1
|
Fernez MT, Hegde S, Hayes JA, Hoyt KO, Carrier RL, Woolston BM. Development of a Transcriptional Biosensor for Hydrogen Sulfide That Functions under Aerobic and Anaerobic Conditions. ACS Synth Biol 2025. [PMID: 40358934 DOI: 10.1021/acssynbio.5c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Hydrogen sulfide (H2S) is a gaseous gut metabolite with disputed effects on gastrointestinal health. Monitoring H2S concentration in the gut would provide insight into its role in disease but is complicated by sulfide's reactivity and volatility. Here we develop a transcriptional sulfide biosensor in Escherichiacoli. The sensor relies on enzymatic oxidation of sulfide catalyzed by a sulfide:quinone oxidoreductase (Sqr) to polysulfides, which interact with the repressor SqrR, triggering unbinding from the promoter and transcription of the reporter. Through promoter engineering and improved soluble SqrR expression, we optimized the system to provide an operational range of 50-750 μM and a dynamic range of 18 aerobically. To enable sensing in anaerobic environments, we identified an Sqr from Wolinella succinogenes that uses menaquinone, facilitating reoxidation through the anaerobic electron transport chain by fumarate or nitrate. Use of this homologue resulted in an anaerobic H2S response up to 750 μM. This sensor could ultimately enable spatially and temporally resolved measurements of H2S in the gastrointestinal tract to elucidate the role of this metabolite in disease and potentially as a noninvasive diagnostic.
Collapse
Affiliation(s)
- Matthew T Fernez
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shanthi Hegde
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Justin A Hayes
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kathryn O Hoyt
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Benjamin M Woolston
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Mazzocca A, Ferraro G, Misciagna G. The systemic evolutionary theory of the origin of cancer (SETOC): an update. Mol Med 2025; 31:12. [PMID: 39806272 PMCID: PMC11730465 DOI: 10.1186/s10020-025-01069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
The Systemic Evolutionary Theory of the Origin of Cancer (SETOC) is a recently proposed theory founded on two primary principles: the cooperative and endosymbiotic process of cell evolution as described by Lynn Margulis, and the integration of complex systems operating in eukaryotic cells, which is a core concept in systems biology. The SETOC proposes that malignant transformation occurs when cells undergo a continuous adaptation process in response to long-term injuries, leading to tissue remodeling, chronic inflammation, fibrosis, and ultimately cancer. This process involves a maladaptive response, wherein the 'endosymbiotic contract' between the nuclear-cytoplasmic system (derived from the primordial archaeal cell) and the mitochondrial system (derived from the primordial α-proteobacterium) gradually breaks down. This ultimately leads to uncoordinated behaviors and functions in transformed cells. The decoupling of the two cellular subsystems causes transformed cells to acquire phenotypic characteristics analogous to those of unicellular organisms, as well as certain biological features of embryonic development that are normally suppressed. These adaptive changes enable cancer cells to survive in the harsh tumor microenvironment characterized by low oxygen concentrations, inadequate nutrients, increased catabolic waste, and increased acidity. De-endosymbiosis reprograms the sequential metabolic functions of glycolysis, the TCA cycle, and oxidative phosphorylation (OxPhos). This leads to increased lactate fermentation (Warburg effect), respiratory chain dysfunction, and TCA cycle reversal. Here, we present an updated version of the SETOC that incorporates the fundamental principles outlined by this theory and integrates the epistemological approach used to develop it.
Collapse
Affiliation(s)
- Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
- Association for Systems Science, Via S. Stefano, 42, I-75100, Matera, Italy.
| | - Giovanni Ferraro
- Association for Systems Science, Via S. Stefano, 42, I-75100, Matera, Italy
| | - Giovanni Misciagna
- Association for Systems Science, Via S. Stefano, 42, I-75100, Matera, Italy
| |
Collapse
|
3
|
Azarkina NV. Requirement of Bacillus subtilis succinate:menaquinone oxidoreductase activity for membrane energization depends on the direction of catalysis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149522. [PMID: 39521199 DOI: 10.1016/j.bbabio.2024.149522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Succinate:quinone oxidoreductases (SQR) from Bacilli catalyze reduction of menaquinone by succinate, as well as the reverse reaction. The direct activity is energetically unfavorable and lost upon ΔμН+ dissipation, thus suggesting ΔμН+ to be consumed during catalysis. Paradoxically, the generation of ΔμН+ upon fumarate reduction was never confirmed. Thus, the exact role of ΔμН+ in the operation of bacillary-type SQRs remained questionable. The purpose of this work was to clarify this issue. We have described the different operating modes of the membrane-bound SQR from Bacillus subtilis. Tightly coupled membrane vesicles from both wild-type cells and the mutant containing cytochrome bd as the only terminal oxidase were studied. This made it possible to compare the respiratory chains with 2 versus 1H+/e- stoichiometry of ΔμН+ generation. Direct and reverse activities of SQR were determined under either energized or deenergized conditions. The wild-type membranes demonstrated high succinate oxidase activity very sensitive to uncoupling. On the contrary, the mutant showed extremely low succinate oxidase activity resistant to uncoupling. ΔμН+ generation at the cost of ATP hydrolysis restored the uncoupling sensitive succinate respiration in the mutant. Membranes of the both types effectively reduced fumarate by menaquinol. This activity was not affected by energization or uncoupling, neither it was followed by ΔμН+ generation. Thus, B. subtilis SQR demonstrates two regimes: ΔμН+-coupled and not coupled. This behavior can be explained by assuming the presence of two menaquinone binding sites which drastically differ in affinity for the oxidized and reduced substrate.
Collapse
Affiliation(s)
- Natalia V Azarkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobjovy Gory, Moscow 119992, Russia.
| |
Collapse
|
4
|
Kaviraj M, Kumar U, Snigdha A, Chatterjee S. Nitrate reduction to ammonium: a phylogenetic, physiological, and genetic aspects in Prokaryotes and eukaryotes. Arch Microbiol 2024; 206:297. [PMID: 38861039 DOI: 10.1007/s00203-024-04009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
The microbe-mediated conversion of nitrate (NO3-) to ammonium (NH4+) in the nitrogen cycle has strong implications for soil health and crop productivity. The role of prokaryotes, eukaryotes and their phylogeny, physiology, and genetic regulations are essential for understanding the ecological significance of this empirical process. Several prokaryotes (bacteria and archaea), and a few eukaryotes (fungi and algae) are reported as NO3- reducers under certain conditions. This process involves enzymatic reactions which has been catalysed by nitrate reductases, nitrite reductases, and NH4+-assimilating enzymes. Earlier reports emphasised that single-cell prokaryotic or eukaryotic organisms are responsible for this process, which portrayed a prominent gap. Therefore, this study revisits the similarities and uniqueness of mechanism behind NO3- -reduction to NH4+ in both prokaryotes and eukaryotes. Moreover, phylogenetic, physiological, and genetic regulation also shed light on the evolutionary connections between two systems which could help us to better explain the NO3--reduction mechanisms over time. Reports also revealed that certain transcription factors like NtrC/NtrB and Nit2 have shown a major role in coordinating the expression of NO3- assimilation genes in response to NO3- availability. Overall, this review provides a comprehensive information about the complex fermentative and respiratory dissimilatory nitrate reduction to ammonium (DNRA) processes. Uncovering the complexity of this process across various organisms may further give insight into sustainable nitrogen management practices and might contribute to addressing global environmental challenges.
Collapse
Affiliation(s)
- Megha Kaviraj
- ICAR- National Rice Research Institute, Cuttack, 753006, Odisha, India.
- The University of Burdwan, Burdwan, 713104, West Bengal, India.
| | - Upendra Kumar
- ICAR- National Rice Research Institute, Cuttack, 753006, Odisha, India.
| | - Alisha Snigdha
- Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India
| | | |
Collapse
|
5
|
Hau JL, Schleicher L, Herdan S, Simon J, Seifert J, Fritz G, Steuber J. Functionality of the Na +-translocating NADH:quinone oxidoreductase and quinol:fumarate reductase from Prevotella bryantii inferred from homology modeling. Arch Microbiol 2023; 206:32. [PMID: 38127130 PMCID: PMC10739449 DOI: 10.1007/s00203-023-03769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Members of the family Prevotellaceae are Gram-negative, obligate anaerobic bacteria found in animal and human microbiota. In Prevotella bryantii, the Na+-translocating NADH:quinone oxidoreductase (NQR) and quinol:fumarate reductase (QFR) interact using menaquinone as electron carrier, catalyzing NADH:fumarate oxidoreduction. P. bryantii NQR establishes a sodium-motive force, whereas P. bryantii QFR does not contribute to membrane energization. To elucidate the possible mode of function, we present 3D structural models of NQR and QFR from P. bryantii to predict cofactor-binding sites, electron transfer routes and interaction with substrates. Molecular docking reveals the proposed mode of menaquinone binding to the quinone site of subunit NqrB of P. bryantii NQR. A comparison of the 3D model of P. bryantii QFR with experimentally determined structures suggests alternative pathways for transmembrane proton transport in this type of QFR. Our findings are relevant for NADH-dependent succinate formation in anaerobic bacteria which operate both NQR and QFR.
