1
|
Jackson JB. A review of the binding-change mechanism for proton-translocating transhydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1839-46. [PMID: 22538293 DOI: 10.1016/j.bbabio.2012.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 11/17/2022]
Abstract
Proton-translocating transhydrogenase is found in the inner membranes of animal mitochondria, and in the cytoplasmic membranes of many bacteria. It catalyses hydride transfer from NADH to NADP(+) coupled to inward proton translocation. Evidence is reviewed suggesting the enzyme operates by a "binding-change" mechanism. Experiments with Escherichia coli transhydrogenase indicate the enzyme is driven between "open" and "occluded" states by protonation and deprotonation reactions associated with proton translocation. In the open states NADP(+)/NADPH can rapidly associate with, or dissociate from, the enzyme, and hydride transfer is prevented. In the occluded states bound NADP(+)/NADPH cannot dissociate, and hydride transfer is allowed. Crystal structures of a complex of the nucleotide-binding components of Rhodospirillum rubrum transhydrogenase show how hydride transfer is enabled and disabled at appropriate steps in catalysis, and how release of NADP(+)/NADPH is restricted in the occluded state. Thermodynamic and kinetic studies indicate that the equilibrium constant for hydride transfer on the enzyme is elevated as a consequence of the tight binding of NADPH relative to NADP(+). The protonation site in the translocation pathway must face the outside if NADP(+) is bound, the inside if NADPH is bound. Chemical shift changes detected by NMR may show where alterations in protein conformation resulting from NADP(+) reduction are initiated. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
2
|
Huxley L, Quirk PG, Cotton NPJ, White SA, Jackson JB. The specificity of proton-translocating transhydrogenase for nicotinamide nucleotides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:85-94. [PMID: 20732298 DOI: 10.1016/j.bbabio.2010.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/10/2010] [Indexed: 11/29/2022]
Abstract
In its forward direction, transhydrogenase couples the reduction of NADP(+) by NADH to the outward translocation of protons across the membrane of bacteria and animal mitochondria. The enzyme has three components: dI and dIII protrude from the membrane and dII spans the membrane. Hydride transfer takes place between nucleotides bound to dI and dIII. Studies on the kinetics of a lag phase at the onset of a "cyclic reaction" catalysed by complexes of the dI and dIII components of transhydrogenase from Rhodospirillum rubrum, and on the kinetics of fluorescence changes associated with nucleotide binding, reveal two features. Firstly, the binding of NADP(+) and NADPH to dIII is extremely slow, and is probably limited by the conversion of the occluded to the open state of the complex. Secondly, dIII can also bind NAD(+) and NADH. Extrapolating to the intact enzyme this binding to the "wrong" site could lead to slip: proton translocation without change in the nucleotide redox state, which would have important consequences for bacterial and mitochondrial metabolism.
Collapse
Affiliation(s)
- Lucinda Huxley
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
3
|
Inhibition of proton-transfer steps in transhydrogenase by transition metal ions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1276-88. [PMID: 19505432 DOI: 10.1016/j.bbabio.2009.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022]
Abstract
Transhydrogenase couples proton translocation across a bacterial or mitochondrial membrane to the redox reaction between NAD(H) and NADP(H). Purified intact transhydrogenase from Escherichia coli was prepared, and its His tag removed. The forward and reverse transhydrogenation reactions catalysed by the enzyme were inhibited by certain metal ions but a "cyclic reaction" was stimulated. Of metal ions tested they were effective in the order Pb(2+)>Cu(2+)>Zn(2+)=Cd(2+)>Ni(2+)>Co(2+). The results suggest that the metal ions affect transhydrogenase by binding to a site in the proton-transfer pathway. Attenuated total-reflectance Fourier-transform infrared difference spectroscopy indicated the involvement of His and Asp/Glu residues in the Zn(2+)-binding site(s). A mutant in which betaHis91 in the membrane-spanning domain of transhydrogenase was replaced by Lys had enzyme activities resembling those of wild-type enzyme treated with Zn(2+). Effects of the metal ion on the mutant were much diminished but still evident. Signals in Zn(2+)-induced FTIR difference spectra of the betaHis91Lys mutant were also attributable to changes in His and Asp/Glu residues but were much smaller than those in wild-type spectra. The results support the view that betaHis91 and nearby Asp or Glu residues participate in the proton-transfer pathway of transhydrogenase.
