopy, with femtosecond time resolution and a time window extending to 4 ns. Comparison of the picosecond heme a(3)-CO photodissociation spectra under different redox states of heme a shows significant spectral interaction between both hemes, a phenomenon complicating the interpretation of spectral studies with low time resolution. Most importantly, we show that the intrinsic electron equilibration, corresponding to a DeltaG(0) of 45-55 meV, occurs in 1.2 +/- 0.1 ns. This is 3 orders of magnitude faster than the previously established equilibration phase of approximately 3 mus, which we suggest to reflect a change in redox equilibrium closely following CO migration out of the active site. Our results allow testing a number of conflicting predictions regarding this reaction between both experimental and theoretical studies. We discuss the potential physiological relevance of fast equilibration associated with this low-driving-force redox reaction.
Collapse
Affiliation(s)
- Eric Pilet
- Institut National de la Santé et de la Recherche Médicale U451, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7645, Ecole Polytechnique, Ecole Nationale Supérieure de Techniques Avancées, 91128 Palaiseau Cedex, France
| | | | | | | |
Collapse
|
40
|
Abstract
Cytochrome c oxidase mediates the final step of electron transfer reactions in the respiratory chain, catalyzing the transfer between cytochrome c and the molecular oxygen and concomitantly pumping protons across the inner mitochondrial membrane. We investigate the electron transfer reactions in cytochrome c oxidase, particularly the control of the effective electronic coupling by the nuclear thermal motion. The effective coupling is calculated using the Green's function technique with an extended Huckel level electronic Hamiltonian, combined with all-atom molecular dynamics of the protein in a native (membrane and solvent) environment. The effective coupling between Cu(A) and heme a is found to be dominated by the pathway that starts from His(B204). The coupling between heme a and heme a(3) is dominated by a through-space jump between the two heme rings rather than by covalent pathways. In the both steps, the effective electronic coupling is robust to the thermal nuclear vibrations, thereby providing fast and efficient electron transfer.
Collapse
Affiliation(s)
- Ming-Liang Tan
- Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego, La Jolla, California 92093-0374, USA
| | | | | |
Collapse
|
41
|
McMahon BH, Fabian M, Tomson F, Causgrove TP, Bailey JA, Rein FN, Dyer RB, Palmer G, Gennis RB, Woodruff WH. FTIR studies of internal proton transfer reactions linked to inter-heme electron transfer in bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:321-31. [PMID: 15100047 DOI: 10.1016/j.bbabio.2004.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 01/29/2004] [Accepted: 01/29/2004] [Indexed: 10/26/2022]
Abstract
FTIR difference spectroscopy is used to reveal changes in the internal structure and amino acid protonation states of bovine cytochrome c oxidase (CcO) that occur upon photolysis of the CO adduct of the two-electron reduced (mixed valence, MV) and four-electron reduced (fully reduced, FR) forms of the enzyme. FTIR difference spectra were obtained in D(2)O (pH 6-9.3) between the MV-CO adduct (heme a(3) and Cu(B) reduced; heme a and Cu(A) oxidized) and a photostationary state in which the MV-CO enzyme is photodissociated under constant illumination. In the photostationary state, part of the enzyme population has heme a(3) oxidized and heme a reduced. In MV-CO, the frequency of the stretch mode of CO bound to ferrous heme a(3) decreases from 1965.3 cm(-1) at pH* </=7 to 1963.7 cm(-1) at pH* 9.3. In the CO adduct of the fully reduced enzyme (FR-CO), the CO stretching frequency is observed at 1963.46+/-0.05 cm(-1), independent of pH. This indicates that in MV-CO there is a group proximal to heme a that deprotonates with a pK(a) of about 8.3, but that remains protonated over the entire pH* range 6-9.3 in FR-CO. The pK(a) of this group is therefore strongly coupled to the redox state of heme a. Following photodissociation of CO from heme a(3) in MV oxidases, the extent of electron transfer from heme a(3) to heme a shows a pH-dependent phase between pH 7 and 9, and a pH-independent phase at all pH's. The FTIR difference spectrum resulting from photolysis of MV-CO exhibits vibrational features of the protein backbone and side chains associated with (1) the loss of CO by the a(3) heme in the absence of electron transfer, (2) the pH-independent phase of the electron transfer, and (3) the pH-dependent phase of the electron transfer. Many infrared features change intensity or frequency during both electron transfer phases and thus appear as positive or negative features in the difference spectra. In particular, a negative band at 1735 cm(-1) and a positive band at 1412 cm(-1) are consistent with the deprotonation of the acidic residue E242. Positive features at 1552 and 1661 cm(-1) are due to amide backbone modes. Other positive and negative features between 1600 and 1700 cm(-1) are consistent with redox-induced shifts in heme formyl vibrations, and the redox-linked protonation of an arginine residue, accompanying electron transfer from heme a(3) to heme a. An arginine could be the residue responsible for the pH-dependent shift in the carbonyl frequency of MV-CO. Specific possibilities as to the functional significance of these observations are discussed.