Collapse
Affiliation(s)
- Jann-Louis Hau
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Lena Schleicher
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
| | - Sebastian Herdan
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
| | - Jörg Simon
- Microbial Energy Conservation and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Jana Seifert
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Straße 8, 70599, Stuttgart, Germany
| | - Günter Fritz
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Julia Steuber
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany.
| |
Collapse
|
6
|
Wilkens D, Simon J. Biosynthesis and function of microbial methylmenaquinones. Adv Microb Physiol 2023; 83:1-58. [PMID: 37507157 DOI: 10.1016/bs.ampbs.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The membranous quinone/quinol pool is essential for the majority of life forms and its composition has been widely used as a biomarker in microbial taxonomy. The most abundant quinone is menaquinone (MK), which serves as an essential redox mediator in various electron transport chains of aerobic and anaerobic respiration. Several methylated derivatives of MK, designated methylmenaquinones (MMKs), have been reported to be present in members of various microbial phyla possessing either the classical MK biosynthesis pathway (Men) or the futalosine pathway (Mqn). Due to their low redox midpoint potentials, MMKs have been proposed to be specifically involved in appropriate electron transport chains of anaerobic respiration. The class C radical SAM methyltransferases MqnK, MenK and MenK2 have recently been shown to catalyse specific MK methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesise 8-MMK, 7-MMK and 7,8-dimethylmenaquinone (DMMK). MqnK, MenK and MenK2 from organisms such as Wolinella succinogenes, Adlercreutzia equolifaciens, Collinsella tanakaei, Ferrimonas marina and Syntrophus aciditrophicus have been functionally produced in Escherichia coli, enabling extensive quinone/quinol pool engineering of the native MK and 2-demethylmenaquinone (DMK). Cluster and phylogenetic analyses of available MK and MMK methyltransferase sequences revealed signature motifs that allowed the discrimination of MenK/MqnK/MenK2 family enzymes from other radical SAM enzymes and the identification of C-7-specific menaquinone methyltransferases of the MenK2 subfamily. It is envisaged that this knowledge will help to predict the methylation status of the menaquinone/menaquinol pool of any microbial species (or even a microbial community) from its (meta)genome.
Collapse
Affiliation(s)
- Dennis Wilkens
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
7
|
Willemin MS, Hamelin R, Armand F, Holliger C, Maillard J. Proteome adaptations of the organohalide-respiring Desulfitobacterium hafniense strain DCB-2 to various energy metabolisms. Front Microbiol 2023; 14:1058127. [PMID: 36733918 PMCID: PMC9888536 DOI: 10.3389/fmicb.2023.1058127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Introduction Desulfitobacterium hafniense was isolated for its ability to use organohalogens as terminal electron acceptors via organohalide respiration (OHR). In contrast to obligate OHR bacteria, Desulfitobacterium spp. show a highly versatile energy metabolism with the capacity to use different electron donors and acceptors and to grow fermentatively. Desulfitobacterium genomes display numerous and apparently redundant members of redox enzyme families which confirm their metabolic potential. Nonetheless, the enzymes responsible for many metabolic traits are not yet identified. Methods In the present work, we conducted an extended proteomic study by comparing the proteomes of Desulfitobacterium hafniense strain DCB-2 cultivated in combinations of electron donors and acceptors, triggering five alternative respiratory metabolisms that include OHR, as well as fermentation. Tandem Mass Tag labelling proteomics allowed us to identify and quantify almost 60% of the predicted proteome of strain DCB-2 (2,796 proteins) in all six growth conditions. Raw data are available via ProteomeXchange with identifier PXD030393. Results and discussion This dataset was analyzed in order to highlight the proteins that were significantly up-regulated in one or a subset of growth conditions and to identify possible key players in the different energy metabolisms. The addition of sodium sulfide as reducing agent in the medium - a very widespread practice in the cultivation of strictly anaerobic bacteria - triggered the expression of the dissimilatory sulfite reduction pathway in relatively less favorable conditions such as fermentative growth on pyruvate, respiration with H2 as electron donor and OHR conditions. The presence of H2, CO2 and acetate in the medium induced several metabolic pathways involved in carbon metabolism including the Wood-Ljungdahl pathway and two pathways related to the fermentation of butyrate that rely on electron-bifurcating enzymes. While the predicted fumarate reductase appears to be constitutively expressed, a new lactate dehydrogenase and lactate transporters were identified. Finally, the OHR metabolism with 3-chloro-4-hydroxyphenylacetate as electron acceptor strongly induced proteins encoded in several reductive dehalogenase gene clusters, as well as four new proteins related to corrinoid metabolism. We believe that this extended proteomic database represents a new landmark in understanding the metabolic versatility of Desulfitobacterium spp. and provides a solid basis for addressing future research questions.
Collapse
Affiliation(s)
- Mathilde Stéphanie Willemin
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Romain Hamelin
- Proteomic Core Facility (PCF), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Armand
- Proteomic Core Facility (PCF), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,*Correspondence: Julien Maillard, ✉
| |
Collapse
|
8
|
Schubert C, Unden G. Fumarate, a central electron acceptor for Enterobacteriaceae beyond fumarate respiration and energy conservation. Adv Microb Physiol 2023; 82:267-299. [PMID: 36948656 DOI: 10.1016/bs.ampbs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C4-dicarboxylates (C4-DCs) such as fumarate, l-malate and l-aspartate are key substrates for Enterobacteria such as Escherichia coli or Salmonella typhimurium during anaerobic growth. In general, C4-DCs are oxidants during biosynthesis, e.g., of pyrimidine or heme, acceptors for redox balancing, a high-quality nitrogen source (l-aspartate) and electron acceptor for fumarate respiration. Fumarate reduction is required for efficient colonization of the murine intestine, even though the colon contains only small amounts of C4-DCs. However, fumarate can be produced endogenously by central metabolism, allowing autonomous production of an electron acceptor for biosynthesis and redox balancing. Bacteria possess a complex set of transporters for the uptake (DctA), antiport (DcuA, DcuB, TtdT) and excretion (DcuC) of C4-DCs. DctA and DcuB exert regulatory functions and link transport to metabolic control through interaction with regulatory proteins. The sensor kinase DcuS of the C4-DC two-component system DcuS-DcuR forms complexes with DctA (aerobic) or DcuB (anaerobic), representing the functional state of the sensor. Moreover, EIIAGlc from the glucose phospho-transferase system binds to DctA and presumably inhibits C4-DC uptake. Overall, the function of fumarate as an oxidant in biosynthesis and redox balancing explains the pivotal role of fumarate reductase for intestinal colonization, while the role of fumarate in energy conservation (fumarate respiration) is of minor importance.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
9
|
Wang L, Shen Z, Cheng X, Hwang JS, Guo Y, Sun M, Cao J, Liu R, Fang J. Metagenomic insights into the functions of microbial communities in sulfur-rich sediment of a shallow-water hydrothermal vent off Kueishan Island. Front Microbiol 2022; 13:992034. [DOI: 10.3389/fmicb.2022.992034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Hydrothermal vent (HTV) systems are important habitats for understanding the biological processes of extremophiles on Earth and their relative contributions to material and energy cycles in the ocean. Current understanding on hydrothermal systems have been primarily focused on deep-sea HTVs, and little is known about the functions and metabolisms of microorganisms in shallow-water HTVs (SW-HTVs), which are distinguished from deep-sea HTVs by a depth limit of 200 m. In this study, we analyzed metagenomes of sulfur-rich sediment samples collected from a SW-HTV of Kueishan Island, located in a marginal sea of the western Pacific Ocean. Comparing with a previously published report of pelagic samples from the nearby sampling site, microbial communities in the SW-HTV sediments enriching with genes of both aerobic and anaerobic respiration inferred variable environments in the tested sediments. Abundant genes of energy metabolism encoding sulfur oxidation, H2 oxidation, and carbon fixation were detected from the sediment samples. Sixty-eight metagenome-assembled-genomes (MAGs) were reconstructed to further understand the metabolism and potential interactions between different microbial taxa in the SW-HTVs sediment. MAGs with the highest abundant were chemolithotrophic sulfur-oxidization bacteria, including Sulfurovum represented Campylobacteria involved sox multienzyme, sulfide oxidation genes and rTCA cycle, and Gammaproteobacteria involved dsr gene and CBB cycle. In addition, Desulfobacterota with the potential to participate in sulfur-disproportionating processes also had higher abundance than the sample’s overall mean value. The interaction of these bacterial groups allows the microbial communities to efficiently metabolize a large variety of sulfur compounds. In addition, the potential to use simple organic carbon, such as acetate, was found in chemolithotrophic Campylobacterial MAGs. Collectively, our results revealed the complexity of environmental conditions of the vent sediment and highlight the interactive relationships of the dominant microbial populations in driving sulfur cycles in the SW-HTV sediments off Kueishan Island.