Collapse
|
4
|
Proton-translocating transhydrogenase: an update of unsolved and controversial issues. J Bioenerg Biomembr 2008; 40:463-73. [PMID: 18972197 DOI: 10.1007/s10863-008-9170-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Proton-translocating transhydrogenases, reducing NADP(+) by NADH through hydride transfer, are membrane proteins utilizing the electrochemical proton gradient for NADPH generation. The enzymes have important physiological roles in the maintenance of e.g. reduced glutathione, relevant for essentially all cell types. Following X-ray crystallography and structural resolution of the soluble substrate-binding domains, mechanistic aspects of the hydride transfer are beginning to be resolved. However, the structure of the intact enzyme is unknown. Key questions regarding the coupling mechanism, i.e., the mechanism of proton translocation, are addressed using the separately expressed substrate-binding domains. Important aspects are therefore which functions and properties of mainly the soluble NADP(H)-binding domain, but also the NAD(H)-binding domain, are relevant for proton translocation, how the soluble domains communicate with the membrane domain, and the mechanism of proton translocation through the membrane domain.
Collapse
|
5
|
Whitehead SJ, Rossington KE, Hafiz A, Cotton NPJ, Jackson JB. Zinc ions selectively inhibit steps associated with binding and release of NADP(H) during turnover of proton-translocating transhydrogenase. FEBS Lett 2005; 579:2863-7. [PMID: 15878164 DOI: 10.1016/j.febslet.2005.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/07/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
Transhydrogenase couples the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. In membrane vesicles from Escherichia coli and Rhodospirillum rubrum, the transhydrogenase reaction (measured in the direction driving inward proton translocation) was inhibited by Zn(2+) and Cd(2+). However, depending on pH, the metal ions either had no effect on, or stimulated, "cyclic" transhydrogenation. They must, therefore, interfere specifically with steps involving binding/release of NADP(+)/NADPH: the steps thought to be associated with proton translocation. It is suggested that Zn(2+) and Cd(2+) bind in the proton-transfer pathway and block inter-conversion of states responsible for changing NADP(+)/NADPH binding energy.
Collapse
|
6
|
Bizouarn T, Fjellström O, Meuller J, Axelsson M, Bergkvist A, Johansson C, Göran Karlsson B, Rydström J. Proton translocating nicotinamide nucleotide transhydrogenase from E. coli. Mechanism of action deduced from its structural and catalytic properties. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1457:211-28. [PMID: 10773166 DOI: 10.1016/s0005-2728(00)00103-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transhydrogenase couples the stereospecific and reversible transfer of hydride equivalents from NADH to NADP(+) to the translocation of proton across the inner membrane in mitochondria and the cytoplasmic membrane in bacteria. Like all transhydrogenases, the Escherichia coli enzyme is composed of three domains. Domains I and III protrude from the membrane and contain the binding site for NAD(H) and NADP(H), respectively. Domain II spans the membrane and constitutes at least partly the proton translocating pathway. Three-dimensional models of the hydrophilic domains I and III deduced from crystallographic and NMR data and a new topology of domain II are presented. The new information obtained from the structures and the numerous mutation studies strengthen the proposition of a binding change mechanism, as a way to couple the reduction of NADP(+) by NADH to proton translocation and occurring mainly at the level of the NADP(H) binding site.
Collapse
Affiliation(s)
- T Bizouarn
- Department of Biochemistry and Biophysics, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
7
|
White SA, Peake SJ, McSweeney S, Leonard G, Cotton NP, Jackson JB. The high-resolution structure of the NADP(H)-binding component (dIII) of proton-translocating transhydrogenase from human heart mitochondria. Structure 2000; 8:1-12. [PMID: 10673423 DOI: 10.1016/s0969-2126(00)00075-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transhydrogenase, located in the inner membranes of animal mitochondria and the cytoplasmic membranes of bacteria, couples the transfer of reducing equivalents between NAD(H) and NADP(H) to proton pumping. The protein comprises three subunits termed dI, dII and dIII. The dII component spans the membrane. The dI component, which contains the binding site for NAD(+)/NADH, and the dIII component, which has the binding site for NADP(+)/NADPH, protrude from the membrane. Proton pumping is probably coupled to changes in the binding affinities of dIII for NADP(+) and NADPH. RESULTS The first X-ray structure of the NADP(H)-binding component, dIII, of human heart transhydrogenase is described here at 2.0 A resolution. It comprises a single domain resembling the classical Rossmann fold, but NADP(+) binds to dIII with a reversed orientation. The first betaalphabetaalphabeta motif of dIII contains a Gly-X-Gly-X-X-Ala/Val 'fingerprint', but it has a different function to that in the classical Rossmann structure. The nicotinamide ring of NADP(+) is located on a ridge where it is exposed to interaction with NADH on the dI subunit. Two distinctive features of the dIII structure are helix D/loop D, which projects from the beta sheet, and loop E, which forms a 'lid' over the bound NADP(+). CONCLUSIONS Helix D/loop D interacts with the bound nucleotide and loop E, and probably interacts with the membrane-spanning dII. Changes in ionisation and conformation in helix D/loop D, resulting from proton translocation through dII, are thought to be responsible for the changes in affinity of dIII for NADP(+) and NADPH that drive the reaction.
