1
|
Hellwig P. The electrochemical properties of the highly diverse terminal oxidases from different organisms. Bioelectrochemistry 2025; 165:108946. [PMID: 40020283 DOI: 10.1016/j.bioelechem.2025.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Terminal oxidases are critical for aerobic respiratory chains of prokaryotes and eukaryotes, responsible for the final step in the electron transport chain. These enzymes catalyze the transfer of electrons from reduced electron carriers (such as cytochrome c or quinols) to the terminal electron acceptor, molecular oxygen (O₂), thereby reducing it to water. They play a pivotal role in aerobic respiration and energy metabolism, adapting to diverse environmental and physiological needs across different organisms. This review summarizes the electrochemical properties of terminal oxidases from different organisms and reveals their high degree of adaptivity with redox potentials spanning more than 500 mV. The electrocatalytic response in direct electrochemical approaches is described giving insight into the rich and complex electron and proton transfer catalysed by these essential enzymes.
Collapse
Affiliation(s)
- Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioélectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France, Institut Universitaire de France (IUF).
| |
Collapse
|
2
|
Pouder E, Vince E, Jacquot K, Traoré MB, Grosche A, Ludwig M, Jebbar M, Maignien L, Alain K, Mieszkin S. Phenylobacterium ferrooxidans sp. nov., isolated from a sub-surface geothermal aquifer in Iceland. Syst Appl Microbiol 2025; 48:126578. [PMID: 39718174 DOI: 10.1016/j.syapm.2024.126578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
A novel bacterial strain, HK31-GT, was isolated from a subsurface geothermal aquifer (Hellisheidi, SW-Iceland) and was characterized using a polyphasic taxonomic approach. Phylogenetic analysis of 16S rRNA gene along with phylogenomic position indicated that the novel strain belongs to the genus Phenylobacterium. Cells are motile Gram-negative thin rods. Physiological characterization showed that strain HK31-GT is a mesophilic bacterium able to grow from 10 to 30 °C, at pH values between 6 and 8 and at NaCl concentrations between 0 and 0.5 %. Optimal growth was observed without sodium chloride at 25 °C and pH 6. Strain HK31-GT is chemoorganoheterotroph and its major saturated fatty acids are C18:1ω7c, C16:1ω6c and C16:0, the predominant quinone is Q-10 and the major polar lipid is phosphatidylglycerol. The new strain also possesses the capacity to use ferrous iron (Fe(II)) as the sole energy source and can also be considered as a chemolithoautotrophic microorganism. The overall genome of strain HK31-GT was estimated to be 4.46 Mbp in size with a DNA G + C content of 67.95 %. Genes involved in iron metabolism were identified, but no genes typically involved in Fe(II)-oxidation were found. According to the overall genome relatedness indices (OGRI) values, six MAGs from groundwater have been assigned to the same species as the new strain HK31-GT. Furthermore, OGRI values between the genome of strain HK31-GT and the genomes of its closest relatives are below the species delineation threshold. Therefore, given the polyphasic approach used, strain HK31-GT represents a novel species of the genus Phenylobacterium, for which the name Phenylobacterium ferrooxidans sp. nov. is proposed. The type strain is HK31-GT (DSM 116432T = UBOCC-M-3429T = LMG 33376T).
Collapse
Affiliation(s)
- Eva Pouder
- Univ Brest, CNRS, IFREMER, EMR 6002 BIOMEX, Unité Biologie et Écologie des Écosystèmes marins Profonds BEEP, F-29280 Plouzané, France
| | - Erwann Vince
- Univ Brest, CNRS, IFREMER, EMR 6002 BIOMEX, Unité Biologie et Écologie des Écosystèmes marins Profonds BEEP, F-29280 Plouzané, France
| | - Karen Jacquot
- Univ Brest, CNRS, IFREMER, EMR 6002 BIOMEX, Unité Biologie et Écologie des Écosystèmes marins Profonds BEEP, F-29280 Plouzané, France
| | - Maimouna Batoma Traoré
- Univ Brest, CNRS, IFREMER, EMR 6002 BIOMEX, Unité Biologie et Écologie des Écosystèmes marins Profonds BEEP, F-29280 Plouzané, France
| | - Ashley Grosche
- Univ Brest, CNRS, IFREMER, EMR 6002 BIOMEX, Unité Biologie et Écologie des Écosystèmes marins Profonds BEEP, F-29280 Plouzané, France
| | - Maria Ludwig
- Univ Brest, CNRS, IFREMER, EMR 6002 BIOMEX, Unité Biologie et Écologie des Écosystèmes marins Profonds BEEP, F-29280 Plouzané, France
| | - Mohamed Jebbar
- Univ Brest, CNRS, IFREMER, EMR 6002 BIOMEX, Unité Biologie et Écologie des Écosystèmes marins Profonds BEEP, F-29280 Plouzané, France
| | - Loïs Maignien
- Univ Brest, CNRS, IFREMER, EMR 6002 BIOMEX, Unité Biologie et Écologie des Écosystèmes marins Profonds BEEP, F-29280 Plouzané, France
| | - Karine Alain
- Univ Brest, CNRS, IFREMER, EMR 6002 BIOMEX, Unité Biologie et Écologie des Écosystèmes marins Profonds BEEP, F-29280 Plouzané, France
| | - Sophie Mieszkin
- Univ Brest, CNRS, IFREMER, EMR 6002 BIOMEX, Unité Biologie et Écologie des Écosystèmes marins Profonds BEEP, F-29280 Plouzané, France.
| |
Collapse
|
3
|
Zimoń B, Psujek M, Matczak J, Guziński A, Wójcik E, Dastych J. Novel multiplex-PCR test for Escherichia coli detection. Microbiol Spectr 2024; 12:e0377323. [PMID: 38687052 PMCID: PMC11237426 DOI: 10.1128/spectrum.03773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Escherichia coli is a diverse and ubiquitous strain of both commensal and pathogenic bacteria. In this study, we propose the use of multiplex polymerase chain reaction (PCR), using amplification of three genes (cydA, lacY, and ydiV), as a method for determining the affiliation of the tested strains to the E. coli species. The novelty of the method lies in the small number of steps needed to perform the diagnosis and, consequently, in the small amount of time needed to obtain it. This method, like any other, has some limitations, but its advantage is fast, cheap, and reliable identification of the presence of E. coli. Sequences of the indicated genes from 1,171 complete E. coli genomes in the NCBI database were used to prepare the primers. The developed multiplex PCR was tested on 47,370 different Enterobacteriaceae genomes using in silico PCR. The sensitivity and specificity of the developed test were 95.76% and 99.49%, respectively. Wet laboratory analyses confirmed the high specificity, repeatability, reproducibility, and reliability of the proposed test. Because of the detection of three genes, this method is very cost and labor-effective, yet still highly accurate, specific, and sensitive in comparison to similar methods. IMPORTANCE Detection of E. coli from environmental or clinical samples is important due to the common occurrence of this species of bacteria in all human and animal environments. As commonly known, these bacteria strains can be commensal and pathogenic, causing numerous infections of clinical importance, including infections of the digestive system, urinary, respiratory, and even meninges, particularly dangerous for newborns. The developed multiplex polymerase chain reaction test, confirming the presence of E. coli in samples, can be used in many laboratories. The test provides new opportunities for quick and cheap analyses, detecting E. coli using only three pairs of primers (analysis of the presence of three genes) responsible for metabolism and distinguishing E. coli from other pathogens from the Enterobacteriaceae family. Compared to other tests previously described in the literature, our method is characterized by high specificity and sensitivity.
Collapse
Affiliation(s)
- Bogumił Zimoń
- Bioinformatics and Genetics Department, Proteon Pharmaceuticals, Lodz, Lodzkie, Poland
| | - Michał Psujek
- Diagnostics and Monitoring Department, Proteon Pharmaceuticals, Lodz, Lodzkie, Poland
| | - Justyna Matczak
- Diagnostics and Monitoring Department, Proteon Pharmaceuticals, Lodz, Lodzkie, Poland
| | - Arkadiusz Guziński
- Bioinformatics and Genetics Department, Proteon Pharmaceuticals, Lodz, Lodzkie, Poland
| | - Ewelina Wójcik
- Proteon Pharmaceuticals, Supervisor, Lodz, Lodzkie, Poland
| | | |
Collapse
|
4
|
Luo ZH, Li Q, Xie YG, Lv AP, Qi YL, Li MM, Qu YN, Liu ZT, Li YX, Rao YZ, Jiao JY, Liu L, Narsing Rao MP, Hedlund BP, Evans PN, Fang Y, Shu WS, Huang LN, Li WJ, Hua ZS. Temperature, pH, and oxygen availability contributed to the functional differentiation of ancient Nitrososphaeria. THE ISME JOURNAL 2024; 18:wrad031. [PMID: 38365241 PMCID: PMC10833072 DOI: 10.1093/ismejo/wrad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/18/2024]
Abstract
Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes. Comparative genomics revealed that extant non-AOA are functionally diverse, with capacity for carbon fixation, carbon monoxide oxidation, methanogenesis, and respiratory pathways including oxygen, nitrate, sulfur, or sulfate, as potential terminal electron acceptors. Despite their diverse anaerobic pathways, evolutionary history inference suggested that the common ancestor of Nitrososphaeria was likely an aerobic thermophile. We further surmise that the functional differentiation of Nitrososphaeria was primarily shaped by oxygen, pH, and temperature, with the acquisition of pathways for carbon, nitrogen, and sulfur metabolism. Our study provides a more holistic and less biased understanding of the diversity, ecology, and deep evolution of the globally abundant Nitrososphaeria.