Collapse
|
10
|
Yin J, Li J, Qiu X, Zhou Y, Wang M, Feng H, Li Y, Chen X, Chen T. Effect of magnetite particle size on propionate degradation in the propionate-based anaerobic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157592. [PMID: 35901882 DOI: 10.1016/j.scitotenv.2022.157592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The size effect of magnetite (Fe3O4) on the degradation of propionate (PA) in the PA-based anaerobic system was investigated. The sequential bench-scale experiments were conducted. Results showed that the effects of different sized magnetite particles on PA degradation varied, and reaction cycles also played a role in substrate removal/degradation. With the increase of reaction cycle, nano-magnetite promoted PA degradation and CH4 production, which caused faster PA degradation rate (0.997 g/L·d) than the control group (CK) without magnetite (0.834 g/L·d), whereas the groups with micron- and millimeter-sized magnetite had slower PA degradation rates (0.746 and 0.636 g/L·d) than CK group. The particle size or surface characteristics of the magnetite may become the main factor determining the PA degradation rate. Furthermore, the analysis of PA conversion and volatile fatty acids (VFAs) distribution showed the C6-dismutation pathway, which converses PA to butyrate, enhanced by the introduction of magnetite. Microbial community analysis showed that PA was degraded mainly by methyl-malonyl-CoA (MMC) pathway. The relative abundance of Syntrophobacter that catalyze MMC pathway in the group with nano-magnetite were much higher after three reaction cycles at 39 %, as compared to micro-magnetite at 28 %, and millimeter-sized magnetite at 27 %, which contributed to faster degradation of PA. Functional enzyme-encoding genes for the four methanogenesis pathways were identified with reference to KEGG database entries. The methanogenesis pathway using acetate was the most abundant pathway in all groups. The observations have important implications for enhancing the PA removal in PA-inhibited anaerobic digester.
Collapse
Affiliation(s)
- Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Junrou Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiaopeng Qiu
- Huadong Engineering Corporation Limited of Power China, Hangzhou 311122, PR China
| | - Yuyang Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yangyang Li
- Jiaxing Green Energy Environmental Protection Technology Co., Ltd., Jiaxing 314015, PR China
| | - Xin Chen
- Jiaxing Green Energy Environmental Protection Technology Co., Ltd., Jiaxing 314015, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
11
|
Schubert C, Unden G. C 4-Dicarboxylates as Growth Substrates and Signaling Molecules for Commensal and Pathogenic Enteric Bacteria in Mammalian Intestine. J Bacteriol 2022; 204:e0054521. [PMID: 34978458 PMCID: PMC9017328 DOI: 10.1128/jb.00545-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C4-dicarboxylates (C4-DC) l-aspartate and l-malate have been identified as playing an important role in the colonization of mammalian intestine by enteric bacteria, such as Escherichia coli and Salmonella enterica serovar Typhimurium, and succinate as a signaling molecule for host-enteric bacterium interaction. Thus, endogenous and exogenous fumarate respiration and related functions are required for efficient initial growth of the bacteria. l-Aspartate represents a major substrate for fumarate respiration in the intestine and a high-quality substrate for nitrogen assimilation. During nitrogen assimilation, DcuA catalyzes an l-aspartate/fumarate antiport and serves as a nitrogen shuttle for the net uptake of ammonium only, whereas DcuB acts as a redox shuttle that catalyzes the l-malate/succinate antiport during fumarate respiration. The C4-DC two-component system DcuS-DcuR is active in the intestine and responds to intestinal C4-DC levels. Moreover, in macrophages and in mice, succinate is a signal that promotes virulence and survival of S. Typhimurium and pathogenic E. coli. On the other hand, intestinal succinate is an important signaling molecule for the host and activates response and protective programs. Therefore, C4-DCs play a major role in supporting colonization of enteric bacteria and as signaling molecules for the adaptation of host physiology.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Germany
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
12
|
A Sodium-Translocating Module Linking Succinate Production to Formation of Membrane Potential in Prevotella bryantii. Appl Environ Microbiol 2021; 87:e0121121. [PMID: 34469197 PMCID: PMC8516057 DOI: 10.1128/aem.01211-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ruminants such as cattle and sheep depend on the breakdown of carbohydrates from plant-based feedstuff, which is accomplished by the microbial community in the rumen. Roughly 40% of the members of the rumen microbiota belong to the family Prevotellaceae, which ferments sugars to organic acids such as acetate, propionate, and succinate. These substrates are important nutrients for the ruminant. In a metaproteome analysis of the rumen of cattle, proteins that are homologous to the Na+-translocating NADH:quinone oxidoreductase (NQR) and the quinone:fumarate reductase (QFR) were identified in different Prevotella species. Here, we show that fumarate reduction to succinate in anaerobically growing Prevotella bryantii is coupled to chemiosmotic energy conservation by a supercomplex composed of NQR and QFR. This sodium-translocating NADH:fumarate oxidoreductase (SNFR) supercomplex was enriched by blue native PAGE (BN-PAGE) and characterized by in-gel enzyme activity staining and mass spectrometry. High NADH oxidation (850 nmol min-1 mg-1), quinone reduction (490 nmol min-1 mg-1), and fumarate reduction (1,200 nmol min-1 mg-1) activities, together with high expression levels, demonstrate that SNFR represents a charge-separating unit in P. bryantii. Absorption spectroscopy of SNFR exposed to different substrates revealed intramolecular electron transfer from the flavin adenine dinucleotide (FAD) cofactor in NQR to heme b cofactors in QFR. SNFR catalyzed the stoichiometric conversion of NADH and fumarate to NAD+ and succinate. We propose that the regeneration of NAD+ in P. bryantii is intimately linked to the buildup of an electrochemical gradient which powers ATP synthesis by electron transport phosphorylation. IMPORTANCE Feeding strategies for ruminants are designed to optimize nutrient efficiency for animals and to prevent energy losses like enhanced methane production. Key to this are the fermentative reactions of the rumen microbiota, dominated by Prevotella spp. We show that succinate formation by P. bryantii is coupled to NADH oxidation and sodium gradient formation by a newly described supercomplex consisting of Na+-translocating NADH:quinone oxidoreductase (NQR) and fumarate reductase (QFR), representing the sodium-translocating NADH:fumarate oxidoreductase (SNFR) supercomplex. SNFR is the major charge-separating module, generating an electrochemical sodium gradient in P. bryantii. Our findings offer clues to the observation that use of fumarate as feed additive does not significantly increase succinate production, or decrease methanogenesis, by the microbial community in the rumen.
Collapse
|
13
|
Energy conservation under extreme energy limitation: the role of cytochromes and quinones in acetogenic bacteria. Extremophiles 2021; 25:413-424. [PMID: 34480656 PMCID: PMC8578096 DOI: 10.1007/s00792-021-01241-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Abstract
Acetogenic bacteria are a polyphyletic group of organisms that fix carbon dioxide under anaerobic, non-phototrophic conditions by reduction of two mol of CO2 to acetyl-CoA via the Wood–Ljungdahl pathway. This pathway also allows for lithotrophic growth with H2 as electron donor and this pathway is considered to be one of the oldest, if not the oldest metabolic pathway on Earth for CO2 reduction, since it is coupled to the synthesis of ATP. How ATP is synthesized has been an enigma for decades, but in the last decade two ferredoxin-dependent respiratory chains were discovered. Those respiratory chains comprise of a cytochrome-free, ferredoxin-dependent respiratory enzyme complex, which is either the Rnf or Ech complex. However, it was discovered already 50 years ago that some acetogens contain cytochromes and quinones, but their role had only a shadowy existence. Here, we review the literature on the characterization of cytochromes and quinones in acetogens and present a hypothesis that they may function in electron transport chains in addition to Rnf and Ech.
Collapse
|
14
|
Pandey CB, Kumar U, Kaviraj M, Minick KJ, Mishra AK, Singh JS. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139710. [PMID: 32544704 DOI: 10.1016/j.scitotenv.2020.139710] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
This paper reviews dissimilatory nitrate reduction to ammonium (DNRA) in soils - a newly appreciated pathway of nitrogen (N) cycling in the terrestrial ecosystems. The reduction of NO3- occurs in two steps; in the first step, NO3- is reduced to NO2-; and in the second, unlike denitrification, NO2- is reduced to NH4+ without intermediates. There are two sets of NO3-/NO2- reductase enzymes, i.e., Nap/Nrf and Nar/Nir; the former occurs on the periplasmic-membrane and energy conservation is respiratory via electron-transport-chain, whereas the latter is cytoplasmic and energy conservation is both respiratory and fermentative (Nir, substrate-phosphorylation). Since, Nir catalyzes both assimilatory- and dissimilatory-nitrate reduction, the nrfA gene, which transcribes the NrfA protein, is treated as a molecular-marker of DNRA; and a high nrfA/nosZ (N2O-reductase) ratio favours DNRA. Recently, several crystal structures of NrfA have been presumed to producee N2O as a byproduct of DNRA via the NO (nitric-oxide) pathway. Meta-analyses of about 200 publications have revealed that DNRA is regulated by oxidation state of soils and sediments, carbon (C)/N and NO2-/NO3- ratio, and concentrations of ferrous iron (Fe2+) and sulfide (S2-). Under low-redox conditions, a high C/NO3- ratio selects for DNRA while a low ratio selects for denitrification. When the proportion of both C and NO3- are equal, the NO2-/NO3- ratio modulates partitioning of NO3-, and a high NO2-/NO3- ratio favours DNRA. A high S2-/NO3- ratio also promotes DNRA in coastal-ecosystems and saline sediments. Soil pH, temperature, and fine soil particles are other factors known to influence DNRA. Since, DNRA reduces NO3- to NH4+, it is essential for protecting NO3- from leaching and gaseous (N2O) losses and enriches soils with readily available NH4+-N to primary producers and heterotrophic microorganisms. Therefore, DNRA may be treated as a tool to reduce ground-water NO3- pollution, enhance soil health and improve environmental quality.
