1
|
Popov VN, Syromyatnikov MY, Fernie AR, Chakraborty S, Gupta KJ, Igamberdiev AU. The uncoupling of respiration in plant mitochondria: keeping reactive oxygen and nitrogen species under control. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:793-807. [PMID: 33245770 DOI: 10.1093/jxb/eraa510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Plant mitochondrial respiration involves the operation of various alternative pathways. These pathways participate, both directly and indirectly, in the maintenance of mitochondrial functions though they do not contribute to energy production, being uncoupled from the generation of an electrochemical gradient across the mitochondrial membrane and thus from ATP production. Recent findings suggest that uncoupled respiration is involved in reactive oxygen species (ROS) and nitric oxide (NO) scavenging, regulation, and homeostasis. Here we discuss specific roles and possible functions of uncoupled mitochondrial respiration in ROS and NO metabolism. The mechanisms of expression and regulation of the NDA-, NDB- and NDC-type non-coupled NADH and NADPH dehydrogenases, the alternative oxidase (AOX), and the uncoupling protein (UCP) are examined in relation to their involvement in the establishment of the stable far-from-equilibrium state of plant metabolism. The role of uncoupled respiration in controlling the levels of ROS and NO as well as inducing signaling events is considered. Secondary functions of uncoupled respiration include its role in protection from stress factors and roles in biosynthesis and catabolism. It is concluded that uncoupled mitochondrial respiration plays an important role in providing rapid adaptation of plants to changing environmental factors via regulation of ROS and NO.
Collapse
Affiliation(s)
- Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Mikhail Y Syromyatnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Subhra Chakraborty
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
2
|
Grabelnych OI, Borovik OA, Tauson EL, Pobezhimova TP, Katyshev AI, Pavlovskaya NS, Koroleva NA, Lyubushkina IV, Bashmakov VY, Popov VN, Borovskii GB, Voinikov VK. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. BIOCHEMISTRY (MOSCOW) 2015; 79:506-19. [PMID: 25100008 DOI: 10.1134/s0006297914060030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.
Collapse
Affiliation(s)
- O I Grabelnych
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Division of the Russian Academy of Sciences, Irkutsk, 664033, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak. PLoS One 2014; 9:e98969. [PMID: 24904988 PMCID: PMC4056835 DOI: 10.1371/journal.pone.0098969] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
In this study, we compared the influence of GDP and GTP on isolated mitochondria respiring under conditions favoring oxidative phosphorylation (OXPHOS) and under conditions excluding this process, i.e., in the presence of carboxyatractyloside, an adenine nucleotide translocase inhibitor, and/or oligomycin, an FOF1-ATP synthase inhibitor. Using mitochondria isolated from rat kidney and human endothelial cells, we found that the action of GDP and GTP can differ diametrically depending on the conditions. Namely, under conditions favoring OXPHOS, both in the absence and presence of linoleic acid, an activator of uncoupling proteins (UCPs), the addition of 1 mM GDP resulted in the state 4 (non-phosphorylating respiration)-state 3 (phosphorylating respiration) transition, which is characteristic of ADP oxidative phosphorylation. In contrast, the addition of 1 mM GTP resulted in a decrease in the respiratory rate and an increase in the membrane potential, which is characteristic of UCP inhibition. The stimulatory effect of GDP, but not GTP, was also observed in inside-out submitochondrial particles prepared from rat kidney mitochondria. However, the effects of GDP and GTP were more similar in the presence of OXPHOS inhibitors. The importance of these observations in connection with the action of UCPs, adenine nucleotide translocase (or other carboxyatractyloside-sensitive carriers), carboxyatractyloside- and purine nucleotide-insensitive carriers, as well as nucleoside-diphosphate kinase (NDPK) are considered. Because the measurements favoring oxidative phosphorylation better reflect in vivo conditions, our study strongly supports the idea that GDP cannot be considered a significant physiological inhibitor of UCP. Moreover, it appears that, under native conditions, GTP functions as a more efficient UCP inhibitor than GDP and ATP.