Collapse
Affiliation(s)
- Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qi Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuan-Guo Xie
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ling Qi
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yu-Xian Li
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang-Zhi Rao
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, 3460000 Talca, Chile
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, United States
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, United States
| | - Paul N Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Yuan Fang
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
- Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou 510006, PR China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
5
|
Makarchuk I, Gerasimova T, Kägi J, Wohlwend D, Melin F, Friedrich T, Hellwig P. Mutating the environment of heme b 595 of E. coli cytochrome bd-I oxidase shifts its redox potential by 200 mV without inactivating the enzyme. Bioelectrochemistry 2023; 151:108379. [PMID: 36736178 DOI: 10.1016/j.bioelechem.2023.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Cytochrome bd-I catalyzes the reduction of oxygen to water with the aid of hemes b558, b595 and d. Here, effects of a mutation of E445, a ligand of heme b595 and of R448, hydrogen bonded to E445 are studied electrochemically in the E. coli enzyme. The equilibrium potential of the three hemes are shifted by up to 200 mV in these mutants. Strikingly the E445D and the R448N mutants show a turnover of 41 ± 2 % and 20 ± 4 %, respectively. Electrocatalytic studies confirm that the mutants react with oxygen and bind and release NO. These results point towards the ability of cytochrome bd to react even if the electron transfer is less favorable.
Collapse
Affiliation(s)
- Iryna Makarchuk
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Tatjana Gerasimova
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Jan Kägi
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Daniel Wohlwend
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Thorsten Friedrich
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany.
| |
Collapse
|
6
|
Makarchuk I, Kägi J, Gerasimova T, Wohlwend D, Friedrich T, Melin F, Hellwig P. pH-dependent kinetics of NO release from E. coli bd-I and bd-II oxidase reveals involvement of Asp/Glu58 B. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148952. [PMID: 36535430 DOI: 10.1016/j.bbabio.2022.148952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Escherichia coli contains two cytochrome bd oxidases, bd-I and bd-II. The structure of both enzymes is highly similar, but they exhibit subtle differences such as the accessibility of the active site through a putative proton channel. Here, we demonstrate that the duroquinol:dioxygen oxidoreductase activity of bd-I increased with alkaline pH, whereas bd-II showed a broad activity maximum around pH 7. Likewise, the pH dependence of NO release from the reduced active site, an essential property of bd oxidases, differed between the two oxidases as detected by UV/vis spectroscopy. Both findings may be attributed to differences in the proton channel leading to the active site heme d. The channel comprises a titratable residue (Asp58B in bd-I and Glu58B in bd-II). Conservative mutations at this position drastically altered NO release demonstrating its contribution to the process.
Collapse
Affiliation(s)
- Iryna Makarchuk
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
| | - Jan Kägi
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Tatjana Gerasimova
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France.
| |
Collapse
|
7
|
Jeffreys L, Ardrey A, Hafiz TA, Dyer LA, Warman AJ, Mosallam N, Nixon GL, Fisher NE, Hong WD, Leung SC, Aljayyoussi G, Bibby J, Almeida DV, Converse PJ, Fotouhi N, Berry NG, Nuermberger EL, Upton AM, O’Neill PM, Ward SA, Biagini GA. Identification of 2-Aryl-Quinolone Inhibitors of Cytochrome bd and Chemical Validation of Combination Strategies for Respiratory Inhibitors against Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:221-238. [PMID: 36606559 PMCID: PMC9926492 DOI: 10.1021/acsinfecdis.2c00283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis cytochrome bd quinol oxidase (cyt bd), the alternative terminal oxidase of the respiratory chain, has been identified as playing a key role during chronic infection and presents a putative target for the development of novel antitubercular agents. Here, we report confirmation of successful heterologous expression of M. tuberculosis cytochrome bd. The heterologous M. tuberculosis cytochrome bd expression system was used to identify a chemical series of inhibitors based on the 2-aryl-quinolone pharmacophore. Cytochrome bd inhibitors displayed modest efficacy in M. tuberculosis growth suppression assays together with a bacteriostatic phenotype in time-kill curve assays. Significantly, however, inhibitor combinations containing our front-runner cyt bd inhibitor CK-2-63 with either cyt bcc-aa3 inhibitors (e.g., Q203) and/or adenosine triphosphate (ATP) synthase inhibitors (e.g., bedaquiline) displayed enhanced efficacy with respect to the reduction of mycobacterium oxygen consumption, growth suppression, and in vitro sterilization kinetics. In vivo combinations of Q203 and CK-2-63 resulted in a modest lowering of lung burden compared to treatment with Q203 alone. The reduced efficacy in the in vivo experiments compared to in vitro experiments was shown to be a result of high plasma protein binding and a low unbound drug exposure at the target site. While further development is required to improve the tractability of cyt bd inhibitors for clinical evaluation, these data support the approach of using small-molecule inhibitors to target multiple components of the branched respiratory chain of M. tuberculosis as a combination strategy to improve therapeutic and pharmacokinetic/pharmacodynamic (PK/PD) indices related to efficacy.
Collapse
Affiliation(s)
- Laura
N. Jeffreys
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Alison Ardrey
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Taghreed A. Hafiz
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Lauri-Anne Dyer
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Ashley J. Warman
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Nada Mosallam
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Gemma L. Nixon
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Nicholas E. Fisher
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - W. David Hong
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Suet C. Leung
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Ghaith Aljayyoussi
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Jaclyn Bibby
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Deepak V. Almeida
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland21205, United States
| | - Paul J. Converse
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland21205, United States
| | - Nader Fotouhi
- Global
Alliance for TB Drug Development, New York, New York10005, United States
| | - Neil G. Berry
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Eric L. Nuermberger
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland21205, United States
| | - Anna M. Upton
- Global
Alliance for TB Drug Development, New York, New York10005, United States
- Evotec
(US) Inc., 303B College Road East, Princeton, New Jersey08540, United States
| | - Paul M. O’Neill
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Stephen A. Ward
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Giancarlo A. Biagini
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| |
Collapse
|
8
|
Munro-Ehrlich M, Nothaft DB, Fones EM, Matter JM, Templeton AS, Boyd ES. Parapatric speciation of Meiothermus in serpentinite-hosted aquifers in Oman. Front Microbiol 2023; 14:1138656. [PMID: 37125170 PMCID: PMC10130571 DOI: 10.3389/fmicb.2023.1138656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
The factors that control the distribution and evolution of microbial life in subsurface environments remain enigmatic due to challenges associated with sampling fluids from discrete depth intervals via boreholes while avoiding mixing of fluids. Here, using an inflatable packer system, fracture waters were isolated and collected from three discrete depth intervals spanning >130 m in a borehole intersecting an ultramafic rock formation undergoing serpentinization in the Samail Ophiolite, Sultanate of Oman. Near surface aquifer waters were moderately reducing and had alkaline pH while deeper aquifer waters were reduced and had hyperalkaline pH, indicating extensive influence by serpentinization. Metagenomic sequencing and analysis of DNA from filtered biomass collected from discrete depth intervals revealed an abundance of aerobes in near surface waters and a greater proportion of anaerobes at depth. Yet the abundance of the putatively obligate aerobe, Meiothermus, increased with depth, providing an opportunity to evaluate the influence of chemical and spatial variation on its distribution and speciation. Two clades of Meiothermus metagenome assembled genomes (MAGs) were identified that correspond to surface and deep populations termed Types I (S) and II (D), respectively; both clades comprised an apparently Oman-specific lineage indicating a common ancestor. Type II (D) clade MAGs encoded fewer genes and were undergoing slower genome replication as inferred from read mapping. Further, single nucleotide variants (SNVs) and mobile genetic elements identified among MAGs revealed detectable, albeit limited, evidence for gene flow/recombination between spatially segregated Type I (S) and Type II (D) populations. Together, these observations indicate that chemical variation generated by serpentinization, combined with physical barriers that reduce/limit dispersal and gene flow, allowed for the parapatric speciation of Meiothermus in the Samail Ophiolite or a geologic precursor. Further, Meiothermus genomic data suggest that deep and shallow aquifer fluids in the Samail Ophiolite may mix over shorter time scales than has been previously estimated from geochemical data.
Collapse
Affiliation(s)
- Mason Munro-Ehrlich
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Daniel B. Nothaft
- Department of Geosciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Elizabeth M. Fones
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Juerg M. Matter
- School of Ocean and Earth Science, University of Southampton, Southampton, United Kingdom
| | - Alexis S. Templeton
- Department of Geosciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
- *Correspondence: Eric S. Boyd,
| |
Collapse
|
9
|
Borisov VB, Forte E. Bioenergetics and Reactive Nitrogen Species in Bacteria. Int J Mol Sci 2022; 23:7321. [PMID: 35806323 PMCID: PMC9266656 DOI: 10.3390/ijms23137321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
The production of reactive nitrogen species (RNS) by the innate immune system is part of the host's defense against invading pathogenic bacteria. In this review, we summarize recent studies on the molecular basis of the effects of nitric oxide and peroxynitrite on microbial respiration and energy conservation. We discuss possible molecular mechanisms underlying RNS resistance in bacteria mediated by unique respiratory oxygen reductases, the mycobacterial bcc-aa3 supercomplex, and bd-type cytochromes. A complete picture of the impact of RNS on microbial bioenergetics is not yet available. However, this research area is developing very rapidly, and the knowledge gained should help us develop new methods of treating infectious diseases.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
10
|
Pacheco PJ, Cabrera JJ, Jiménez-Leiva A, Bedmar EJ, Mesa S, Tortosa G, Delgado MJ. Effect of Copper on Expression of Functional Genes and Proteins Associated with Bradyrhizobium diazoefficiens Denitrification. Int J Mol Sci 2022; 23:ijms23063386. [PMID: 35328804 PMCID: PMC8951191 DOI: 10.3390/ijms23063386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas that contributes to climate change. Denitrification is one of the largest sources of N2O in soils. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model for rhizobial denitrification studies since, in addition to fixing N2, it has the ability to grow anaerobically under free-living conditions by reducing nitrate from the medium through the complete denitrification pathway. This bacterium contains a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a Cu-dependent nitrous oxide reductase (Nos) encoded by the napEDABC, nirK, norCBQD and nosRZDFYLX genes, respectively. In this work, an integrated study of the role of Cu in B. diazoefficiens denitrification has been performed. A notable reduction in nirK, nor, and nos gene expression observed under Cu limitation was correlated with a significant decrease in NirK, NorC and NosZ protein levels and activities. Meanwhile, nap expression was not affected by Cu, but a remarkable depletion in Nap activity was found, presumably due to an inhibitory effect of nitrite accumulated under Cu-limiting conditions. Interestingly, a post-transcriptional regulation by increasing Nap and NirK activities, as well as NorC and NosZ protein levels, was observed in response to high Cu. Our results demonstrate, for the first time, the role of Cu in transcriptional and post-transcriptional control of B. diazoefficiens denitrification. Thus, this study will contribute by proposing useful strategies for reducing N2O emissions from agricultural soils.