Collapse
Affiliation(s)
- C B Pandey
- ICAR-Central Arid Zone Research Institute, Jodhpur 342003, Rajasthan, India.
| | - Upendra Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India.
| | - Megha Kaviraj
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - K J Minick
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - A K Mishra
- International Rice Research Institute, New Delhi 110012, India
| | - J S Singh
- Ecosystem Analysis Lab, Centre of Advanced Study in Botany, Banaras Hindu University (BHU), Varanasi 221005, India
| |
Collapse
|
15
|
The transcriptome of Listeria monocytogenes during co-cultivation with cheese rind bacteria suggests adaptation by induction of ethanolamine and 1,2-propanediol catabolism pathway genes. PLoS One 2020; 15:e0233945. [PMID: 32701964 PMCID: PMC7377500 DOI: 10.1371/journal.pone.0233945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
The survival of Listeria (L.) monocytogenes in foods and food production environments (FPE) is dependent on several genes that increase tolerance to stressors; this includes competing with intrinsic bacteria. We aimed to uncover genes that are differentially expressed (DE) in L. monocytogenes sequence type (ST) 121 strain 6179 when co-cultured with cheese rind bacteria. L. monocytogenes was cultivated in broth or on plates with either a Psychrobacter or Brevibacterium isolate from cheese rinds. RNA was extracted from co-cultures in broth after two or 12 hours and from plates after 24 and 72 hours. Broth co-cultivations with Brevibacterium or Psychrobacter yielded up to 392 and 601 DE genes, while plate co-cultivations significantly affected the expression of up to 190 and 485 L. monocytogenes genes, respectively. Notably, the transcription of virulence genes encoding the Listeria adhesion protein and Listeriolysin O were induced during plate and broth co-cultivations. The expression of several systems under the control of the global stress gene regulator, σB, increased during co-cultivation. A cobalamin-dependent gene cluster, responsible for the catabolism of ethanolamine and 1,2-propanediol, was upregulated in both broth and plate co-cultures conditions. Finally, a small non-coding (nc)RNA, Rli47, was induced after 72 hours of co-cultivation on plates and accounted for 50-90% of the total reads mapped to L. monocytogenes. A recent study has shown that Rli47 may contribute to L. monocytogenes stress survival by slowing growth during stress conditions through the suppression of branch-chained amino acid biosynthesis. We hypothesize that Rli47 may have an impactful role in the response of L. monocytogenes to co-cultivation by regulating a complex network of metabolic and virulence mechanisms.
Collapse
|
16
|
Ungerfeld EM. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. Front Microbiol 2020; 11:589. [PMID: 32351469 PMCID: PMC7174568 DOI: 10.3389/fmicb.2020.00589] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
Rumen fermentation affects ruminants productivity and the environmental impact of ruminant production. The release to the atmosphere of methane produced in the rumen is a loss of energy and a cause of climate change, and the profile of volatile fatty acids produced in the rumen affects the post-absorptive metabolism of the host animal. Rumen fermentation is shaped by intracellular and intercellular flows of metabolic hydrogen centered on the production, interspecies transfer, and incorporation of dihydrogen into competing pathways. Factors that affect the growth of methanogens and the rate of feed fermentation impact dihydrogen concentration in the rumen, which in turn controls the balance between pathways that produce and incorporate metabolic hydrogen, determining methane production and the profile of volatile fatty acids. A basic kinetic model of competition for dihydrogen is presented, and possibilities for intervention to redirect metabolic hydrogen from methanogenesis toward alternative useful electron sinks are discussed. The flows of metabolic hydrogen toward nutritionally beneficial sinks could be enhanced by adding to the rumen fermentation electron acceptors or direct fed microbials. It is proposed to screen hydrogenotrophs for dihydrogen thresholds and affinities, as well as identifying and studying microorganisms that produce and utilize intercellular electron carriers other than dihydrogen. These approaches can allow identifying potential microbial additives to compete with methanogens for metabolic hydrogen. The combination of adequate microbial additives or electron acceptors with inhibitors of methanogenesis can be effective approaches to decrease methane production and simultaneously redirect metabolic hydrogen toward end products of fermentation with a nutritional value for the host animal. The design of strategies to redirect metabolic hydrogen from methane to other sinks should be based on knowledge of the physicochemical control of rumen fermentation pathways. The application of new –omics techniques together with classical biochemistry methods and mechanistic modeling can lead to exciting developments in the understanding and manipulation of the flows of metabolic hydrogen in rumen fermentation.
Collapse
Affiliation(s)
- Emilio M Ungerfeld
- Laboratorio de Fermentación Ruminal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional Carillanca, Temuco, Chile
| |
Collapse
|
17
|
van der Stel AX, Wösten MMSM. Regulation of Respiratory Pathways in Campylobacterota: A Review. Front Microbiol 2019; 10:1719. [PMID: 31417516 PMCID: PMC6682613 DOI: 10.3389/fmicb.2019.01719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
The Campylobacterota, previously known as Epsilonproteobacteria, are a large group of Gram-negative mainly, spiral-shaped motile bacteria. Some members like the Sulfurospirillum spp. are free-living, while others such as Helicobacter spp. can only persist in strict association with a host organism as commensal or as pathogen. Species of this phylum colonize diverse habitats ranging from deep-sea thermal vents to the human stomach wall. Despite their divergent environments, they share common energy conservation mechanisms. The Campylobacterota have a large and remarkable repertoire of electron transport chain enzymes, given their small genomes. Although members of recognized families of transcriptional regulators are found in these genomes, sofar no orthologs known to be important for energy or redox metabolism such as ArcA, FNR or NarP are encoded in the genomes of the Campylobacterota. In this review, we discuss the strategies that members of Campylobacterota utilize to conserve energy and the corresponding regulatory mechanisms that regulate the branched electron transport chains in these bacteria.
