1
|
Yakovlev AG, Taisova AS. Quenching of bacteriochlorophyll a triplet state by carotenoids in the chlorosome baseplate of green bacterium Chloroflexus aurantiacus. Phys Chem Chem Phys 2024; 26:8815-8823. [PMID: 38421198 DOI: 10.1039/d4cp00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
To capture weak light fluxes, green photosynthetic bacteria have unique structures - chlorosomes, consisting of 104-5 molecules of bacteriochlorophyll (BChl) c, d, e. Chlorosomes are attached to the cytoplasmic membrane through the baseplate, a paracrystalline protein structure containing BChl a and carotenoids (Car). The most important function of Car is the quenching of triplet states of BChl, which prevents the formation of singlet oxygen and thereby provides photoprotection. In our work, we studied the dynamics of the triplet states of BChl a and Car in the baseplate of Chloroflexus aurantiacus chlorosomes using picosecond differential spectroscopy. BChl a of the baseplate was excited into the Qy band at 810 nm, and the corresponding absorption changes were recorded in the range of 420-880 nm. It was found that the formation of the Car triplet state occurs in ∼1.3 ns, which is ∼3 times faster than the formation of this state in the peripheral antenna of C. aurantiacus according to literature data. The Car triplet state was recorded by the characteristic absorption band T1 → Tn at ∼550 nm. Simultaneously with the appearance of absorption T1 → Tn, there was a bleaching of the singlet absorption of Car in the region of 400-500 nm. Theoretical modeling made it possible to estimate the characteristic time of formation of the triplet state of BChl a as ∼0.5 ns. It is shown that the experimental data are well described by the sequential scheme of formation and quenching of the BChl a triplet state: BChl a* → BChl aT → CarT. Thus, carotenoids from green bacteria effectively protect the baseplate from possible damage by singlet oxygen.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, Moscow 119991, Russian Federation.
| | - Alexandra S Taisova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, Moscow 119991, Russian Federation.
| |
Collapse
|
2
|
Jassas M, Goodson C, Blankenship RE, Jankowiak R, Kell A. On Excitation Energy Transfer within the Baseplate BChl a-CsmA Complex of Chloroflexus aurantiacus. J Phys Chem B 2019; 123:9786-9791. [PMID: 31660744 DOI: 10.1021/acs.jpcb.9b08043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, a hybrid approach combining solid-state NMR spectroscopy and cryo-electron microscopy showed that the baseplate in green sulfur bacterium Chlorobaculum tepidum is a 2D lattice of BChl a-CsmA dimers [Nielsen, J. T.; et al., Nat. Commun. 2016, 7, 12454-12465]. While the existence of the BChl a-CsmA subunit was previously known, the proposed orientations of the BChl a pigments had only been elucidated from spectral data up to this point. Regarding the electronic structure of the baseplate, two models have been proposed. 2D electronic spectroscopy data were interpreted as revealing that at least four excitonically coupled BChl a might be in close contact. Conversely, spectral hole burning data suggested that the lowest energy state was localized, yet additional states are sometimes observed because of the presence of the Fenna-Matthews-Olson (FMO) antenna protein. To solve this conundrum, this work studies the chlorosome-baseplate complex from Chloroflexus aurantiacus, which does not contain the FMO protein. The results confirm that in both C. tepidum and C. aurantiacus, excitation energy is transferred to a localized low-energy trap state near 818 nm with similar rates, most likely via exciton hopping.
Collapse
Affiliation(s)
| | - Carrie Goodson
- Departments of Biology and Chemistry , Washington University in Saint Louis , Saint Louis , Missouri 63130 , United States
| | - Robert E Blankenship
- Departments of Biology and Chemistry , Washington University in Saint Louis , Saint Louis , Missouri 63130 , United States
| | | | | |
Collapse
|
3
|
Saga Y, Takahashi N, Miyatake T, Tamiaki H. Amphiphilic zinc bacteriochlorophyll a derivatives that function as artificial energy acceptors in photosynthetic antenna complexes chlorosomes of the green sulfur photosynthetic bacterium Chlorobaculum limnaeum. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Orf GS, Collins AM, Niedzwiedzki DM, Tank M, Thiel V, Kell A, Bryant DA, Montaño GA, Blankenship RE. Polymer-Chlorosome Nanocomposites Consisting of Non-Native Combinations of Self-Assembling Bacteriochlorophylls. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6427-6438. [PMID: 28585832 DOI: 10.1021/acs.langmuir.7b01761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chlorosomes are one of the characteristic light-harvesting antennas from green sulfur bacteria. These complexes represent a unique paradigm: self-assembly of bacteriochlorophyll pigments within a lipid monolayer without the influence of protein. Because of their large size and reduced complexity, they have been targeted as models for the development of bioinspired light-harvesting arrays. We report the production of biohybrid light-harvesting nanocomposites mimicking chlorosomes, composed of amphiphilic diblock copolymer membrane bodies that incorporate thousands of natural self-assembling bacteriochlorophyll molecules derived from green sulfur bacteria. The driving force behind the assembly of these polymer-chlorosome nanocomposites is the transfer of the mixed raw materials from the organic to the aqueous phase. We incorporated up to five different self-assembling pigment types into single nanocomposites that mimic chlorosome morphology. We establish that the copolymer-BChl self-assembly process works smoothly even when non-native combinations of BChl homologues are included. Spectroscopic characterization revealed that the different types of self-assembling pigments participate in ultrafast energy transfer, expanding beyond single chromophore constraints of the natural chlorosome system. This study further demonstrates the utility of flexible short-chain, diblock copolymers for building scalable, tunable light-harvesting arrays for technological use and allows for an in vitro analysis of the flexibility of natural self-assembling chromophores in unique and controlled combinations.