Collapse
|
11
|
Borisov VB, Forte E. Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics. Int J Mol Sci 2021; 22:12688. [PMID: 34884491 PMCID: PMC8657789 DOI: 10.3390/ijms222312688] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
This review focuses on the effects of hydrogen sulfide (H2S) on the unique bioenergetic molecular machines in mitochondria and bacteria-the protein complexes of electron transport chains and associated enzymes. H2S, along with nitric oxide and carbon monoxide, belongs to the class of endogenous gaseous signaling molecules. This compound plays critical roles in physiology and pathophysiology. Enzymes implicated in H2S metabolism and physiological actions are promising targets for novel pharmaceutical agents. The biological effects of H2S are biphasic, changing from cytoprotection to cytotoxicity through increasing the compound concentration. In mammals, H2S enhances the activity of FoF1-ATP (adenosine triphosphate) synthase and lactate dehydrogenase via their S-sulfhydration, thereby stimulating mitochondrial electron transport. H2S serves as an electron donor for the mitochondrial respiratory chain via sulfide quinone oxidoreductase and cytochrome c oxidase at low H2S levels. The latter enzyme is inhibited by high H2S concentrations, resulting in the reversible inhibition of electron transport and ATP production in mitochondria. In the branched respiratory chain of Escherichia coli, H2S inhibits the bo3 terminal oxidase but does not affect the alternative bd-type oxidases. Thus, in E. coli and presumably other bacteria, cytochrome bd permits respiration and cell growth in H2S-rich environments. A complete picture of the impact of H2S on bioenergetics is lacking, but this field is fast-moving, and active ongoing research on this topic will likely shed light on additional, yet unknown biological effects.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
12
|
Ecological Dichotomies Arise in Microbial Communities Due to Mixing of Deep Hydrothermal Waters and Atmospheric Gas in a Circumneutral Hot Spring. Appl Environ Microbiol 2021; 87:e0159821. [PMID: 34586901 PMCID: PMC8579995 DOI: 10.1128/aem.01598-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known of how the confluence of subsurface and surface processes influences the assembly and habitability of hydrothermal ecosystems. To address this knowledge gap, the geochemical and microbial composition of a high-temperature, circumneutral hot spring in Yellowstone National Park was examined to identify the sources of solutes and their effect on the ecology of microbial inhabitants. Metagenomic analysis showed that populations comprising planktonic and sediment communities are archaeal dominated, are dependent on chemical energy (chemosynthetic), share little overlap in their taxonomic composition, and are differentiated by their inferred use of/tolerance to oxygen and mode of carbon metabolism. The planktonic community is dominated by putative aerobic/aerotolerant autotrophs, while the taxonomic composition of the sediment community is more evenly distributed and comprised of anaerobic heterotrophs. These observations are interpreted to reflect sourcing of the spring by anoxic, organic carbon-limited subsurface hydrothermal fluids and ingassing of atmospheric oxygen that selects for aerobic/aerotolerant organisms that have autotrophic capabilities in the water column. Autotrophy and consumption of oxygen by the planktonic community may influence the assembly of the anaerobic and heterotrophic sediment community. Support for this inference comes from higher estimated rates of genome replication in planktonic populations than sediment populations, indicating faster growth in planktonic populations. Collectively, these observations provide new insight into how mixing of subsurface waters and atmospheric oxygen create dichotomy in the ecology of hot spring communities and suggest that planktonic and sediment communities may have been less differentiated taxonomically and functionally prior to the rise of oxygen at ∼2.4 billion years ago (Gya). IMPORTANCE Understanding the source and availability of energy capable of supporting life in hydrothermal environments is central to predicting the ecology of microbial life on early Earth when volcanic activity was more widespread. Little is known of the substrates supporting microbial life in circumneutral to alkaline springs, despite their relevance to early Earth habitats. Using metagenomic and informatics approaches, water column and sediment habitats in a representative circumneutral hot spring in Yellowstone were shown to be dichotomous, with the former largely hosting aerobic/aerotolerant autotrophs and the latter primarily hosting anaerobic heterotrophs. This dichotomy is attributed to influx of atmospheric oxygen into anoxic deep hydrothermal spring waters. These results indicate that the ecology of microorganisms in circumneutral alkaline springs sourced by deep hydrothermal fluids was different prior to the rise of atmospheric oxygen ∼2.4 Gya, with planktonic and sediment communities likely to be less differentiated than contemporary circumneutral hot springs.
Collapse
|
13
|
Siletsky SA, Borisov VB. Proton Pumping and Non-Pumping Terminal Respiratory Oxidases: Active Sites Intermediates of These Molecular Machines and Their Derivatives. Int J Mol Sci 2021; 22:10852. [PMID: 34639193 PMCID: PMC8509429 DOI: 10.3390/ijms221910852] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Terminal respiratory oxidases are highly efficient molecular machines. These most important bioenergetic membrane enzymes transform the energy of chemical bonds released during the transfer of electrons along the respiratory chains of eukaryotes and prokaryotes from cytochromes or quinols to molecular oxygen into a transmembrane proton gradient. They participate in regulatory cascades and physiological anti-stress reactions in multicellular organisms. They also allow microorganisms to adapt to low-oxygen conditions, survive in chemically aggressive environments and acquire antibiotic resistance. To date, three-dimensional structures with atomic resolution of members of all major groups of terminal respiratory oxidases, heme-copper oxidases, and bd-type cytochromes, have been obtained. These groups of enzymes have different origins and a wide range of functional significance in cells. At the same time, all of them are united by a catalytic reaction of four-electron reduction in oxygen into water which proceeds without the formation and release of potentially dangerous ROS from active sites. The review analyzes recent structural and functional studies of oxygen reduction intermediates in the active sites of terminal respiratory oxidases, the features of catalytic cycles, and the properties of the active sites of these enzymes.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Vitaliy B. Borisov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia;
| |
Collapse
|
14
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
15
|
Borisov VB, Forte E. Terminal Oxidase Cytochrome bd Protects Bacteria Against Hydrogen Sulfide Toxicity. BIOCHEMISTRY (MOSCOW) 2021; 86:22-32. [PMID: 33705279 DOI: 10.1134/s000629792101003x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2S) is often called the third gasotransmitter (after nitric oxide and carbon monoxide), or endogenous gaseous signaling molecule. This compound plays important roles in organisms from different taxonomic groups, from bacteria to animals and humans. In mammalian cells, H2S has a cytoprotective effect at nanomolar concentrations, but becomes cytotoxic at higher concentrations. The primary target of H2S is mitochondria. At submicromolar concentrations, H2S inhibits mitochondrial heme-copper cytochrome c oxidase, thereby blocking aerobic respiration and oxidative phosphorylation and eventually leading to cell death. Since the concentration of H2S in the gut is extremely high, the question arises - how can gut bacteria maintain the functioning of their oxygen-dependent respiratory electron transport chains under such conditions? This review provides an answer to this question and discusses the key role of non-canonical bd-type terminal oxidases of the enterobacterium Escherichia coli, a component of the gut microbiota, in maintaining aerobic respiration and growth in the presence of toxic concentrations of H2S in the light of recent experimental data.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, I-00185 Rome, Italy
| |
Collapse
|
16
|
Nikolaev A, Safarian S, Thesseling A, Wohlwend D, Friedrich T, Michel H, Kusumoto T, Sakamoto J, Melin F, Hellwig P. Electrocatalytic evidence of the diversity of the oxygen reaction in the bacterial bd oxidase from different organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148436. [PMID: 33940039 DOI: 10.1016/j.bbabio.2021.148436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Cytochrome bd oxidase is a bacterial terminal oxygen reductase that was suggested to enable adaptation to different environments and to confer resistance to stress conditions. An electrocatalytic study of the cyt bd oxidases from Escherichia coli, Corynebacterium glutamicum and Geobacillus thermodenitrificans gives evidence for a different reactivity towards oxygen. An inversion of the redox potential values of the three hemes is found when comparing the enzymes from different bacteria. This inversion can be correlated with different protonated glutamic acids as evidenced by reaction induced FTIR spectroscopy. The influence of the microenvironment of the hemes on the reactivity towards oxygen is discussed.
Collapse
Affiliation(s)
- Anton Nikolaev
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg - CNRS 4, rue Blaise Pascal, 67081 Strasborg, France
| | - Schara Safarian
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Hartmut Michel
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Tomoichirou Kusumoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Fukuoka, Japan
| | - Junshi Sakamoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Fukuoka, Japan
| | - Frederic Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg - CNRS 4, rue Blaise Pascal, 67081 Strasborg, France.