Collapse
Affiliation(s)
- Benjamin H McMahon
- Chemistry Division, Bioscience Division, and Center for Nonlinear Studies, Los Alamos National Laboratory, Michelson Res., Bioscience Division, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ji H, Yeh SR, Rousseau DL. Modulation of the Electron Redistribution in Mixed Valence Cytochrome c Oxidase by Protein Conformational Changes. J Biol Chem 2004; 279:9392-9. [PMID: 14660573 DOI: 10.1074/jbc.m310729200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The redistribution of two electrons in the four redox centers of cytochrome c oxidase following photodissociation of CO from the CO-bound mixed valence species has been examined by resonance Raman spectroscopy. To account for both the kinetic data, obtained from 5 micros to 2 ms, and the equilibrium results, a model is proposed in which the electron redistribution is modulated by a protein conformation transition from a nascent P(1) state to a relaxed P(2) state in a time window longer than 2 ms. In this model, all six possible two-electron reduced species are considered. The high population of species with a one-electron reduced binuclear center, in which the spectrum of heme a(3) is perturbed by the redox state of Cu(B), accounts for the significant residuals in the fitting of the kinetic data with four standard spectra derived from redox species with either zero or two electrons in the binuclear center. Under equilibrium conditions, the conformational change to the P(2) state destabilizes the redox states with only one electron in the binuclear center with respect to those with either zero or two electrons. As a result, the redox equilibrium is perturbed, and the electrons are redistributed. A simulation based on the new kinetics scheme, in which the electron redistribution is modulated by the protein conformation, gives reasonable agreement with both the equilibrium and the kinetic data, demonstrating the validity of this model.
Collapse
Affiliation(s)
- Hong Ji
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | |
Collapse
|
43
|
Zheng X, Medvedev DM, Swanson J, Stuchebrukhov AA. Computer simulation of water in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1557:99-107. [PMID: 12615353 DOI: 10.1016/s0005-2728(03)00002-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Statistical mechanics and molecular dynamics simulations have been carried out to study the distribution and dynamics of internal water molecules in bovine heart cytochrome c oxidase (CcO). CcO is found to be capable of holding plenty of water, which in subunit I alone amounts to about 165 molecules. The dynamic characterization of these water molecules is carried out. The nascent water molecules produced in the redox reaction at the heme a(3)-CuB binuclear site form an intriguing chain structure. The chain begins at the position of Glu242 at the end of the D channel, and has a fork structure, one branch of which leads to the binuclear center, and the other to the propionate d of heme a(3). The branch that leads to the binuclear center has dynamic access both to the site where the formation of water occurs, and to delta-nitrogen of His291. From the binuclear center, the chain continues to run into the K channel. The stability of this hydrogen bond network is examined dynamically. The catalytic site is located at the hydrophobic region, and the nascent water molecules are produced at the top of the energy hill. The energy gradient is utilized as the mechanism of water removal from the protein. The water exit channels are explored using high-temperature dynamics simulations. Two putative channels for water exit from the catalytic site have been identified. One is leading directly toward Mg(2+) site. However, this channel is only open when His291 is dissociated from CuB. If His291 is bound to CuB, the only channel for water exit is the one that originates at E242 and leads toward the middle of the membrane. This is the same channel that is presumably used for oxygen supply.
Collapse
Affiliation(s)
- Xuehe Zheng
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|