Collapse
Affiliation(s)
- S A White
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Bragg PD, Hou C. Mutation of conserved polar residues in the transmembrane domain of the proton-pumping pyridine nucleotide transhydrogenase of Escherichia coli. Arch Biochem Biophys 1999; 363:182-90. [PMID: 10049513 DOI: 10.1006/abbi.1998.1062] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pyridine nucleotide transhydrogenase carries out transmembrane proton translocation coupled to transfer of a hydride ion equivalent between NAD+ and NADP+. Previous workers (E. Holmberg et al. Biochemistry 33, 7691-7700, 1994; N. A. Glavas et al. Biochemistry 34, 7694-7702, 1995) had examined the role in proton translocation of conserved charged residues in the transmembrane domain. This study was extended to examine the role of conserved polar residues of the transmembrane domain. Site-directed mutagenesis of these residues did not produce major effects on hydride transfer or proton translocation activities except in the case of betaAsn222. Most mutants of this residue were drastically impaired in these activities. Three phenotypes were recognized. In betaN222C both activities were impaired maximally by 70%. The retention of proton translocation indicated that betaAsn222 was not directly involved in proton translocation. In betaN222H both activities were drastically reduced. Binding of NADP+ but not of NADPH was impaired. In betaN222R, by contrast, NADP+ remained tightly bound to the mutant transhydrogenase. It is concluded that betaAsn222, located in a transmembrane alpha-helix, is part of the conformational pathway by which NADP(H) binding, which occurs outside of the transmembrane domain, is coupled to proton translocation. Some nonconserved or semiconserved polar residues of the transmembrane domain were also examined by site-directed mutagenesis. Interaction of betaGlu124 with the proton translocation pathway is proposed.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | | |
Collapse
|
9
|
Zakharova NV, Zharova TV, Vinogradov AD. Kinetics of transhydrogenase reaction catalyzed by the mitochondrial NADH-ubiquinone oxidoreductase (Complex I) imply more than one catalytic nucleotide-binding sites. FEBS Lett 1999; 444:211-6. [PMID: 10050761 DOI: 10.1016/s0014-5793(99)00062-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The steady-state kinetics of the transhydrogenase reaction (the reduction of acetylpyridine adenine dinucleotide (APAD+) by NADH, DD transhydrogenase) catalyzed by bovine heart submitochondrial particles (SMP), purified Complex I, and by the soluble three-subunit NADH dehydrogenase (FP) were studied to assess a number of the Complex I-associated nucleotide-binding sites. Under the conditions where the proton-pumping transhydrogenase (EC 1.6.1.1) was not operating, the DD transhydrogenase activities of SMP and Complex I exhibited complex kinetic pattern: the double reciprocal plots of the velocities were not linear when the substrate concentrations were varied in a wide range. No binary complex (ping-pong) mechanism (as expected for a single substrate-binding site enzyme) was operating within any range of the variable substrates. ADP-ribose, a competitive inhibitor of NADH oxidase, was shown to compete more effectively with NADH (Ki = 40 microM) than with APAD+ (Ki = 150 microM) in the transhydrogenase reaction. FMN redox cycling-dependent, FP catalyzed DD transhydrogenase reaction was shown to proceed through a ternary complex mechanism. The results suggest that Complex I and the simplest catalytically competent fragment derived therefrom (FP) possess more than one nucleotide-binding sites operating in the transhydrogenase reaction.