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg - CNRS 4, rue Blaise Pascal, 67081 Strasborg, France; USIAS, University of Strasbourg Institute for Advanced Studies, Strasbourg, France.
| |
Collapse
|
17
|
André AC, Debande L, Marteyn BS. The selective advantage of facultative anaerobes relies on their unique ability to cope with changing oxygen levels during infection. Cell Microbiol 2021; 23:e13338. [PMID: 33813807 DOI: 10.1111/cmi.13338] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
Bacteria, including those that are pathogenic, have been generally classified according to their ability to survive and grow in the presence or absence of oxygen: aerobic and anaerobic bacteria, respectively. Strict aerobes require oxygen to grow (e.g., Neisseria), and strict anaerobes grow exclusively without, and do not survive oxygen exposure (e.g., Clostridia); aerotolerant bacteria (e.g., Lactobacilli) are insensitive to oxygen exposure. Facultative anaerobes (e.g., E. coli) have the unique ability to grow in the presence or in the absence of oxygen and are thus well-adapted to these changing conditions, which may constitute an underestimated selective advantage for infection. In the WHO antibiotic-resistant 'priority pathogens' list, facultative anaerobes are overrepresented (8 among 12 listed pathogens), consistent with clinical studies performed in populations particularly susceptible to infectious diseases. Bacteria aerobic respiratory chain plays a central role in oxygen consumption, leading to the formation of hypoxic infectious sites (infectious hypoxia). Facultative anaerobes have developed a wide diversity of aerotolerance and anaerotolerance strategies in vivo. However, at a single cell level, the modulation of the intracellular oxygen level in host infected cells remains elusive and will be discussed in this review. In conclusion, the ability of facultative bacteria to evolve in the presence or the absence of oxygen is essential for their virulence strategy and constitute a selective advantage. TAKE AWAY: Most life-threatening pathogenic bacteria are facultative anaerobes. Only facultative anaerobes are aerotolerant, anaerotolerant and capable of consuming O2 . Facultative anaerobes induce and are well adapted to cellular hypoxia.
Collapse
Affiliation(s)
- Antonin C André
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France.,Université de Paris, Paris, France
| | - Lorine Debande
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France
| | - Benoit S Marteyn
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.,Institut Pasteur, Unité de Pathogenèse des Infections Vasculaires, Paris Cedex 15, France
| |
Collapse
|
18
|
Steiner PA, Geijo J, Fadeev E, Obiol A, Sintes E, Rattei T, Herndl GJ. Functional Seasonality of Free-Living and Particle-Associated Prokaryotic Communities in the Coastal Adriatic Sea. Front Microbiol 2020; 11:584222. [PMID: 33304331 PMCID: PMC7701263 DOI: 10.3389/fmicb.2020.584222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Marine snow is an important habitat for microbes, characterized by chemical and physical properties contrasting those of the ambient water. The higher nutrient concentrations in marine snow lead to compositional differences between the ambient water and the marine snow-associated prokaryotic community. Whether these compositional differences vary due to seasonal environmental changes, however, remains unclear. Thus, we investigated the seasonal patterns of the free-living and marine snow-associated microbial community composition and their functional potential in the northern Adriatic Sea. Our data revealed seasonal patterns in both, the free-living and marine snow-associated prokaryotes. The two assemblages were more similar to each other in spring and fall than in winter and summer. The taxonomic distinctness resulted in a contrasting functional potential. Motility and adaptations to low temperature in winter and partly anaerobic metabolism in summer characterized the marine snow-associated prokaryotes. Free-living prokaryotes were enriched in genes indicative for functions related to phosphorus limitation in winter and in genes tentatively supplementing heterotrophic growth with proteorhodopsins and CO-oxidation in summer. Taken together, the results suggest a strong influence of environmental parameters on both free-living and marine snow-associated prokaryotic communities in spring and fall leading to higher similarity between the communities, while the marine snow habitat in winter and summer leads to a specific prokaryotic community in marine snow in these two seasons.
Collapse
Affiliation(s)
- Paul A. Steiner
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Javier Geijo
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Aleix Obiol
- Institut de Ciències del Mar, Institut de Ci ncies del Mar – Consejo Superior de Investigaciones Cient ficas (ICM-CSIC), Barcelona, Spain
| | - Eva Sintes
- Instituto Español de Oceanografia, Centre Oceanogràfic de les Balears, Palma, Spain
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Tang R, Weng C, Peng X, Han Y. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions. Metab Eng 2020; 61:11-23. [DOI: 10.1016/j.ymben.2020.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/21/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023]
|
20
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
21
|
Nikolaev A, Makarchuk I, Thesseling A, Hoeser J, Friedrich T, Melin F, Hellwig P. Stabilization of the Highly Hydrophobic Membrane Protein, Cytochrome bd Oxidase, on Metallic Surfaces for Direct Electrochemical Studies. Molecules 2020; 25:molecules25143240. [PMID: 32708635 PMCID: PMC7397230 DOI: 10.3390/molecules25143240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
The cytochrome bd oxidase catalyzes the reduction of oxygen to water in bacteria and it is thus an interesting target for electrocatalytic studies and biosensor applications. The bd oxidase is completely embedded in the phospholipid membrane. In this study, the variation of the surface charge of thiol-modified gold nanoparticles, the length of the thiols and the other crucial parameters including optimal phospholipid content and type, have been performed, giving insight into the role of these factors for the optimal interaction and direct electron transfer of an integral membrane protein. Importantly, all three tested factors, the lipid type, the electrode surface charge and the thiol length mutually influenced the stability of films of the cytochrome bd oxidase. The best electrocatalytic responses were obtained on the neutral gold surface when the negatively charged phosphatidylglycerol (PG) was used and on the charged gold surface when the zwitterionic phosphatidylethanolamine (PE) was used. The advantages of the covalent binding of the membrane protein to the electrode surface over the non-covalent binding are also discussed.
Collapse
Affiliation(s)
- Anton Nikolaev
- Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg, CNRS, 67081 Strasbourg, France; (A.N.); (I.M.)
| | - Iryna Makarchuk
- Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg, CNRS, 67081 Strasbourg, France; (A.N.); (I.M.)
| | - Alexander Thesseling
- Institut für Biochemie, Fakultät für Chemie und Pharmazie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; (A.T.); (J.H.); (T.F.)
| | - Jo Hoeser
- Institut für Biochemie, Fakultät für Chemie und Pharmazie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; (A.T.); (J.H.); (T.F.)
| | - Thorsten Friedrich
- Institut für Biochemie, Fakultät für Chemie und Pharmazie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; (A.T.); (J.H.); (T.F.)
| | - Frédéric Melin
- Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg, CNRS, 67081 Strasbourg, France; (A.N.); (I.M.)
- Correspondence: (F.M.); (P.H.)
| | - Petra Hellwig
- Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg, CNRS, 67081 Strasbourg, France; (A.N.); (I.M.)
- Correspondence: (F.M.); (P.H.)
| |
Collapse
|
22
|
Olaya-Abril A, Pérez MD, Cabello P, Martignetti D, Sáez LP, Luque-Almagro VM, Moreno-Vivián C, Roldán MD. Role of the Dihydrodipicolinate Synthase DapA1 on Iron Homeostasis During Cyanide Assimilation by the Alkaliphilic Bacterium Pseudomonas pseudoalcaligenes CECT5344. Front Microbiol 2020; 11:28. [PMID: 32038602 PMCID: PMC6989483 DOI: 10.3389/fmicb.2020.00028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
Cyanide is a toxic compound widely used in mining and jewelry industries, as well as in the synthesis of many different chemicals. Cyanide toxicity derives from its high affinity for metals, which causes inhibition of relevant metalloenzymes. However, some cyanide-degrading microorganisms like the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 may detoxify hazardous industrial wastewaters that contain elevated cyanide and metal concentrations. Considering that iron availability is strongly reduced in the presence of cyanide, mechanisms for iron homeostasis should be required for cyanide biodegradation. Previous omic studies revealed that in the presence of a cyanide-containing jewelry residue the strain CECT5344 overproduced the dihydrodipicolinate synthase DapA1, a protein involved in lysine metabolism that also participates in the synthesis of dipicolinates, which are excellent metal chelators. In this work, a dapA1 - mutant of P. pseudoalcaligenes CECT5344 has been generated and characterized. This mutant showed reduced growth and cyanide consumption in media with the cyanide-containing wastewater. Intracellular levels of metals like iron, copper and zinc were increased in the dapA1 - mutant, especially in cells grown with the jewelry residue. In addition, a differential quantitative proteomic analysis by LC-MS/MS was carried out between the wild-type and the dapA1 - mutant strains in media with jewelry residue. The mutation in the dapA1 gene altered the expression of several proteins related to urea cycle and metabolism of arginine and other amino acids. Additionally, the dapA1 - mutant showed increased levels of the global nitrogen regulator PII and the glutamine synthetase. This proteomic study has also highlighted that the DapA1 protein is relevant for cyanide resistance, oxidative stress and iron homeostasis response, which is mediated by the ferric uptake regulator Fur. DapA1 is required to produce dipicolinates that could act as iron chelators, conferring protection against oxidative stress and allowing the regeneration of Fe-S centers to reactivate cyanide-damaged metalloproteins.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Pérez
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Diego Martignetti
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - Lara Paloma Sáez
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | | | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
23
|
Cabello P, Luque-Almagro VM, Olaya-Abril A, Sáez LP, Moreno-Vivián C, Roldán MD. Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcaligenes CECT5344: from omic approaches to biotechnological applications. FEMS Microbiol Lett 2019; 365:4847882. [PMID: 29438505 PMCID: PMC5939895 DOI: 10.1093/femsle/fny032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed.
Collapse
Affiliation(s)
- Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Víctor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Lara P Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - M Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
24
|
Sáez LP, Cabello P, Ibáñez MI, Luque-Almagro VM, Roldán MD, Moreno-Vivián C. Cyanate Assimilation by the Alkaliphilic Cyanide-Degrading Bacterium Pseudomonas pseudoalcaligenes CECT5344: Mutational Analysis of the cyn Gene Cluster. Int J Mol Sci 2019; 20:ijms20123008. [PMID: 31226739 PMCID: PMC6627978 DOI: 10.3390/ijms20123008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 11/20/2022] Open
Abstract
The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 can grow with cyanate, cyanide, or cyanide-containing industrial residues as the sole nitrogen source, but the assimilation of cyanide and cyanate takes place through independent pathways. Therefore, cyanide degradation involves a chemical reaction between cyanide and oxaloacetate to form a nitrile that is hydrolyzed to ammonium by the nitrilase NitC, whereas cyanate assimilation requires a cyanase that catalyzes cyanate decomposition to ammonium and carbon dioxide. The P. pseudoalcaligenes CECT5344 cynFABDS gene cluster codes for the putative transcriptional regulator CynF, the ABC-type cyanate transporter CynABD, and the cyanase CynS. In this study, transcriptional analysis revealed that the structural cynABDS genes constitute a single transcriptional unit, which was induced by cyanate and repressed by ammonium. Mutational characterization of the cyn genes indicated that CynF was essential for cynABDS gene expression and that nitrate/nitrite transporters may be involved in cyanate uptake, in addition to the CynABD transport system. Biodegradation of hazardous jewelry wastewater containing high amounts of cyanide and metals was achieved in a batch reactor operating at an alkaline pH after chemical treatment with hydrogen peroxide to oxidize cyanide to cyanate.