Collapse
Affiliation(s)
| | - Aaron M Collins
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Biological Sciences, Tokyo Metropolitan University , Tokyo, Japan 192-0397
| | - Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Biological Sciences, Tokyo Metropolitan University , Tokyo, Japan 192-0397
| | - Adam Kell
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Gabriel A Montaño
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
5
|
Yakovlev A, Novoderezhkin V, Taisova A, Shuvalov V, Fetisova Z. Orientation of B798 BChl a Q y transition dipoles in Chloroflexus aurantiacus chlorosomes: polarized transient absorption spectroscopy studies. PHOTOSYNTHESIS RESEARCH 2015; 125:31-42. [PMID: 25515768 DOI: 10.1007/s11120-014-0060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
Isotropic and anisotropic pump-probe spectra of Cfx. aurantiacus chlorosomes were measured on the fs-through ps-time scales for the B798 BChl a Q y band upon direct excitation of the B798 band at T = 293 K and T = 90 K. Upon direct excitation of the B798 band, the anisotropy parameter value r(λ) was constant within the whole BChl a Q y band at any delay time at both temperatures. The value of the anisotropy parameter r decayed from r = 0.4 at both temperatures (at 200 fs delay time after excitation) to the steady-state values r = 0.1 at T = 293 K and to r = 0.09 at T = 90 K (at 30 ÷ 100 ps delay time after excitation). The results were considered within the framework of the model of uniaxial orientation distribution of BChl-a transition dipoles within a single Cfx. aurantiacus chlorosome. This implies that the B798 BChl a Q y transition dipoles, randomly distributed around the normal to the baseplate plane, form the angle θ with the plane. For this model, the theoretical dependence of the steady-state anisotropy parameter r on the angle θ was derived. According to the theoretical dependence r(θ), the angle θ corresponding to the experimental steady-state value r = 0.1 at T = 293 K was found to equal 55°. As the temperature drops to 90 K, the angle θ decreases to 54°.
Collapse
Affiliation(s)
- Andrei Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russian Federation
| | | | | | | | | |
Collapse
|
6
|
Kell A, Chen J, Jassas M, Tang JKH, Jankowiak R. Alternative Excitonic Structure in the Baseplate (BChl a-CsmA Complex) of the Chlorosome from Chlorobaculum tepidum. J Phys Chem Lett 2015; 6:2702-2707. [PMID: 26266851 DOI: 10.1021/acs.jpclett.5b01074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the photosynthetic green sulfur bacterium Chlorobaculum tepidum, the baseplate mediates excitation energy transfer from the light-harvesting chlorosome to the Fenna-Matthews-Olson (FMO) complex and subsequently toward the reaction center (RC). Literature data suggest that the baseplate is a 2D lattice of BChl a-CsmA dimers. However, recently, it has been proposed, using 2D electronic spectroscopy (2DES) at 77 K, that at least four excitonically coupled BChl a are in close contact within the baseplate structure [ Dostál , J. ; et al., J. Phys. Chem. Lett. 2014 , 5 , 1743 ]. This finding is tested via hole burning (HB) spectroscopy (5 K). Our results indicate that the four excitonic states identified by 2DES likely correspond to contamination of the baseplate with the FMO antenna and possibly the RC. In contrast, HB reveals a different excitonic structure of the baseplate chromophores, where excitation is transferred to a localized trap state near 818 nm via exciton hopping, which leads to emission near 826 nm.