Collapse
Affiliation(s)
| | - Marc M. S. M. Wösten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
Significance of MccR, MccC, MccD, MccL and 8-methylmenaquinone in sulfite respiration of Wolinella succinogenes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:12-21. [DOI: 10.1016/j.bbabio.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/26/2018] [Accepted: 10/13/2018] [Indexed: 11/17/2022]
|
19
|
Taylor AJ, Kelly DJ. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen. Adv Microb Physiol 2019; 74:239-329. [PMID: 31126532 DOI: 10.1016/bs.ampbs.2019.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni is a zoonotic Epsilonproteobacterium that grows in the gastrointestinal tract of birds and mammals, and is the most frequent cause of food-borne bacterial gastroenteritis worldwide. As an oxygen-sensitive microaerophile, C. jejuni has to survive high environmental oxygen tensions, adapt to oxygen limitation in the host intestine and resist host oxidative attack. Despite its small genome size, C. jejuni is a versatile and metabolically active pathogen, with a complex and highly branched set of respiratory chains allowing the use of a wide range of electron donors and alternative electron acceptors in addition to oxygen, including fumarate, nitrate, nitrite, tetrathionate and N- or S-oxides. Several novel enzymes participate in these electron transport chains, including a tungsten containing formate dehydrogenase, a Complex I that uses flavodoxin and not NADH, a periplasmic facing fumarate reductase and a cytochrome c tetrathionate reductase. This review presents an updated description of the composition and bioenergetics of these various respiratory chains as they are currently understood, including recent work that gives new insights into energy conservation during electron transport to various alternative electron acceptors. The regulation of synthesis and assembly of the electron transport chains is also discussed. A deeper appreciation of the unique features of the respiratory systems of C. jejuni may be helpful in informing strategies to control this important pathogen.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
20
|
Buckel W, Thauer RK. Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling. Chem Rev 2018; 118:3862-3886. [PMID: 29561602 DOI: 10.1021/acs.chemrev.7b00707] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are two types of electron bifurcation (EB), either quinone- or flavin-based (QBEB/FBEB), that involve reduction of a quinone or flavin by a two-electron transfer and two reoxidations by a high- and low-potential one-electron acceptor with a reactive semiquinone intermediate. In QBEB, the reduced low-potential acceptor (cytochrome b) is exclusively used to generate ΔμH+. In FBEB, the "energy-rich" low-potential reduced ferredoxin or flavodoxin has dual function. It can give rise to ΔμH+/Na+ via a ferredoxin:NAD reductase (Rnf) or ferredoxin:proton reductase (Ech) or conducts difficult reductions such as CO2 to CO. The QBEB membrane complexes are similar in structure and function and occur in all domains of life. In contrast, FBEB complexes are soluble and occur only in strictly anaerobic bacteria and archaea (FixABCX being an exception). The FBEB complexes constitute a group consisting of four unrelated families that contain (1) electron-transferring flavoproteins (EtfAB), (2) NAD(P)H dehydrogenase (NuoF homologues), (3) heterodisulfide reductase (HdrABC) or HdrABC homologues, and (4) NADH-dependent ferredoxin:NADP reductase (NfnAB). The crystal structures and electron transport of EtfAB-butyryl-CoA dehydrogenase and NfnAB are compared with those of complex III of the respiratory chain (cytochrome bc1), whereby unexpected common features have become apparent.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Fachbereich Biologie , Philipps-Universität , 35032 Marburg , Germany.,Max-Planck-Institut für Terrestrische Mikrobiologie , 35043 Marburg , Germany
| | - Rudolf K Thauer
- Fachbereich Biologie , Philipps-Universität , 35032 Marburg , Germany.,Max-Planck-Institut für Terrestrische Mikrobiologie , 35043 Marburg , Germany
| |
Collapse
|
21
|
Iqbal IK, Bajeli S, Akela AK, Kumar A. Bioenergetics of Mycobacterium: An Emerging Landscape for Drug Discovery. Pathogens 2018; 7:E24. [PMID: 29473841 PMCID: PMC5874750 DOI: 10.3390/pathogens7010024] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) exhibits remarkable metabolic flexibility that enables it to survive a plethora of host environments during its life cycle. With the advent of bedaquiline for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated as an important target and a vulnerable component of mycobacterial metabolism. Exploiting the dependence of Mtb on oxidative phosphorylation for energy production, several components of this pathway have been targeted for the development of new antimycobacterial agents. This includes targeting NADH dehydrogenase by phenothiazine derivatives, menaquinone biosynthesis by DG70 and other compounds, terminal oxidase by imidazopyridine amides and ATP synthase by diarylquinolines. Importantly, oxidative phosphorylation also plays a critical role in the survival of persisters. Thus, inhibitors of oxidative phosphorylation can synergize with frontline TB drugs to shorten the course of treatment. In this review, we discuss the oxidative phosphorylation pathway and development of its inhibitors in detail.
Collapse
Affiliation(s)
- Iram Khan Iqbal
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| | - Sapna Bajeli
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| | - Ajit Kumar Akela
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| | - Ashwani Kumar
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| |
Collapse
|
22
|
Müller N, Timmers P, Plugge CM, Stams AJM, Schink B. Syntrophy in Methanogenic Degradation. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2018. [DOI: 10.1007/978-3-319-98836-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Hein S, Witt S, Simon J. Clade II nitrous oxide respiration of Wolinella succinogenes depends on the NosG, -C1, -C2, -H electron transport module, NosB and a Rieske/cytochrome bc complex. Environ Microbiol 2017; 19:4913-4925. [PMID: 28925551 DOI: 10.1111/1462-2920.13935] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 01/20/2023]
Abstract
Microbial reduction of nitrous oxide (N2 O) is an environmentally significant process in the biogeochemical nitrogen cycle. However, it has been recognized only recently that the gene encoding N2 O reductase (nosZ) is organized in varying genetic contexts, thereby defining clade I (or 'typical') and clade II (or 'atypical') N2 O reductases and nos gene clusters. This study addresses the enzymology of the clade II Nos system from Wolinella succinogenes, a nitrate-ammonifying and N2 O-respiring Epsilonproteobacterium that contains a cytochrome c N2 O reductase (cNosZ). The characterization of single non-polar nos gene deletion mutants demonstrated that the NosG, -C1, -C2, -H and -B proteins were essential for N2 O respiration. Moreover, cells of a W. succinogenes mutant lacking a putative menaquinol-oxidizing Rieske/cytochrome bc complex (QcrABC) were found to be incapable of N2 O (and also nitrate) respiration. Proton motive menaquinol oxidation by N2 O is suggested, supported by the finding that the molar yield for W. succinogenes cells grown by N2 O respiration using formate as electron donor exceeded that of fumarate respiration by about 30%. The results demand revision of the electron transport chain model of clade II N2 O respiration and challenge the assumption that NosGH(NapGH)-type iron-sulfur proteins are menaquinol-reactive.
Collapse
Affiliation(s)
- Sascha Hein
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Samantha Witt
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| |
Collapse
|
24
|
Kruse T, Goris T, Maillard J, Woyke T, Lechner U, de Vos W, Smidt H. Comparative genomics of the genus Desulfitobacterium. FEMS Microbiol Ecol 2017; 93:4443196. [DOI: 10.1093/femsec/fix135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/10/2017] [Indexed: 02/03/2023] Open
Affiliation(s)
- Thomas Kruse
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, ENAC-IIE-LBE, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Tanja Woyke
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Ute Lechner
- Institute of Biology/Microbiology, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle 06120, Germany
| | - Willem de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Helsinki University, P.O. Box 21, 00014 Helsinki, Finland
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
25
|
Haase D, Hermann B, Einsle O, Simon J. Epsilonproteobacterial hydroxylamine oxidoreductase (
ε
Hao): characterization of a ‘missing link’ in the multihaem cytochrome
c
family. Mol Microbiol 2017; 105:127-138. [DOI: 10.1111/mmi.13690] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Doreen Haase
- Microbial Energy Conversion and Biotechnology, Department of BiologyTechnische Universität DarmstadtSchnittspahnstraße 1064287Darmstadt Germany
| | - Bianca Hermann
- Lehrstuhl Biochemie, Institut für BiochemieAlbert‐Ludwigs‐Universität FreiburgAlbertstrasse 2179104Freiburg Germany
| | - Oliver Einsle
- Lehrstuhl Biochemie, Institut für BiochemieAlbert‐Ludwigs‐Universität FreiburgAlbertstrasse 2179104Freiburg Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of BiologyTechnische Universität DarmstadtSchnittspahnstraße 1064287Darmstadt Germany
| |
Collapse
|
26
|
Hein S, Klimmek O, Polly M, Kern M, Simon J. A class C radicalS-adenosylmethionine methyltransferase synthesizes 8-methylmenaquinone. Mol Microbiol 2017; 104:449-462. [DOI: 10.1111/mmi.13638] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sascha Hein
- Microbial Energy Conversion and Biotechnology, Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Oliver Klimmek
- Microbial Energy Conversion and Biotechnology, Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Markus Polly
- Microbial Energy Conversion and Biotechnology, Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Melanie Kern
- Microbial Energy Conversion and Biotechnology, Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| |
Collapse
|
27
|
Lancaster CRD, Betz YM, Heit S, Lafontaine MA. Transmembrane Electron and Proton Transfer in Diheme-Containing Succinate : Quinone Oxidoreductases. Isr J Chem 2017. [DOI: 10.1002/ijch.201600139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C. Roy D. Lancaster
- Department of Structural Biology; Center of Human and Molecular Biology (ZHMB); Saarland University; Faculty of Medicine Building 60 D-66421 Homburg (Saar) Germany
| | - Yamila M. Betz
- Department of Structural Biology; Center of Human and Molecular Biology (ZHMB); Saarland University; Faculty of Medicine Building 60 D-66421 Homburg (Saar) Germany
| | - Sabine Heit
- Department of Structural Biology; Center of Human and Molecular Biology (ZHMB); Saarland University; Faculty of Medicine Building 60 D-66421 Homburg (Saar) Germany
| | - Michael A. Lafontaine
- Department of Structural Biology; Center of Human and Molecular Biology (ZHMB); Saarland University; Faculty of Medicine Building 60 D-66421 Homburg (Saar) Germany
| |
Collapse
|
28
|
Angeles-Martinez L, Theodoropoulos C. The Influence of Crowding Conditions on the Thermodynamic Feasibility of Metabolic Pathways. Biophys J 2016; 109:2394-405. [PMID: 26636950 DOI: 10.1016/j.bpj.2015.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 09/09/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022] Open
Abstract
Intracellular reactions are carried out in a crowded medium where the macromolecules occupy ∼40% of the total volume. This decrease in the available volume affects the activity of the reactants. Scaled particle theory is used for the estimation of the activity coefficients of the metabolites, and thereby for the assessment of the impact of the presence of background molecules, on the estimation of the Gibbs free energy change (ΔrG) of the reactions. The lactic acid pathway and the central carbon metabolism of Actinobacillus succinogenes for the production of succinic acid from glycerol have been used as illustrative case studies. Results suggest the importance of maintaining intracellular crowded regions to favor the feasibility of a pathway that in other circumstances would be infeasible. Moreover, the crowding conditions may change the directionality of reactions and can modify the feasible range of fluxes estimated for a metabolic system compared with those obtained at standard biological conditions.