Collapse
Affiliation(s)
- Lara Paloma Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - María Isabel Ibáñez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Víctor Manuel Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
25
|
Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, Swan BK, Fonseca MM, Posada D, Stepanauskas R, Hollibaugh JT, Foster PG, Woyke T, Luo H. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME JOURNAL 2019; 13:2150-2161. [PMID: 31024152 DOI: 10.1038/s41396-019-0418-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 11/09/2022]
Abstract
Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in marine and terrestrial habitats, playing a major role in the global nitrogen cycle. However, their evolutionary history remains unexplored, which limits our understanding of their adaptation mechanisms. Here, our comprehensive phylogenomic tree of Thaumarchaeota supports three sequential events: origin of AOA from terrestrial non-AOA ancestors, colonization of the shallow ocean, and expansion to the deep ocean. Careful molecular dating suggests that these events coincided with the Great Oxygenation Event around 2300 million years ago (Mya), and oxygenation of the shallow and deep ocean around 800 and 635-560 Mya, respectively. The first transition was likely enabled by the gain of an aerobic pathway for energy production by ammonia oxidation and biosynthetic pathways for cobalamin and biotin that act as cofactors in aerobic metabolism. The first transition was also accompanied by the loss of dissimilatory nitrate and sulfate reduction, loss of oxygen-sensitive pyruvate oxidoreductase, which reduces pyruvate to acetyl-CoA, and loss of the Wood-Ljungdahl pathway for anaerobic carbon fixation. The second transition involved gain of a K+ transporter and of the biosynthetic pathway for ectoine, which may function as an osmoprotectant. The third transition was accompanied by the loss of the uvr system for repairing ultraviolet light-induced DNA lesions. We conclude that oxygen availability drove the terrestrial origin of AOA and their expansion to the photic and dark oceans, and that the stressors encountered during these events were partially overcome by gene acquisitions from Euryarchaeota and Bacteria, among other sources.
Collapse
Affiliation(s)
- Minglei Ren
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, 518000, Shenzhen, China
| | - Xiaoyuan Feng
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yongjie Huang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, 518000, Shenzhen, China
| | - Hui Wang
- Biology Department, College of Science, Shantou University, 515063, Shantou, China
| | - Zhong Hu
- Biology Department, College of Science, Shantou University, 515063, Shantou, China
| | | | - Brandon K Swan
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA.,National Biodefense Analysis and Countermeasures Center, Frederick, MD, 21702, USA
| | - Miguel M Fonseca
- CINBIO and Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
| | - David Posada
- CINBIO and Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
| | | | - James T Hollibaugh
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, 518000, Shenzhen, China.
| |
Collapse
|
26
|
Genome-Wide Mutagenesis Links Multiple Metabolic Pathways with Actinorhodin Production in Streptomyces coelicolor. Appl Environ Microbiol 2019; 85:AEM.03005-18. [PMID: 30709825 PMCID: PMC6585502 DOI: 10.1128/aem.03005-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/25/2019] [Indexed: 12/22/2022] Open
Abstract
Streptomyces species are important antibiotic-producing organisms that tightly regulate their antibiotic production. Actinorhodin is a typical antibiotic produced by the model actinomycete Streptomyces coelicolor To discover the regulators of actinorhodin production, we constructed a library of 50,000 independent mutants with hyperactive Tn5 transposase-based transposition systems. Five hundred fifty-one genes were found to influence actinorhodin production in 988 individual mutants. Genetic complementation suggested that most of the insertions (76%) were responsible for the changes in antibiotic production. Genes involved in diverse cellular processes such as amino acid biosynthesis, carbohydrate metabolism, cell wall homeostasis, and DNA metabolism affected actinorhodin production. Genome-wide mutagenesis can identify novel genes and pathways that impact antibiotic levels, potentially aiding in engineering strains to optimize the production of antibiotics in Streptomyces IMPORTANCE Previous studies have shown that various genes can influence antibiotic production in Streptomyces and that intercommunication between regulators can complicate antibiotic production. Therefore, to gain a better understanding of antibiotic regulation, a genome-wide perspective on genes that influence antibiotic production was needed. We searched for genes that affected production of the antibiotic actinorhodin using a genome-wide gene disruption system. We identified 551 genes that altered actinorhodin levels, and more than half of these genes were newly identified effectors. Some of these genes may be candidates for engineering Streptomyces strains to improve antibiotic production levels.
Collapse
|
27
|
Galván AE, Chalón MC, Ríos Colombo NS, Schurig-Briccio LA, Sosa-Padilla B, Gennis RB, Bellomio A. Microcin J25 inhibits ubiquinol oxidase activity of purified cytochrome bd-I from Escherichia coli. Biochimie 2019; 160:141-147. [PMID: 30790617 DOI: 10.1016/j.biochi.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/14/2019] [Indexed: 11/28/2022]
Abstract
Microcin J25 (MccJ25), an antimicrobial peptide, targets the respiratory chain but the exact mechanism by which it does so remains unclear. Here, we reveal that MccJ25 is able to inhibit the enzymatic activity of the isolated cytochrome bd-I from E. coli and induces at the same time production of reactive oxygen species. MccJ25 behaves as a dose-dependent weak inhibitor. Intriguingly, MccJ25 is capable of producing a change in the oxidation state of cytochrome bd-I causing its partial reduction in the presence of cyanide. These effects are specific for cytochrome bd-I, since the peptide is not able to act on purified cytochrome bo3.
Collapse
Affiliation(s)
- Adriana Emilce Galván
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, Argentina
| | - Miriam Carolina Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, Argentina
| | - Natalia Soledad Ríos Colombo
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, Argentina
| | | | - Bernardo Sosa-Padilla
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, T4001MVB, Tucumán, Argentina
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Augusto Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, Argentina.
| |
Collapse
|
28
|
Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilum T. Appl Environ Microbiol 2018; 84:AEM.02091-17. [PMID: 29150517 PMCID: PMC5772234 DOI: 10.1128/aem.02091-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/09/2017] [Indexed: 11/20/2022] Open
Abstract
Leptospirillum ferriphilum plays a major role in acidic, metal-rich environments, where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of the type strain of this model species is available, limiting the possibilities to investigate the strategies and adaptations that Leptospirillum ferriphilum DSM 14647T (here referred to as Leptospirillum ferriphilum T) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilum T obtained by PacBio single-molecule real-time (SMRT) long-read sequencing for use as a high-quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, the oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as the substrate and those grown in bioleaching cultures containing chalcopyrite (CuFeS2). Adaptations of Leptospirillum ferriphilum T to growth on chalcopyrite included the possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated levels of RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, the expression and translation of genes responsible for chemotaxis and motility were enhanced.IMPORTANCE Leptospirillum ferriphilum is one of the most important iron oxidizers in the context of acidic and metal-rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilum T coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on adaptation strategies of Leptospirillum ferriphilum T for growth on the copper mineral chalcopyrite. These data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction.
Collapse
|
29
|
Murugesan T, Durairaj N, Ramasamy M, Jayaraman K, Palaniswamy M, Jayaraman A. Analeptic agent from microbes upon cyanide degradation. Appl Microbiol Biotechnol 2017; 102:1557-1565. [PMID: 29285551 DOI: 10.1007/s00253-017-8674-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/15/2023]
Abstract
Microbes being the initial form of life and ubiquitous in occurrence, they adapt to the environment quickly. The microbial metabolism undergoes alteration to ensure conducive environment either by degrading the toxic substances or producing toxins to protect themselves. The presence of cyanide waste triggers the cyanide degrading enzymes in the microbes which facilitate the microbes to utilize the cyanide for its growth. To enable the degradation of cyanide, the microbes also produce the necessary cofactors and enhancers catalyzing the degradation pathways. Pterin, a cofactor of the enzyme cyanide monooxygenase catalyzing the oxidation of cyanide, is considered to be a potentially bioactive compound. Besides that, the pterins also act as cofactor for the enzymes involved in neurotransmitter metabolism. The therapeutic values of pterin as neuromodulating agent validate the necessity to pursue the commercial production of pterin. Even though chemical synthesis is possible, the non-toxic methods of pterin production need to be given greater attention in future.
Collapse
Affiliation(s)
- Thandeeswaran Murugesan
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Nisshanthini Durairaj
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mahendran Ramasamy
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Karunya Jayaraman
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Muthusamy Palaniswamy
- Department of Microbiology, Karpagam University, Coimbatore, Tamil Nadu, 641021, India
| | - Angayarkanni Jayaraman
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
30
|
Sandri F, Fedi S, Cappelletti M, Calabrese FM, Turner RJ, Zannoni D. Biphenyl Modulates the Expression and Function of Respiratory Oxidases in the Polychlorinated-Biphenyls Degrader Pseudomonas pseudoalcaligenes KF707. Front Microbiol 2017; 8:1223. [PMID: 28713350 PMCID: PMC5492768 DOI: 10.3389/fmicb.2017.01223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas pseudoalcaligenes KF707 is a soil bacterium which is known for its capacity to aerobically degrade harmful organic compounds such as polychlorinated biphenyls (PCBs) using biphenyl as co-metabolite. Here we provide the first genetic and functional analysis of the KF707 respiratory terminal oxidases in cells grown with two different carbon sources: glucose and biphenyl. We identified five terminal oxidases in KF707: two c(c)aa3 type oxidases (Caa3 and Ccaa3), two cbb3 type oxidases (Cbb31 and Cbb32), and one bd type cyanide-insensitive quinol oxidase (CIO). While the activity and expression of both Cbb31 and Cbb32 oxidases was prevalent in glucose grown cells as compared to the other oxidases, the activity and expression of the Caa3 oxidase increased considerably only when biphenyl was used as carbon source in contrast to the Cbb32 oxidase which was repressed. Further, the respiratory activity and expression of CIO was up-regulated in a Cbb31 deletion strain as compared to W.T. whereas the CIO up-regulation was not present in Cbb32 and C(c)aa3 deletion mutants. These results, together, reveal that both function and expression of cbb3 and caa3 type oxidases in KF707 are modulated by biphenyl which is the co-metabolite needed for the activation of the PCBs-degradation pathway.