Collapse
|
4
|
Trono D, Soccio M, Mastrangelo AM, De Simone V, Di Fonzo N, Pastore D. The transcript levels of two plant mitochondrial uncoupling protein (pUCP)-related genes are not affected by hyperosmotic stress in durum wheat seedlings showing an increased level of pUCP activity. Biosci Rep 2007; 26:251-61. [PMID: 16855867 DOI: 10.1007/s10540-006-9020-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Etiolated early seedlings of durum wheat submitted to moderate and severe salt (NaCl) and osmotic (mannitol) stress showed no relevant increase of both transcript levels of two plant uncoupling protein (pUCP)-related genes and maximal pUCP activity in purified mitochondria (which estimates protein level); contrarily, pUCP functioning due to endogenous free fatty acids strongly increased. These results show that pUCP activation under hyperosmotic stress may be due to modulation of pUCP reaction rather than to an increased protein synthesis. Finally, a properly developed method, based on a single membrane potential measurement, to evaluate both pUCP maximal activity and functioning, is reported.
Collapse
Affiliation(s)
- Daniela Trono
- Istituto Sperimentale per la Cerealicoltura-CRA, S.S. 16 Km 675, 71100, Foggia, Italy.
| | | | | | | | | | | |
Collapse
|
5
|
Swida A, Czarna M, Woyda-Płoszczyca A, Kicinska A, Sluse FE, Jarmuszkiewicz W. Fatty acid efficiency profile in uncoupling of Acanthamoeba castellanii mitochondria. J Bioenerg Biomembr 2007; 39:109-15. [PMID: 17334914 DOI: 10.1007/s10863-006-9067-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 11/13/2006] [Indexed: 11/29/2022]
Abstract
A profile of free fatty acid (FFA) specificity in Acanthamoeba castellanii mitochondrial uncoupling is described. The FFA uncoupling specificity was observed as different abilities to stimulate resting respiration, to decrease resting membrane potential, and to decrease oxidative phosphorylation efficiency. Tested unsaturated FFA (C18-20) were more effective as uncouplers and protonophores when compared to tested saturated FFA (C8-18), with palmitic acid (C16:0) as the most active. As FFA efficiency in mitochondrial uncoupling is related to physiological changes of fatty acid composition (and thereby FFA availability) during growth of amoeba cells, it could be a way to regulate the activity of an uncoupling protein and thereby the efficiency of oxidative phosphorylation during a cell life of this unicellular organism.
Collapse
Affiliation(s)
- Aleksandra Swida
- Laboratory of Bioenergetics, Adam Mickiewicz University, Fredry 10, 61-701 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
6
|
Shabalina I, Kramarova T, Nedergaard J, Cannon B. Carboxyatractyloside effects on brown-fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively. Biochem J 2006; 399:405-14. [PMID: 16831128 PMCID: PMC1615905 DOI: 10.1042/bj20060706] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In brown-fat mitochondria, fatty acids induce thermogenic uncoupling through activation of UCP1 (uncoupling protein 1). However, even in brown-fat mitochondria from UCP1-/- mice, fatty-acid-induced uncoupling exists. In the present investigation, we used the inhibitor CAtr (carboxyatractyloside) to examine the involvement of the ANT (adenine nucleotide translocator) in the mediation of this UCP1-independent fatty-acid-induced uncoupling in brown-fat mitochondria. We found that the contribution of ANT to fatty-acid-induced uncoupling in UCP1-/- brown-fat mitochondria was minimal (whereas it was responsible for nearly half the fatty-acid-induced uncoupling in liver mitochondria). As compared with liver mitochondria, brown-fat mitochondria exhibit a relatively high (UCP1-independent) basal respiration ('proton leak'). Unexpectedly, a large fraction of this high basal respiration was sensitive to CAtr, whereas in liver mitochondria, basal respiration was CAtr-insensitive. Total ANT protein levels were similar in brown-fat mitochondria from wild-type mice and in liver mitochondria, but the level was increased in brown-fat mitochondria from UCP1-/- mice. However, in liver, only Ant2 mRNA was found, whereas in brown adipose tissue, Ant1 and Ant2 mRNA levels were equal. The data are therefore compatible with a tentative model in which the ANT2 isoform mediates fatty-acid-induced uncoupling, whereas the ANT1 isoform may mediate a significant part of the high basal proton leak in brown-fat mitochondria.