Collapse
|
29
|
Unden G, Strecker A, Kleefeld A, Kim OB. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth. EcoSal Plus 2016; 7. [PMID: 27415771 PMCID: PMC11575717 DOI: 10.1128/ecosalplus.esp-0021-2015] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 06/06/2023]
Abstract
C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.
Collapse
Affiliation(s)
- Gottfried Unden
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Alexander Strecker
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Alexandra Kleefeld
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Ok Bin Kim
- Department of Life Sciences, Ewha Womans University, 120-750 Seoul, Korea
| |
Collapse
|
30
|
Islam MA, Zengler K, Edwards EA, Mahadevan R, Stephanopoulos G. Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integr Biol (Camb) 2016; 7:869-82. [PMID: 25994252 DOI: 10.1039/c5ib00095e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Moorella thermoacetica is a strictly anaerobic, endospore-forming, and metabolically versatile acetogenic bacterium capable of conserving energy by both autotrophic (acetogenesis) and heterotrophic (homoacetogenesis) modes of metabolism. Its metabolic diversity and the ability to efficiently convert a wide range of compounds, including syngas (CO + H2) into acetyl-CoA have made this thermophilic bacterium a promising host for industrial biotechnology applications. However, lack of detailed information on M. thermoacetica's metabolism is a major impediment to its use as a microbial cell factory. In order to overcome this issue, a genome-scale constraint-based metabolic model of Moorella thermoacetica, iAI558, has been developed using its genome sequence and physiological data from published literature. The reconstructed metabolic network of M. thermoacetica comprises 558 metabolic genes, 705 biochemical reactions, and 698 metabolites. Of the total 705 model reactions, 680 are gene-associated while the rest are non-gene associated reactions. The model, in addition to simulating both autotrophic and heterotrophic growth of M. thermoacetica, revealed degeneracy in its TCA-cycle, a common characteristic of anaerobic metabolism. Furthermore, the model helped elucidate the poorly understood energy conservation mechanism of M. thermoacetica during autotrophy. Thus, in addition to generating experimentally testable hypotheses regarding its physiology, such a detailed model will facilitate rapid strain designing and metabolic engineering of M. thermoacetica for industrial applications.
Collapse
Affiliation(s)
- M Ahsanul Islam
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
31
|
Torres M, Simon J, Rowley G, Bedmar E, Richardson D, Gates A, Delgado M. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Adv Microb Physiol 2016; 68:353-432. [PMID: 27134026 DOI: 10.1016/bs.ampbs.2016.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation.
Collapse
|
32
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 6. [PMID: 26442941 DOI: 10.1128/ecosalplus.esp-0005-2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. A large number of respiratory pathways can be established by combining different electron donors and acceptors. The respiratory dehydrogenases use quinones as the electron acceptors that are oxidized by the terminal reductase and oxidases. The enzymes vary largely with respect to their composition, architecture, membrane topology, and the mode of energy conservation. Most of the energy-conserving dehydrogenases (FdnGHI, HyaABC, HybCOAB, and others) and the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox-loop mechanism. Two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases and terminal reductases do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known or can be predicted. The H+/2e- ratios for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and the respiratory chains is described and related to the H+/2e- ratios.
Collapse
|
33
|
Keller AH, Schleinitz KM, Starke R, Bertilsson S, Vogt C, Kleinsteuber S. Metagenome-Based Metabolic Reconstruction Reveals the Ecophysiological Function of Epsilonproteobacteria in a Hydrocarbon-Contaminated Sulfidic Aquifer. Front Microbiol 2015; 6:1396. [PMID: 26696999 PMCID: PMC4674564 DOI: 10.3389/fmicb.2015.01396] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
Abstract
The population genome of an uncultured bacterium assigned to the Campylobacterales (Epsilonproteobacteria) was reconstructed from a metagenome dataset obtained by whole-genome shotgun pyrosequencing. Genomic DNA was extracted from a sulfate-reducing, m-xylene-mineralizing enrichment culture isolated from groundwater of a benzene-contaminated sulfidic aquifer. The identical epsilonproteobacterial phylotype has previously been detected in toluene- or benzene-mineralizing, sulfate-reducing consortia enriched from the same site. Previous stable isotope probing (SIP) experiments with 13C6-labeled benzene suggested that this phylotype assimilates benzene-derived carbon in a syntrophic benzene-mineralizing consortium that uses sulfate as terminal electron acceptor. However, the type of energy metabolism and the ecophysiological function of this epsilonproteobacterium within aromatic hydrocarbon-degrading consortia and in the sulfidic aquifer are poorly understood. Annotation of the epsilonproteobacterial population genome suggests that the bacterium plays a key role in sulfur cycling as indicated by the presence of an sqr gene encoding a sulfide quinone oxidoreductase and psr genes encoding a polysulfide reductase. It may gain energy by using sulfide or hydrogen/formate as electron donors. Polysulfide, fumarate, as well as oxygen are potential electron acceptors. Auto- or mixotrophic carbon metabolism seems plausible since a complete reductive citric acid cycle was detected. Thus the bacterium can thrive in pristine groundwater as well as in hydrocarbon-contaminated aquifers. In hydrocarbon-contaminated sulfidic habitats, the epsilonproteobacterium may generate energy by coupling the oxidation of hydrogen or formate and highly abundant sulfide with the reduction of fumarate and/or polysulfide, accompanied by efficient assimilation of acetate produced during fermentation or incomplete oxidation of hydrocarbons. The highly efficient assimilation of acetate was recently demonstrated by a pulsed 13C2-acetate protein SIP experiment. The capability of nitrogen fixation as indicated by the presence of nif genes may provide a selective advantage in nitrogen-depleted habitats. Based on this metabolic reconstruction, we propose acetate capture and sulfur cycling as key functions of Epsilonproteobacteria within the intermediary ecosystem metabolism of hydrocarbon-rich sulfidic sediments.
Collapse
Affiliation(s)
- Andreas H Keller
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany ; Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| | - Kathleen M Schleinitz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| | - Robert Starke
- Department of Proteomics, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University Uppsala, Sweden
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| |
Collapse
|
34
|
Kern M, Simon J. Three transcription regulators of the Nss family mediate the adaptive response induced by nitrate, nitric oxide or nitrous oxide in Wolinella succinogenes. Environ Microbiol 2015; 18:2899-912. [PMID: 26395430 DOI: 10.1111/1462-2920.13060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022]
Abstract
Sensing potential nitrogen-containing respiratory substrates such as nitrate, nitrite, hydroxylamine, nitric oxide (NO) or nitrous oxide (N2 O) in the environment and subsequent upregulation of corresponding catabolic enzymes is essential for many microbial cells. The molecular mechanisms of such adaptive responses are, however, highly diverse in different species. Here, induction of periplasmic nitrate reductase (Nap), cytochrome c nitrite reductase (Nrf) and cytochrome c N2 O reductase (cNos) was investigated in cells of the Epsilonproteobacterium Wolinella succinogenes grown either by fumarate, nitrate or N2 O respiration. Furthermore, fumarate respiration in the presence of various nitrogen compounds or NO-releasing chemicals was examined. Upregulation of each of the Nap, Nrf and cNos enzyme systems was found in response to the presence of nitrate, NO-releasers or N2 O, and the cells were shown to employ three transcription regulators of the Crp-Fnr superfamily (homologues of Campylobacter jejuni NssR), designated NssA, NssB and NssC, to mediate the upregulation of Nap, Nrf and cNos. Analysis of single nss mutants revealed that NssA controls production of the Nap and Nrf systems in fumarate-grown cells, while NssB was required to induce the Nap, Nrf and cNos systems specifically in response to NO-generators. NssC was indispensable for cNos production under any tested condition. The data indicate dedicated signal transduction routes responsive to nitrate, NO and N2 O and imply the presence of an N2 O-sensing mechanism.
Collapse
Affiliation(s)
- Melanie Kern
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany.
| |
Collapse
|
35
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 3. [PMID: 26443736 DOI: 10.1128/ecosalplus.3.2.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli contains a versatile respiratory chain which oxidizes ten different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use even two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. Various respiratory pathways can be established by combining the oxidation of different electron donors and acceptors which are linked by respiratory quinones. The enzymes vary largely with respect to architecture, membrane topology, and mode of energy conservation. Most of the energy-conserving dehydrogenases (e.g., FdnGHI, HyaABC, and HybCOAB) and of the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox loop mechanism. Only two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases (e.g., Ndh, SdhABCD, and GlpD) and of terminal reductases (e.g., FrdABCD and DmsABC) do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known from structural and biochemical studies or can be predicted from sequence information. The H+/2e- ratios of proton translocation for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and of the respiratory chains is described. In contrast to the knowledge on enzyme function are physiological aspects of respiration such as organization and coordination of the electron transport and the use of alternative respiratory enzymes, not well characterized.