Collapse
Affiliation(s)
- Federica Sandri
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Francesco M Calabrese
- Department of Biosciences, Biotechnology and Pharmacological Sciences, University of Bari "Aldo Moro"Bari, Italy.,Department of Biology, University of Bari "Aldo Moro"Bari, Italy
| | - Raymond J Turner
- Department of Biological Sciences, University of CalgaryCalgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| |
Collapse
|
31
|
Abstract
Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that several mosquito species, including Aedes aegypti, do not develop beyond the first instar when fed a nutritionally complete diet in the absence of a gut microbiota. In contrast, several species of bacteria, including Escherichia coli, rescue development of axenic larvae into adults. The molecular mechanisms underlying bacteria-dependent growth are unknown. Here, we designed a genetic screen around E. coli that identified high-affinity cytochrome bd oxidase as an essential bacterial gene product for mosquito growth. Bioassays showed that bacteria in nonsterile larvae and gnotobiotic larvae inoculated with wild-type E. coli reduced midgut oxygen levels below 5%, whereas larvae inoculated with E. coli mutants defective for cytochrome bd oxidase did not. Experiments further supported that hypoxia leads to growth and ecdysone-induced molting. Altogether, our results identify aerobic respiration by bacteria as a previously unknown but essential process for mosquito development.
Collapse
|
32
|
Sellamuthu S, Singh M, Kumar A, Singh SK. Type-II NADH Dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery. Expert Opin Ther Targets 2017; 21:559-570. [PMID: 28472892 DOI: 10.1080/14728222.2017.1327577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Tuberculosis (TB) is highly dangerous due to the development of resistance to first-line drugs. Moreover, Mycobacterium tuberculosis (Mtb) has also developed resistance to newly approved antitubercular drug bedaquiline. This necessitates the search for drugs acting on newer molecular targets. The energy metabolism of mycobacteria is the prime focus for the discovery of novel antitubercular drugs. Targeting type-2 NADH dehydrogenase (NDH-2) involved in the production of respiratory ATP could, therefore, be effective in treating the disease. Areas covered: This review describes the energetics of mycobacteria and the role of NDH-2 in ATP synthesis. Special attention has been given for genetic and chemical validations of NDH-2 as a molecular target. The reported kinetics and crystal structures of NDH-2 have been given in detail for better understanding of the enzyme. Expert opinion: NDH-2 is an essential enzyme for ATP synthesis and has a potential role in dormancy and persistence of Mtb. The human counterpart lacks this enzyme and hence NDH-2 inhibitors could have more clinical importance. Phenothiazines are potent inhibitor of NDH-2 and are effective against both drug-susceptible and drug-resistant Mtb. Thus, it is highly desirable to optimize phenothiazine class of compounds for the development of next generation anti-TB drugs.
Collapse
Affiliation(s)
- Satheeshkumar Sellamuthu
- a Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| | - Meenakshi Singh
- a Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| | - Ashok Kumar
- a Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| | - Sushil Kumar Singh
- a Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| |
Collapse
|
33
|
Chemolithotrophic processes in the bacterial communities on the surface of mineral-enriched biochars. ISME JOURNAL 2017; 11:1087-1101. [PMID: 28169988 DOI: 10.1038/ismej.2016.187] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/17/2016] [Accepted: 12/09/2016] [Indexed: 02/04/2023]
Abstract
Biochar and mineral-enriched biochar (MEB) have been used as soil amendments to improve soil fertility, sequester carbon and mitigate greenhouse gas emissions. Such beneficial outcomes could be partially mediated by soil bacteria, however little is known about how they directly interact with biochar or MEB. We therefore analyzed the diversity and functions of bacterial communities on the surfaces of one biochar and two different MEBs after a 140-day incubation in soil. The results show that the biochar and the MEBs harbor distinct bacterial communities to the bulk soil. Communities on biochar and MEBs were dominated by a novel Gammaproteobacterium. Genome reconstruction combined with electron microscopy and high-resolution elemental analysis revealed that the bacterium generates energy from the oxidation of iron that is present on the surface. Two other bacteria belonging to the genus Thiobacillus and a novel group within the Oxalbacteraceae were enriched only on the MEBs and they had the genetic capacity for thiosulfate oxidation. All three surface-enriched bacteria also had the capacity to fix carbon dioxide, either in a potentially strictly autotrophic or mixotrophic manner. Our results show the dominance of chemolithotrophic processes on the surface of biochar and MEB that can contribute to carbon sequestration in soil.
Collapse
|
34
|
Impacts of chemical gradients on microbial community structure. ISME JOURNAL 2017; 11:920-931. [PMID: 28094795 PMCID: PMC5363838 DOI: 10.1038/ismej.2016.175] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 10/25/2016] [Accepted: 11/08/2016] [Indexed: 12/05/2022]
Abstract
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.
Collapse
|
35
|
Narayan KD, Sabat SC, Das SK. Mechanism of electron transport during thiosulfate oxidation in an obligately mixotrophic bacterium Thiomonas bhubaneswarensis strain S10 (DSM 18181 T). Appl Microbiol Biotechnol 2016; 101:1239-1252. [PMID: 27832308 DOI: 10.1007/s00253-016-7958-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/14/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
This study describes the thiosulfate-supported respiratory electron transport activity of Thiomonas bhubaneswarensis strain S10 (DSM 18181T). Whole-genome sequence analysis revealed the presence of complete sox (sulfur oxidation) gene cluster (soxCDYZAXB) including the sulfur oxygenase reductase (SOR), sulfide quinone reductase (SQR), sulfide dehydrogenase (flavocytochrome c (fcc)), thiosulfate dehydrogenase (Tsd), sulfite dehydrogenase (SorAB), and intracellular sulfur oxidation protein (DsrE/DsrF). In addition, genes encoding respiratory electron transport chain components viz. complex I (NADH dehydrogenase), complex II (succinate dehydrogenase), complex III (ubiquinone-cytochrome c reductase), and various types of terminal oxidases (cytochrome c and quinol oxidase) were identified in the genome. Using site-specific electron donors and inhibitors and by analyzing the cytochrome spectra, we identified the shortest thiosulfate-dependent electron transport chain in T. bhubaneswarensis DSM 18181T. Our results showed that thiosulfate supports the electron transport activity in a bifurcated manner, donating electrons to quinol (bd) and cytochrome c (Caa 3 ) oxidase; these two sites (quinol oxidase and cytochrome c oxidase) also showed differences in their phosphate esterification potential (oxidative phosphorylation efficiency (P/O)). Further, it was evidenced that the substrate-level phosphorylation is the major contributor to the total energy budget in this bacterium.
Collapse
Affiliation(s)
- Kunwar Digvijay Narayan
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, India
| | - Surendra Chandra Sabat
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, India
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, India.
| |
Collapse
|
36
|
Creation of a gold nanoparticle based electrochemical assay for the detection of inhibitors of bacterial cytochrome bd oxidases. Bioelectrochemistry 2016; 111:109-14. [DOI: 10.1016/j.bioelechem.2016.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 12/23/2022]
|
37
|
Bhagi-Damodaran A, Petrik I, Lu Y. Using Biosynthetic Models of Heme-Copper Oxidase and Nitric Oxide Reductase in Myoglobin to Elucidate Structural Features Responsible for Enzymatic Activities. Isr J Chem 2016; 56:773-790. [PMID: 27994254 PMCID: PMC5161413 DOI: 10.1002/ijch.201600033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In biology, a heme-Cu center in heme-copper oxidases (HCOs) is used to catalyze the four-electron reduction of oxygen to water, while a heme-nonheme diiron center in nitric oxide reductases (NORs) is employed to catalyze the two-electron reduction of nitric oxide to nitrous oxide. Although much progress has been made in biochemical and biophysical studies of HCOs and NORs, structural features responsible for similarities and differences within the two enzymatic systems remain to be understood. Here, we discuss the progress made in the design and characterization of myoglobin-based enzyme models of HCOs and NORs. In particular, we focus on use of these models to understand the structure-function relations between HCOs and NORs, including the role of nonheme metals, conserved amino acids in the active site, heme types and hydrogen-bonding network in tuning enzymatic activities and total turnovers. Insights gained from these studies are summarized and future directions are proposed.
Collapse
Affiliation(s)
| | - Igor Petrik
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL. 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL. 61801
| |
Collapse
|
38
|
Selinski J, Hartmann A, Höfler S, Deckers-Hebestreit G, Scheibe R. Refined method to study the posttranslational regulation of alternative oxidases from Arabidopsis thaliana in vitro. PHYSIOLOGIA PLANTARUM 2016; 157:264-79. [PMID: 26798996 DOI: 10.1111/ppl.12418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 05/27/2023]
Abstract
In isolated membranes, posttranslational regulation of quinol oxidase activities can only be determined simultaneously for all oxidases - quinol oxidases as well as cytochrome c oxidases - because of their identical localization. In this study, a refined method to determine the specific activity of a single quinol oxidase is exemplarily described for the alternative oxidase (AOX) isoform AOX1A from Arabidopsis thaliana and its corresponding mutants, using the respiratory chain of an Escherichia coli cytochrome bo and bd-I oxidase double mutant as a source to provide electrons necessary for O2 reduction via quinol oxidases. A highly sensitive and reproducible experimental set-up with prolonged linear time intervals of up to 60 s is presented, which enables the determination of constant activity rates in E. coli membrane vesicles enriched in the quinol oxidase of interest by heterologous expression, using a Clark-type oxygen electrode to continuously follow O2 consumption. For the calculation of specific quinol oxidase activity, activity rates were correlated with quantitative signal intensity determinations of AOX1A present in a membrane-bound state by immunoblot analyses, simultaneously enabling normalization of specific activities between different AOX proteins. In summary, the method presented is a powerful tool to study specific activities of individual quinol oxidases, like the different AOX isoforms, and their corresponding mutants upon modification by addition of effectors/inhibitors, and thus to characterize their individual mode of posttranslational regulation in a membranous environment.