Collapse
Affiliation(s)
- N V Zakharova
- Department of Biochemistry, School of Biology, Moscow State University, Russian Federation
| | | | | |
Collapse
|
10
|
Gupta S, Quirk PG, Venning JD, Slade J, Bizouarn T, Grimley RL, Cotton NP, Jackson JB. Mutation of amino acid residues in the mobile loop region of the NAD(H)-binding domain of proton-translocating transhydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1409:25-38. [PMID: 9804876 DOI: 10.1016/s0005-2728(98)00146-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of single amino acid substitutions in the mobile loop region of the recombinant NAD(H)-binding domain (dI) of transhydrogenase have been examined. The mutations lead to clear assignments of well-defined resonances in one-dimensional 1H-NMR spectra. As with the wild-type protein, addition of NADH, or higher concentrations of NAD+, led to broadening and some shifting of the well-defined resonances. With many of the mutant dI proteins more nucleotide was required for these effects than with wild-type protein. Binding constants of the mutant proteins for NADH were determined by equilibrium dialysis and, where possible, by NMR. Generally, amino acid changes in the mobile loop region gave rise to a 2-4-fold increase in the dI-nucleotide dissociation constants, but substitution of Ala236 for Gly had a 10-fold effect. The mutant dI proteins were reconstituted with dI-depleted bacterial membranes with apparent docking affinities that were indistinguishable from that of wild-type protein. In the reconstituted system, most of the mutants were more inhibited in their capacity to perform cyclic transhydrogenation (reduction of acetyl pyridine adenine dinucleotide, AcPdAD+, by NADH in the presence of NADP+) than in either the simple reduction of AcPdAD+ by NADPH, or the light-driven reduction of thio-NADP+ by NADH, which suggests that they are impaired at the hydride transfer step. A cross-peak in the 1H-1H nuclear Overhauser enhancement spectrum of a mixture of wild-type dI and NADH was assigned to an interaction between the A8 proton of the nucleotide and the betaCH3 protons of Ala236. It is proposed that, following nucleotide binding, the mobile loop folds down on to the surface of the dI protein, and that contacts, especially from Tyr235 in a Gly-Tyr-Ala motif with the adenosine moiety of the nucleotide, set the position of the nicotinamide ring of NADH close to that of NADP+ in dIII to effect direct hydride transfer.
Collapse
Affiliation(s)
- S Gupta
- School of Biochemistry, University of Birmingham, Edgbaston B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bragg PD, Hou C. Effect of truncation and mutation of the carboxyl-terminal region of the beta subunit on membrane assembly and activity of the pyridine nucleotide transhydrogenase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:464-72. [PMID: 9711299 DOI: 10.1016/s0005-2728(98)00100-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli is a proton pump composed of two different subunits (alpha and beta) assembled as a tetramer (alpha 2 beta 2) in the cytoplasmic membrane. A series of mutants was generated in which the carboxyl-terminal region of the beta subunit was progressively truncated. Removal of the two carboxyl-terminal amino acid residues prevented incorporation of the enzyme into the cytoplasmic membrane. Deletion of the carboxyl-terminal amino acid allowed incorporation of the alpha subunit to near normal levels, but the amount of the beta subunit was much decreased. It is concluded that, although the alpha subunit can be incorporated into the cytoplasmic membrane without the beta subunit, the carboxyl-terminal region of the beta subunit is involved in determining the correct conformation of the alpha subunit for assembly. The carboxyl-terminal amino acid of the beta subunit, beta Leu462, and the penultimate residue, beta Ala461, were individually mutated and the effect on two transhydrogenase activities determined. The reduction of 3-acetylpyridine adenine dinucleotide (AcPyAD+) by NADPH, and by NADH in the presence of NADP+, was decreased maximally by about 60%. The reduction of AcPyAD+ by NADH in the absence of NADP+ was decreased to a greater extent. Most mutants of beta Leu462 showed at least an 80% reduction in activity as well as abnormal kinetics. The abnormal kinetics were explored in the beta A461P mutant and were attributed to tighter binding of the product AcPyADH. This compound competed with NADP+ at the NADP(H)-binding site. It is concluded that the carboxyl-terminal region of the beta subunit contributes to the NADP(H)-binding site on this subunit.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
12
|
Venning JD, Grimley RL, Bizouarn T, Cotton NP, Jackson JB. Evidence that the transfer of hydride ion equivalents between nucleotides by proton-translocating transhydrogenase is direct. J Biol Chem 1997; 272:27535-8. [PMID: 9346886 DOI: 10.1074/jbc.272.44.27535] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The molecular masses of the purified, recombinant nucleotide-binding domains (domains I and III) of transhydrogenase from Rhodospirillum rubrum were determined by electrospray mass spectrometry. The values obtained, 40,273 and 21,469 Da, for domains I and III, respectively, are similar to those estimated from the amino acid sequences of the proteins. Evidently, there are no prosthetic groups or metal centers that can serve as reducible intermediates in hydride transfer between nucleotides bound to these proteins. The transient-state kinetics of hydride transfer catalyzed by mixtures of recombinant domains I and III were studied by stopped-flow spectrophotometry. The data indicate that oxidation of NADPH, bound to domain III, and reduction of acetylpyridine adenine dinucleotide (an NAD+ analogue), bound to domain I, are simultaneous and very fast. The transient-state reaction proceeds as a biphasic burst of hydride transfer before establishment of a steady state, which is limited by slow release of NADP+. Hydride transfer between the nucleotides is evidently direct. This conclusion indicates that the nicotinamide rings of the nucleotides are in close apposition during the hydride transfer reaction, and it imposes firm constraints on the mechanism by which transhydrogenation is linked to proton translocation.
Collapse
Affiliation(s)
- J D Venning
- School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|