Collapse
|
36
|
Abstract
C4-dicarboxylates, like succinate, fumarate, L- and D-malate, tartrate, and the C4-dicarboxylic amino acid aspartate, support aerobic and anaerobic growth of Escherichia coli and related bacteria and can serve as carbon and energy sources. In aerobic growth, the C4-dicarboxylates are oxidized in the citric acid cycle. Due to the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of the C4-dicarboxylates depends on fumarate reduction to succinate. In some related bacteria (e.g., Klebsiella), degradation of C4-dicarboxylates, like tartrate, uses a different mechanism and pathway. It requires the functioning of an Na+-dependent and membrane-associated oxaloacetate decarboxylase. Due to the incomplete function of the citric acid cycle in anaerobic growth, succinate supports only aerobic growth of E. coli. This chapter describes the pathways of and differences in aerobic and anaerobic C4-dicarboxylate metabolism and the physiological consequences. The citric acid cycle, fumarate respiration, and fumarate reductase are discussed here only in the context of aerobic and anaerobic C4-dicarboxylate metabolism. Some recent aspects of C4-dicarboxylate metabolism, such as transport and sensing of C4-dicarboxylates, and their relationships are treated in more detail.
Collapse
|
37
|
Arkhipova OV, Meer MV, Mikoulinskaia GV, Zakharova MV, Galushko AS, Akimenko VK, Kondrashov FA. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer. PLoS One 2015; 10:e0125888. [PMID: 25962149 PMCID: PMC4427408 DOI: 10.1371/journal.pone.0125888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/05/2015] [Indexed: 02/04/2023] Open
Abstract
The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.
Collapse
Affiliation(s)
- Oksana V. Arkhipova
- Scryabin’s Institute of Biochemistry and Physiology of Microorganisms, Pushchino 142290, Russia
| | - Margarita V. Meer
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) 88 Dr. Aiguader, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Galina V. Mikoulinskaia
- Branch of Shemyakin & Ovchinnikov’s Institute of Bioorganic Chemistry, Pushchino 142290, Russia
| | - Marina V. Zakharova
- Scryabin’s Institute of Biochemistry and Physiology of Microorganisms, Pushchino 142290, Russia
| | - Alexander S. Galushko
- Agrophysical Research Institute RAS, Saint-Petersburg 195220, Russia
- Tomsk State University, Tomsk, 634050, Russia
| | - Vasilii K. Akimenko
- Scryabin’s Institute of Biochemistry and Physiology of Microorganisms, Pushchino 142290, Russia
| | - Fyodor A. Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) 88 Dr. Aiguader, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Pg. Lluís Companys, 08010 Barcelona, Spain
| |
Collapse
|
38
|
Tsygankov AA, Khusnutdinova AN. Hydrogen in metabolism of purple bacteria and prospects of practical application. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715010154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Genomic, proteomic, and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans. J Bacteriol 2014; 197:893-904. [PMID: 25512312 DOI: 10.1128/jb.02370-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1(T) consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA.
Collapse
|
40
|
Essentiality of succinate dehydrogenase in Mycobacterium smegmatis and its role in the generation of the membrane potential under hypoxia. mBio 2014; 5:mBio.01093-14. [PMID: 25118234 PMCID: PMC4145680 DOI: 10.1128/mbio.01093-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Succinate:quinone oxidoreductase (Sdh) is a membrane-bound complex that couples the oxidation of succinate to fumarate in the cytoplasm to the reduction of quinone to quinol in the membrane. Mycobacterial species harbor genes for two putative sdh operons, but the individual roles of these two operons are unknown. In this communication, we show that Mycobacterium smegmatis mc2155 expresses two succinate dehydrogenases designated Sdh1 and Sdh2. Sdh1 is encoded by a five-gene operon (MSMEG_0416-MSMEG_0420), and Sdh2 is encoded by a four-gene operon (MSMEG_1672-MSMEG_1669). These two operons are differentially expressed in response to carbon limitation, hypoxia, and fumarate, as monitored by sdh promoter-lacZ fusions. While deletion of the sdh1 operon did not yield any growth phenotypes on succinate or other nonfermentable carbon sources, the sdh2 operon could be deleted only in a merodiploid background, demonstrating that Sdh2 is essential for growth. Sdh activity and succinate-dependent proton pumping were detected in cells grown aerobically, as well as under hypoxia. Fumarate reductase activity was absent under these conditions, indicating that neither Sdh1 nor Sdh2 could catalyze the reverse reaction. Sdh activity was inhibited by the Sdh inhibitor 3-nitroproprionate (3NP), and treatment with 3NP dissipated the membrane potential of wild-type or Δsdh1 mutant cells under hypoxia but not that of cells grown aerobically. These data imply that Sdh2 is the generator of the membrane potential under hypoxia, an essential role for the cell. Complex II or succinate dehydrogenase (Sdh) is a major respiratory enzyme that couples the oxidation of succinate to fumarate in the cytoplasm to the reduction of quinone to quinol in the membrane. Mycobacterial species harbor genes for two putative sdh operons, sdh1 and sdh2, but the individual roles of these two operons are unknown. In this communication, we show that sdh1 and sdh2 are differentially expressed in response to energy limitation, oxygen tension, and alternative electron acceptor availability, suggesting distinct functional cellular roles. Sdh2 was essential for growth and generation of the membrane potential in hypoxic cells. Given the essentiality of succinate dehydrogenase and oxidative phosphorylation in the growth cycle of Mycobacterium tuberculosis, the potential exists to develop new antituberculosis agents against the mycobacterial succinate dehydrogenase. This enzyme has been proposed as a potential target for the development of new chemotherapeutic agents against intracellular parasites and mitochondrion-associated disease.
Collapse
|
41
|
Nagarajan H, Embree M, Rotaru AE, Shrestha PM, Feist AM, Palsson BØ, Lovley DR, Zengler K. Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association. Nat Commun 2014; 4:2809. [PMID: 24264237 DOI: 10.1038/ncomms3809] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022] Open
Abstract
Syntrophic associations are central to microbial communities and thus have a fundamental role in the global carbon cycle. Despite biochemical approaches describing the physiological activity of these communities, there has been a lack of a mechanistic understanding of the relationship between complex nutritional and energetic dependencies and their functioning. Here we apply a multi-omic modelling workflow that combines genomic, transcriptomic and physiological data with genome-scale models to investigate dynamics and electron flow mechanisms in the syntrophic association of Geobacter metallireducens and Geobacter sulfurreducens. Genome-scale modelling of direct interspecies electron transfer reveals insights into the energetics of electron transfer mechanisms. While G. sulfurreducens adapts to rapid syntrophic growth by changes at the genomic and transcriptomic level, G. metallireducens responds only at the transcriptomic level. This multi-omic approach enhances our understanding of adaptive responses and factors that shape the evolution of syntrophic communities.
Collapse
Affiliation(s)
- Harish Nagarajan
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093-0412, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Luckmann M, Mania D, Kern M, Bakken LR, Frostegård Å, Simon J. Production and consumption of nitrous oxide in nitrate-ammonifying Wolinella succinogenes cells. MICROBIOLOGY-SGM 2014; 160:1749-1759. [PMID: 24781903 DOI: 10.1099/mic.0.079293-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Global warming is moving more and more into the public consciousness. Besides the commonly mentioned carbon dioxide and methane, nitrous oxide (N2O) is a powerful greenhouse gas in addition to its contribution to depletion of stratospheric ozone. The increasing concern about N2O emission has focused interest on underlying microbial energy-converting processes and organisms harbouring N2O reductase (NosZ), such as denitrifiers and ammonifiers of nitrate and nitrite. Here, the epsilonproteobacterial model organism Wolinella succinogenes is investigated with regard to its capacity to produce and consume N2O during growth by anaerobic nitrate ammonification. This organism synthesizes an unconventional cytochrome c nitrous oxide reductase (cNosZ), which is encoded by the first gene of an atypical nos gene cluster. However, W. succinogenes lacks a nitric oxide (NO)-producing nitrite reductase of the NirS- or NirK-type as well as an NO reductase of the Nor-type. Using a robotized incubation system, the wild-type strain and suitable mutants of W. succinogenes that either produced or lacked cNosZ were analysed as to their production of NO, N2O and N2 in both nitrate-sufficient and nitrate-limited growth medium using formate as electron donor. It was found that cells growing in nitrate-sufficient medium produced small amounts of N2O, which derived from nitrite and, most likely, from the presence of NO. Furthermore, cells employing cNosZ were able to reduce N2O to N2. This reaction, which was fully inhibited by acetylene, was also observed after adding N2O to the culture headspace. The results indicate that W. succinogenes cells are competent in N2O and N2 production despite being correctly grouped as respiratory nitrate ammonifiers. N2O production is assumed to result from NO detoxification and nitrosative stress defence, while N2O serves as a terminal electron acceptor in anaerobic respiration. The ecological implications of these findings are discussed.
Collapse
Affiliation(s)
- Monique Luckmann
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Daniel Mania
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Chr Falsens vei 1, N1432 Ås, Norway
| | - Melanie Kern
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Lars R Bakken
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N1432 Ås, Norway
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Chr Falsens vei 1, N1432 Ås, Norway
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| |
Collapse
|
43
|
Feist AM, Nagarajan H, Rotaru AE, Tremblay PL, Zhang T, Nevin KP, Lovley DR, Zengler K. Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. PLoS Comput Biol 2014; 10:e1003575. [PMID: 24762737 PMCID: PMC3998878 DOI: 10.1371/journal.pcbi.1003575] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/05/2014] [Indexed: 11/18/2022] Open
Abstract
Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species.