Collapse
Affiliation(s)
- Jennifer Selinski
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| | - Andreas Hartmann
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| | - Saskia Höfler
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| | - Gabriele Deckers-Hebestreit
- Division of Microbiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| | - Renate Scheibe
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069, Osnabrueck, Germany
| |
Collapse
|
39
|
Gschwendtner S, Mansfeldt T, Kublik S, Touliari E, Buegger F, Schloter M. Long-term ferrocyanide application via deicing salts promotes the establishment of Actinomycetales assimilating ferrocyanide-derived carbon in soil. Microb Biotechnol 2016; 9:502-13. [PMID: 27194597 PMCID: PMC4919992 DOI: 10.1111/1751-7915.12362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 11/28/2022] Open
Abstract
Cyanides are highly toxic and produced by various microorganisms as defence strategy or to increase their competitiveness. As degradation is the most efficient way of detoxification, some microbes developed the capability to use cyanides as carbon and nitrogen source. However, it is not clear if this potential also helps to lower cyanide concentrations in roadside soils where deicing salt application leads to significant inputs of ferrocyanide. The question remains if biodegradation in soils can occur without previous photolysis. By conducting a microcosm experiment using soils with/without pre-exposition to road salts spiked with (13) C-labelled ferrocyanide, we were able to confirm biodegradation and in parallel to identify bacteria using ferrocyanide as C source via DNA stable isotope probing (DNA-SIP), TRFLP fingerprinting and pyrosequencing. Bacteria assimilating (13) C were highly similar in the pre-exposed soils, belonging mostly to Actinomycetales (Kineosporia, Mycobacterium, Micromonosporaceae). In the soil without pre-exposition, bacteria belonging to Acidobacteria (Gp3, Gp4, Gp6), Gemmatimonadetes (Gemmatimonas) and Gammaproteobacteria (Thermomonas, Xanthomonadaceae) used ferrocyanide as C source but not the present Actinomycetales. This indicated that (i) various bacteria are able to assimilate ferrocyanide-derived C and (ii) long-term exposition to ferrocyanide applied with deicing salts leads to Actinomycetales outcompeting other microorganisms for the use of ferrocyanide as C source.
Collapse
Affiliation(s)
- Silvia Gschwendtner
- Research Unit Environmental Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Tim Mansfeldt
- Department Geowissenschaften, Bodengeographie/Bodenkunde, Universität zu Köln, Albertus-Magnus-Platz, Köln, 50923, Germany
| | - Susanne Kublik
- Research Unit Environmental Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Evangelia Touliari
- Research Unit Environmental Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Michael Schloter
- Research Unit Environmental Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| |
Collapse
|
40
|
Cytochrome bd Displays Significant Quinol Peroxidase Activity. Sci Rep 2016; 6:27631. [PMID: 27279363 PMCID: PMC4899803 DOI: 10.1038/srep27631] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022] Open
Abstract
Cytochrome bd is a prokaryotic terminal oxidase that catalyses the electrogenic reduction of oxygen to water using ubiquinol as electron donor. Cytochrome bd is a tri-haem integral membrane enzyme carrying a low-spin haem b558, and two high-spin haems: b595 and d. Here we show that besides its oxidase activity, cytochrome bd from Escherichia coli is a genuine quinol peroxidase (QPO) that reduces hydrogen peroxide to water. The highly active and pure enzyme preparation used in this study did not display the catalase activity recently reported for E. coli cytochrome bd. To our knowledge, cytochrome bd is the first membrane-bound quinol peroxidase detected in E. coli. The observation that cytochrome bd is a quinol peroxidase, can provide a biochemical basis for its role in detoxification of hydrogen peroxide and may explain the frequent findings reported in the literature that indicate increased sensitivity to hydrogen peroxide and decreased virulence in mutants that lack the enzyme.
Collapse
|
41
|
Wang X, Wang Q, Zhang Y, Wang Y, Zhou Y, Zhang W, Wen T, Li L, Zuo M, Zhang Z, Tian J, Jiang W, Li Y, Wang L, Li J. Transcriptome analysis reveals physiological characteristics required for magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:371-381. [PMID: 27043321 DOI: 10.1111/1758-2229.12395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Magnetosome synthesis ability of Magnetospirillum gryphiswaldense MSR-1 in an autofermentor can be precisely controlled through strict control of dissolved oxygen concentration. In this study, using transcriptome data we discovered gene transcriptional differences and compared physiological characteristics of MSR-1 cells cultured under aerobic (high-oxygen) and micro-aerobic (low-oxygen) conditions. The results showed that 77 genes were up-regulated and 95 genes were down-regulated significantly under micro-aerobic situation. These genes were involved primarily in the categories of cell metabolism, transport, regulation and unknown-function proteins. The nutrient transport and physiological metabolism were slowed down under micro-aerobic condition, whereas dissimilatory denitrification pathways were activated and it may supplemental energy was made available for magnetosome synthesis. The result suggested that the genes of magnetosome membrane proteins (Mam and Mms) are not directly regulated by oxygen level, or are constitutively expressed. A proposed regulatory network of differentially expressed genes reflects the complexity of physiological metabolism in MSR-1, and suggests that some yet-unknown functional proteins play important roles such as ferric iron uptake and transport during magnetosome synthesis. The transcriptome data provides a holistic view of the responses of MSR-1 cells to differing oxygen levels. This approach will give new insights into general principles of magnetosome formation.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Qing Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Yang Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Yinjia Wang
- Tianjin Biochip Corporation, Tianjin, 300457, P. R. China
| | - Yuan Zhou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Weijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Tong Wen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Li Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Meiqing Zuo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Ziding Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Jiesheng Tian
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Wei Jiang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Ying Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Lei Wang
- Tianjin Biochip Corporation, Tianjin, 300457, P. R. China
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| |
Collapse
|
42
|
Siletsky SA, Rappaport F, Poole RK, Borisov VB. Evidence for Fast Electron Transfer between the High-Spin Haems in Cytochrome bd-I from Escherichia coli. PLoS One 2016; 11:e0155186. [PMID: 27152644 PMCID: PMC4859518 DOI: 10.1371/journal.pone.0155186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Cytochrome bd-I is one of the three proton motive force-generating quinol oxidases in the O2-dependent respiratory chain of Escherichia coli. It contains one low-spin haem (b558) and the two high-spin haems (b595 and d) as the redox-active cofactors. In order to examine the flash-induced intraprotein reverse electron transfer (the so-called ''electron backflow''), CO was photolyzed from the ferrous haem d in one-electron reduced (b5583+b5953+d2+-CO) cytochrome bd-I, and the fully reduced (b5582+b5952+d2+-CO) oxidase as a control. In contrast to the fully reduced cytochrome bd-I, the transient spectrum of one-electron reduced oxidase at a delay time of 1.5 μs is clearly different from that at a delay time of 200 ns. The difference between the two spectra can be modeled as the electron transfer from haem d to haem b595 in 3–4% of the cytochrome bd-I population. Thus, the interhaem electron backflow reaction induced by photodissociation of CO from haem d in one-electron reduced cytochrome bd-I comprises two kinetically different phases: the previously unnoticed fast electron transfer from haem d to haem b595 within 0.2–1.5 μs and the slower well-defined electron equilibration with τ ~16 μs. The major new finding of this work is the lack of electron transfer at 200 ns.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- * E-mail: (VBB); (SAS); (RKP)
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, Unite Mixte de Recherche 7141 CNRS, Universite Paris 6, Paris, France
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
- * E-mail: (VBB); (SAS); (RKP)
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- * E-mail: (VBB); (SAS); (RKP)
| |
Collapse
|
43
|
Korshunov S, Imlay KRC, Imlay JA. The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide. Mol Microbiol 2016; 101:62-77. [PMID: 26991114 DOI: 10.1111/mmi.13372] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2016] [Indexed: 12/31/2022]
Abstract
When sulfur compounds are scarce or difficult to process, Escherichia coli adapts by inducing the high-level expression of sulfur-compound importers. If cystine then becomes available, the cystine is rapidly overimported and reduced, leading to a burgeoning pool of intracellular cysteine. Most of the excess cysteine is exported, but some is adventitiously degraded, with the consequent release of sulfide. Sulfide is a potent ligand of copper and heme moieties, raising the prospect that it interferes with enzymes. We observed that when cystine was provided and sulfide levels rose, E. coli became strictly dependent upon cytochrome bd oxidase for continued respiration. Inspection revealed that low-micromolar levels of sulfide inhibited the proton-pumping cytochrome bo oxidase that is regarded as the primary respiratory oxidase. In the absence of the back-up cytochrome bd oxidase, growth failed. Exogenous sulfide elicited the same effect. The potency of sulfide was enhanced when oxygen concentrations were low. Natural oxic-anoxic interfaces are often sulfidic, including the intestinal environment where E. coli dwells. We propose that the sulfide resistance of the cytochrome bd oxidase is a key trait that permits respiration in such habitats.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - Karin R C Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
44
|
Bhargava S, Chouhan S. Diazotrophic specific cytochrome c oxidase required to overcome light stress in the cyanobacterium Nostoc muscorum. World J Microbiol Biotechnol 2015; 32:2. [PMID: 26712617 DOI: 10.1007/s11274-015-1960-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
Diazotrophic, filamentous and heterocystous cyanobacterium Nostoc muscorum perform photosynthesis in vegetative whereas nitrogen fixation occurs in heterocyst only. However, despite their metabolic plasticity, respiration takes place both in vegetative cells and heterocysts. The role of the respiratory electron transport system and terminal oxidases under light stress is not evident so far. As compared to the diazotrophically grown cultures, the non-diazotrophically grown cultures of the N. muscorum show a slight decrease in their growth, chlorophyll a contents and photosynthetic O2 evolution under light stress. Whereas respiratory O2 uptake under identical stress condition increases several fold. Likewise, nitrogen fixing enzyme i.e. nitrogenase over-expresses itself under light stress condition. The terminal enzyme of respiratory electron transport chain i.e. cytochrome c oxidase shows more activity under light stress, whilst light stress has no impact on Ca(++)-dependent ATPase activity. This leads to the conclusion that under light stress, cytochrome c oxidase plays a vital role in mitigating given light stress.