Collapse
MESH Headings
- Adenine Nucleotide Translocator 1/antagonists & inhibitors
- Adenine Nucleotide Translocator 1/biosynthesis
- Adenine Nucleotide Translocator 1/genetics
- Adenine Nucleotide Translocator 1/physiology
- Adenine Nucleotide Translocator 2/antagonists & inhibitors
- Adenine Nucleotide Translocator 2/biosynthesis
- Adenine Nucleotide Translocator 2/genetics
- Adenine Nucleotide Translocator 2/physiology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Animals
- Atractyloside/analogs & derivatives
- Atractyloside/pharmacology
- Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology
- Cell Respiration/drug effects
- Crosses, Genetic
- Fatty Acids/metabolism
- Fatty Acids/pharmacology
- Guanosine Diphosphate/pharmacology
- Ion Channels/deficiency
- Ion Channels/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/metabolism
- Mitochondrial Proteins/deficiency
- Mitochondrial Proteins/genetics
- Models, Biological
- Oleic Acid/pharmacology
- Organ Specificity
- Oxygen Consumption/drug effects
- Palmitates/pharmacology
- Protons
- Pyruvic Acid/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Thermogenesis/drug effects
- Thermogenesis/physiology
- Uncoupling Agents/pharmacology
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Irina G. Shabalina
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tatiana V. Kramarova
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jan Nedergaard
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Barbara Cannon
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
- To whom correspondence should be addressed (email )
| |
Collapse
|
7
|
Stupnikova I, Benamar A, Tolleter D, Grelet J, Borovskii G, Dorne AJ, Macherel D. Pea seed mitochondria are endowed with a remarkable tolerance to extreme physiological temperatures. PLANT PHYSIOLOGY 2006; 140:326-35. [PMID: 16377742 PMCID: PMC1326054 DOI: 10.1104/pp.105.073015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 10/18/2005] [Accepted: 11/08/2005] [Indexed: 05/05/2023]
Abstract
Most seeds are anhydrobiotes, relying on an array of protective and repair mechanisms, and seed mitochondria have previously been shown to harbor stress proteins probably involved in desiccation tolerance. Since temperature stress is a major issue for germinating seeds, the temperature response of pea (Pisum sativum) seed mitochondria was examined in comparison with that of mitochondria from etiolated epicotyl, a desiccation-sensitive tissue. The functional analysis illustrated the remarkable temperature tolerance of seed mitochondria in response to both cold and heat stress. The mitochondria maintained a well-coupled respiration between -3.5 degrees C and 40 degrees C, while epicotyl mitochondria were not efficient below 0 degrees C and collapsed above 30 degrees C. Both mitochondria exhibited a similar Arrhenius break temperature at 7 degrees C, although they differed in phospholipid composition. Seed mitochondria had a lower phosphatidylethanolamine-to-phosphatidylcholine ratio, fewer unsaturated fatty acids, and appeared less susceptible to lipid peroxidation. They also accumulated large amounts of heat shock protein HSP22 and late-embryogenesis abundant protein PsLEAm. The combination of membrane composition and stress protein accumulation required for desiccation tolerance is expected to lead to an unusually wide temperature tolerance, contributing to the fitness of germinating seeds in adverse conditions. The unique oxidation of external NADH at low temperatures found with several types of mitochondria may play a central role in maintaining energy homeostasis during cold shock, a situation often encountered by sessile and ectothermic higher plants.
Collapse
Affiliation(s)
- Irina Stupnikova
- Siberian Institute for Plant Physiology and Biochemistry, 664033 Irkutsk, Russia
| | | | | | | | | | | | | |
Collapse
|
8
|
Rial E, Aguirregoitia E, Jiménez-Jiménez J, Ledesma A. Alkylsulfonates activate the uncoupling protein UCP1: implications for the transport mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1608:122-30. [PMID: 14871489 DOI: 10.1016/j.bbabio.2003.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 11/11/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Fatty acids activate the uncoupling protein UCP1 by a still controversial mechanism. Two models have been put forward where the fatty acid operates as either substrate ("fatty acid cycling hypothesis") or prosthetic group ("proton buffering model"). Two sets of experiments that should help to discriminate between the two hypothetical mechanisms are presented. We show that undecanosulfonate activates UCP1 in respiring mitochondria under conditions identical to those required for the activation by fatty acids. Since alkylsulfonates cannot cross the lipid bilayer, these experiments rule out the fatty acid cycling hypothesis as the mechanism of uncoupling. We also demonstrate that without added nucleotides and upon careful removal of endogenous fatty acids, brown adipose tissue (BAT) mitochondria from cold-adapted hamsters respire at the full uncoupled rate. Addition of nucleotides lower the respiratory rate tenfold. The high activity observed in the absence of the two regulatory ligands is an indication that UCP1 displays an intrinsic proton conductance that is fatty acid-independent. We propose that the fatty acid uncoupling mediated by other members of the mitochondrial transporter family probably involves a carrier to pore transition and therefore has little in common with the activation of UCP1.
Collapse
Affiliation(s)
- Eduardo Rial
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
9
|
|