Collapse
Affiliation(s)
- Adam M. Feist
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (AMF); (KZ)
| | - Harish Nagarajan
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Amelia-Elena Rotaru
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Pier-Luc Tremblay
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Tian Zhang
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Kelly P. Nevin
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Karsten Zengler
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (AMF); (KZ)
| |
Collapse
|
44
|
Visser M, Parshina SN, Alves JI, Sousa DZ, Pereira IAC, Muyzer G, Kuever J, Lebedinsky AV, Koehorst JJ, Worm P, Plugge CM, Schaap PJ, Goodwin LA, Lapidus A, Kyrpides NC, Detter JC, Woyke T, Chain P, Davenport KW, Spring S, Rohde M, Klenk HP, Stams AJM. Genome analyses of the carboxydotrophic sulfate-reducers Desulfotomaculum nigrificans and Desulfotomaculum carboxydivorans and reclassification of Desulfotomaculum caboxydivorans as a later synonym of Desulfotomaculum nigrificans. Stand Genomic Sci 2014; 9:655-75. [PMID: 25197452 PMCID: PMC4149029 DOI: 10.4056/sigs.4718645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Desulfotomaculum nigrificans and D. carboxydivorans are moderately thermophilic members of the polyphyletic spore-forming genus Desulfotomaculum in the family Peptococcaceae. They are phylogenetically very closely related and belong to ‘subgroup a’ of the Desulfotomaculum cluster 1. D. nigrificans and D. carboxydivorans have a similar growth substrate spectrum; they can grow with glucose and fructose as electron donors in the presence of sulfate. Additionally, both species are able to ferment fructose, although fermentation of glucose is only reported for D. carboxydivorans. D. nigrificans is able to grow with 20% carbon monoxide (CO) coupled to sulfate reduction, while D. carboxydivorans can grow at 100% CO with and without sulfate. Hydrogen is produced during growth with CO by D. carboxydivorans. Here we present a summary of the features of D. nigrificans and D. carboxydivorans together with the description of the complete genome sequencing and annotation of both strains. Moreover, we compared the genomes of both strains to reveal their differences. This comparison led us to propose a reclassification of D. carboxydivorans as a later heterotypic synonym of D. nigrificans.
Collapse
Affiliation(s)
- Michael Visser
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Sofiya N Parshina
- Wingradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Joana I Alves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands ; Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Gerard Muyzer
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Kuever
- Department of Microbiology, Bremen Institute for Materials Testing, Bremen, Germany
| | | | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands
| | - Petra Worm
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands
| | - Lynne A Goodwin
- DOE Joint Genome Institute, Walnut Creek, California, USA ; Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Alla Lapidus
- Theodosius Dobzhansky Center for Genome Bionformatics, St. Petersburg State University, St. Petersburg, Russia ; Algorithmic Biology Lab, St. Petersburg Academic University, St. Petersburg, Russia
| | | | - Janine C Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Patrick Chain
- DOE Joint Genome Institute, Walnut Creek, California, USA ; Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Karen W Davenport
- DOE Joint Genome Institute, Walnut Creek, California, USA ; Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Stefan Spring
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Manfred Rohde
- HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hans Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands ; Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
45
|
Shabbiri K, Botting CH, Adnan A, Fuszard M, Naseem S, Ahmed S, Shujaat S, Syed Q, Ahmad W. An investigation into membrane bound redox carriers involved in energy transduction mechanism in Brevibacterium linens DSM 20158 with unsequenced genome. J Membr Biol 2014; 247:345-55. [PMID: 24573306 DOI: 10.1007/s00232-014-9641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/11/2014] [Indexed: 11/29/2022]
Abstract
Brevibacterium linens (B. linens) DSM 20158 with an unsequenced genome can be used as a non-pathogenic model to study features it has in common with other unsequenced pathogens of the same genus on the basis of comparative proteome analysis. The most efficient way to kill a pathogen is to target its energy transduction mechanism. In the present study, we have identified the redox protein complexes involved in the electron transport chain of B. linens DSM 20158 from their clear homology with the shot-gun genome sequenced strain BL2 of B. linens by using the SDS-Polyacrylamide gel electrophoresis coupled with nano LC-MS/MS mass spectrometry. B. linens is found to have a branched electron transport chain (Respiratory chain), in which electrons can enter the respiratory chain either at NADH (Complex I) or at Complex II level or at the cytochrome level. Moreover, we are able to isolate, purify, and characterize the membrane bound Complex II (succinate dehydrogenase), Complex III (menaquinone cytochrome c reductase cytochrome c subunit, Complex IV (cytochrome c oxidase), and Complex V (ATP synthase) of B. linens strain DSM 20158.
Collapse
Affiliation(s)
- Khadija Shabbiri
- Department of Chemistry, GC University Lahore, Lahore, 54000, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Despite its reactivity and hence toxicity to living cells, sulfite is readily converted by various microorganisms using distinct assimilatory and dissimilatory metabolic routes. In respiratory pathways, sulfite either serves as a primary electron donor or terminal electron acceptor (yielding sulfate or sulfide, respectively), and its conversion drives electron transport chains that are coupled to chemiosmotic ATP synthesis. Notably, such processes are also seen to play a general role in sulfite detoxification, which is assumed to have an evolutionary ancient origin. The diversity of sulfite conversion is reflected by the fact that the range of microbial sulfite-converting enzymes displays different cofactors such as siroheme, heme c, or molybdopterin. This chapter aims to summarize the current knowledge of microbial sulfite metabolism and focuses on sulfite catabolism. The structure and function of sulfite-converting enzymes and the emerging picture of the modular architecture of the corresponding respiratory/detoxifying electron transport chains is emphasized.
Collapse
Affiliation(s)
- Jörg Simon
- Department of Biology, Microbial Energy Conversion and Biotechnology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany.
| | | |
Collapse
|
47
|
Lancaster CRD. The di-heme family of respiratory complex II enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:679-87. [PMID: 23466335 DOI: 10.1016/j.bbabio.2013.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 01/28/2023]
Abstract
The di-heme family of succinate:quinone oxidoreductases is of particular interest, because its members support electron transfer across the biological membranes in which they are embedded. In the case of the di-heme-containing succinate:menaquinone reductase (SQR) from Gram-positive bacteria and other menaquinone-containing bacteria, this results in an electrogenic reaction. This is physiologically relevant in that it allows the transmembrane electrochemical proton potential Δp to drive the endergonic oxidation of succinate by menaquinone. In the case of the reverse reaction, menaquinol oxidation by fumarate, catalysed by the di-heme-containing quinol:fumarate reductase (QFR), evidence has been obtained that this electrogenic electron transfer reaction is compensated by proton transfer via a both novel and essential transmembrane proton transfer pathway ("E-pathway"). Although the reduction of fumarate by menaquinol is exergonic, it is obviously not exergonic enough to support the generation of a Δp. This compensatory "E-pathway" appears to be required by all di-heme-containing QFR enzymes and results in the overall reaction being electroneutral. In addition to giving a brief overview of progress in the characterization of other members of this diverse family, this contribution summarizes key evidence and progress in identifying constituents of the "E-pathway" within the framework of the crystal structure of the QFR from the anaerobic epsilon-proteobacterium Wolinella succinogenes at 1.78Å resolution. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- C Roy D Lancaster
- Department of Structural Biology, Saarland University, Homburg, Germany.
| |
Collapse
|
48
|
Schmidt A, Müller N, Schink B, Schleheck D. A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei. PLoS One 2013; 8:e56905. [PMID: 23468890 PMCID: PMC3582634 DOI: 10.1371/journal.pone.0056905] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT), a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224) was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB) and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF224) to a menaquinone cycle and further via a b-type cytochrome to an externally oriented formate dehydrogenase. Hence, an ATP hydrolysis-driven proton-motive force across the cytoplasmatic membrane would provide the energy input for the electron potential shift necessary for formate formation.
Collapse
Affiliation(s)
- Alexander Schmidt
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Nicolai Müller
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
49
|
Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:668-78. [PMID: 23396003 DOI: 10.1016/j.bbabio.2013.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
There are two homologous membrane-bound enzymes in Escherichia coli that catalyze reversible conversion between succinate/fumarate and quinone/quinol. Succinate:ubiquinone reductase (SQR) is a component of aerobic respiratory chains, whereas quinol:fumarate reductase (QFR) utilizes menaquinol to reduce fumarate in a final step of anaerobic respiration. Although, both protein complexes are capable of supporting bacterial growth on either minimal succinate or fumarate media, the enzymes are more proficient in their physiological directions. Here we evaluate factors that may underlie this catalytic bias. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
|
50
|
Al-Attar S, de Vries S. Energy transduction by respiratory metallo-enzymes: From molecular mechanism to cell physiology. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|