Collapse
Affiliation(s)
- Santosh Bhargava
- Division of Microbiology, Department of Botany, Government Motilal Science College, Bhopal, M.P., 462008, India.
| | - Shweta Chouhan
- Centre for Excellence in Biotechnology, M.P. Council of Science & Technology, Vigyan Bhavan, Nehru Nagar, Bhopal, M.P., India
| |
Collapse
|
45
|
Luque-Almagro V, Escribano M, Manso I, Sáez L, Cabello P, Moreno-Vivián C, Roldán M. DNA microarray analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to nitrogen starvation, cyanide and a jewelry wastewater. J Biotechnol 2015; 214:171-81. [DOI: 10.1016/j.jbiotec.2015.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
|
46
|
Inskeep WP, Jay ZJ, Macur RE, Clingenpeel S, Tenney A, Lovalvo D, Beam JP, Kozubal MA, Shanks WC, Morgan LA, Kan J, Gorby Y, Yooseph S, Nealson K. Geomicrobiology of sublacustrine thermal vents in Yellowstone Lake: geochemical controls on microbial community structure and function. Front Microbiol 2015; 6:1044. [PMID: 26579074 PMCID: PMC4620420 DOI: 10.3389/fmicb.2015.01044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 09/14/2015] [Indexed: 12/02/2022] Open
Abstract
Yellowstone Lake (Yellowstone National Park, WY, USA) is a large high-altitude (2200 m), fresh-water lake, which straddles an extensive caldera and is the center of significant geothermal activity. The primary goal of this interdisciplinary study was to evaluate the microbial populations inhabiting thermal vent communities in Yellowstone Lake using 16S rRNA gene and random metagenome sequencing, and to determine how geochemical attributes of vent waters influence the distribution of specific microorganisms and their metabolic potential. Thermal vent waters and associated microbial biomass were sampled during two field seasons (2007–2008) using a remotely operated vehicle (ROV). Sublacustrine thermal vent waters (circa 50–90°C) contained elevated concentrations of numerous constituents associated with geothermal activity including dissolved hydrogen, sulfide, methane and carbon dioxide. Microorganisms associated with sulfur-rich filamentous “streamer” communities of Inflated Plain and West Thumb (pH range 5–6) were dominated by bacteria from the Aquificales, but also contained thermophilic archaea from the Crenarchaeota and Euryarchaeota. Novel groups of methanogens and members of the Korarchaeota were observed in vents from West Thumb and Elliot's Crater (pH 5–6). Conversely, metagenome sequence from Mary Bay vent sediments did not yield large assemblies, and contained diverse thermophilic and nonthermophilic bacterial relatives. Analysis of functional genes associated with the major vent populations indicated a direct linkage to high concentrations of carbon dioxide, reduced sulfur (sulfide and/or elemental S), hydrogen and methane in the deep thermal ecosystems. Our observations show that sublacustrine thermal vents in Yellowstone Lake support novel thermophilic communities, which contain microorganisms with functional attributes not found to date in terrestrial geothermal systems of YNP.
Collapse
Affiliation(s)
- William P Inskeep
- Thermal Biology Institute, Montana State University Bozeman, MT, USA ; Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Zackary J Jay
- Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Richard E Macur
- Center for Biofilm Engineering, Montana State University Bozeman, MT, USA
| | | | | | | | - Jacob P Beam
- Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Mark A Kozubal
- Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | | | | | - Jinjun Kan
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | - Yuri Gorby
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | | | - Kenneth Nealson
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
47
|
Pyrobaculum yellowstonensis Strain WP30 Respires on Elemental Sulfur and/or Arsenate in Circumneutral Sulfidic Geothermal Sediments of Yellowstone National Park. Appl Environ Microbiol 2015; 81:5907-16. [PMID: 26092468 DOI: 10.1128/aem.01095-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/16/2015] [Indexed: 11/20/2022] Open
Abstract
Thermoproteales (phylum Crenarchaeota) populations are abundant in high-temperature (>70°C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80°C, pH 6.1, 135 μM As) and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G+C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for the de novo synthesis of nearly all required cofactors and metabolites were identified. The comparative genomics of P. yellowstonensis and the assembled metagenome sequence from JCHS showed that this organism is highly related (∼95% average nucleotide sequence identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide an important foundation for developing an understanding of the distribution and function of these populations in YNP.
Collapse
|
48
|
Sorokin DY, Kublanov IV, Gavrilov SN, Rojo D, Roman P, Golyshin PN, Slepak VZ, Smedile F, Ferrer M, Messina E, La Cono V, Yakimov MM. Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME JOURNAL 2015; 10:240-52. [PMID: 25978546 DOI: 10.1038/ismej.2015.79] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 01/30/2023]
Abstract
Archaea domain is comprised of many versatile taxa that often colonize extreme habitats. Here, we report the discovery of strictly anaerobic extremely halophilic euryarchaeon, capable of obtaining energy by dissimilatory reduction of elemental sulfur using acetate as the only electron donor and forming sulfide and CO2 as the only products. This type of respiration has never been observed in hypersaline anoxic habitats and is the first example of such metabolic capability in the entire Archaea domain. We isolated and cultivated these unusual organisms, selecting one representative strain, HSR2, for detailed characterization. Our studies including physiological tests, genome sequencing, gene expression, metabolomics and [(14)C]-bicarbonate assimilation assays revealed that HSR2 oxidized acetate completely via the tricarboxylic acid cycle. Anabolic assimilation of acetate occurred via activated glyoxylate bypass and anaplerotic carboxylation. HSR2 possessed sulfurtransferase and an array of membrane-bound polysulfide reductase genes, all of which were expressed during the growth. Our findings suggest the biogeochemical contribution of haloarchaea in hypersaline anoxic environments must be reconsidered.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei N Gavrilov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - David Rojo
- Center for Metabolomics and Bioanalysis, Faculty of Pharmacy, CEU San Pablo University, Boadilla del Monte, Spain
| | - Pawel Roman
- Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands.,Wetsus, Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| | | | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | - Enzo Messina
- Institute for Coastal Marine Environment, CNR, Messina, Italy
| | | | | |
Collapse
|
49
|
Ramel F, Brasseur G, Pieulle L, Valette O, Hirschler-Réa A, Fardeau ML, Dolla A. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases. PLoS One 2015; 10:e0123455. [PMID: 25837676 PMCID: PMC4383621 DOI: 10.1371/journal.pone.0123455] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022] Open
Abstract
Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/o)o3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox) and double deletion (Δcoxbd) mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97%) but the time to recover a complete division event was longer for single deletion mutant Δbd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Δbd and, to a lesser extent, Δcox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR) plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining reducing conditions that permit PFOR to stay in its active state.
Collapse
Affiliation(s)
- Fanny Ramel
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
| | - Gael Brasseur
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
| | | | - Odile Valette
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
| | - Agnès Hirschler-Réa
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO, UM110, 13288 Marseille, Cedex 09, France
| | - Marie Laure Fardeau
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO, UM110, 13288 Marseille, Cedex 09, France
| | - Alain Dolla
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
- * E-mail:
| |
Collapse
|
50
|
Abstract
Like most bacteria, Escherichia coli has a flexible and branched respiratory chain that enables the prokaryote to live under a variety of environmental conditions, from highly aerobic to completely anaerobic. In general, the bacterial respiratory chain is composed of dehydrogenases, a quinone pool, and reductases. Substrate-specific dehydrogenases transfer reducing equivalents from various donor substrates (NADH, succinate, glycerophosphate, formate, hydrogen, pyruvate, and lactate) to a quinone pool (menaquinone, ubiquinone, and dimethylmenoquinone). Then electrons from reduced quinones (quinols) are transferred by terminal reductases to different electron acceptors. Under aerobic growth conditions, the terminal electron acceptor is molecular oxygen. A transfer of electrons from quinol to O₂ is served by two major oxidoreductases (oxidases), cytochrome bo₃ encoded by cyoABCDE and cytochrome bd encoded by cydABX. Terminal oxidases of aerobic respiratory chains of bacteria, which use O₂ as the final electron acceptor, can oxidize one of two alternative electron donors, either cytochrome c or quinol. This review compares the effects of different inhibitors on the respiratory activities of cytochrome bo₃ and cytochrome bd in E. coli. It also presents a discussion on the genetics and the prosthetic groups of cytochrome bo₃ and cytochrome bd. The E. coli membrane contains three types of quinones that all have an octaprenyl side chain (C₄₀). It has been proposed that the bo₃ oxidase can have two ubiquinone-binding sites with different affinities. "WHAT'S NEW" IN THE REVISED ARTICLE: The revised article comprises additional information about subunit composition of cytochrome bd and its role in bacterial resistance to nitrosative and oxidative stresses. Also, we present the novel data on the electrogenic function of appBCX-encoded cytochrome bd-II, a second bd-type oxidase that had been thought not to contribute to generation of a proton motive force in E. coli, although its spectral properties closely resemble those of cydABX-encoded cytochrome bd.
Collapse
|