Collapse
Affiliation(s)
| | | | | | - Joseph Kuo-Hsiang Tang
- ‡Department of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | | |
Collapse
|
7
|
Hartzler DA, Niedzwiedzki DM, Bryant DA, Blankenship RE, Pushkar Y, Savikhin S. Triplet Excited State Energies and Phosphorescence Spectra of (Bacterio)Chlorophylls. J Phys Chem B 2014; 118:7221-32. [DOI: 10.1021/jp500539w] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daniel A. Hartzler
- Department
of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | | | - Donald A. Bryant
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, 108 Althouse Laboratory, University Park, Pennsylvania 16802, United States
- Department
of Chemistry and Biochemistry, Montana State University, 103 Chemistry
and Biochemistry Building, P.O. Box 173400, Bozeman, Montana 59717, United States
| | | | - Yulia Pushkar
- Department
of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Sergei Savikhin
- Department
of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Dostál J, Vácha F, Pšenčík J, Zigmantas D. 2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome. J Phys Chem Lett 2014; 5:1743-1747. [PMID: 26270377 DOI: 10.1021/jz5005279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In green photosynthetic bacteria, the chlorosome baseplate mediates excitation energy transfer from the interior of the light-harvesting chlorosome toward the reaction centers. However, the electronic states of the baseplate remain unexplored, hindering the mechanistic understanding of the baseplate as an excitation energy collector and mediator. Here we use two-dimensional spectroscopy to study the excited state structure and internal energy relaxation in the baseplate of green sulfur bacterium Chlorobaculum tepidum. We resolved an exciton system with four energy states, indicating that the organization of the pigments in the baseplate is more complex than was thought before and constitutes at least four bacteriochlorophyll molecules in a close contact. Based on the finding that the energy of the baseplate states is in the same range as in the adjacent Fenna-Matthews-Olson complex, we propose a "lateral" energy transfer pathway, where excitation energy can flow through the photosynthetic unit via all the states of individual complexes.
Collapse
Affiliation(s)
- Jakub Dostál
- †Department of Chemical Physics, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- ‡Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - František Vácha
- §Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jakub Pšenčík
- ‡Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Donatas Zigmantas
- †Department of Chemical Physics, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
9
|
Kovács SÁ, Bricker WP, Niedzwiedzki DM, Colletti PF, Lo CS. Computational determination of the pigment binding motif in the chlorosome protein a of green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2013; 118:231-247. [PMID: 24078352 DOI: 10.1007/s11120-013-9920-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
We present a molecular-scale model of Bacteriochlorophyll a (BChl a) binding to the chlorosome protein A (CsmA) of Chlorobaculum tepidum, and the aggregated pigment–protein dimer, as determined from protein–ligand docking and quantum chemistry calculations. Our calculations provide strong evidence that the BChl a molecule is coordinated to the His25 residue of CsmA, with the magnesium center of the bacteriochlorin ring situated\3 A° from the imidazole nitrogen atom of the histidine sidechain, and the phytyl tail aligned along the nonpolar residues of the a-helix of CsmA. We also confirm that the Qy band in the absorption spectra of BChl a experiences a large (?16 to ?43 nm) redshift when aggregated with another BChl a molecule in the CsmA dimer, compared to the BChl a in solvent; this redshift has been previously established by experimental researchers. We propose that our model of the BChl a–CsmA binding motif, where the dimer contains parallel aligned N-terminal regions, serves as the smallest repeating unit in a larger model of the para-crystalline chlorosome baseplate protein.
Collapse
|
10
|
Orf GS, Blankenship RE. Chlorosome antenna complexes from green photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2013; 116:315-31. [PMID: 23761131 DOI: 10.1007/s11120-013-9869-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/06/2013] [Indexed: 05/18/2023]
Abstract
Chlorosomes are the distinguishing light-harvesting antenna complexes that are found in green photosynthetic bacteria. They contain bacteriochlorophyll (BChl) c, d, e in natural organisms, and recently through mutation, BChl f, as their principal light-harvesting pigments. In chlorosomes, these pigments self-assemble into large supramolecular structures that are enclosed inside a lipid monolayer to form an ellipsoid. The pigment assembly is dictated mostly by pigment-pigment interactions as opposed to protein-pigment interactions. On the bottom face of the chlorosome, the CsmA protein aggregates into a paracrystalline baseplate with BChl a, and serves as the interface to the next energy acceptor in the system. The exceptional light-harvesting ability at very low light conditions of chlorosomes has made them an attractive subject of study for both basic and applied science. This review, incorporating recent advancements, considers several important aspects of chlorosomes: pigment biosynthesis, organization of pigments and proteins, spectroscopic properties, and applications to bio-hybrid and bio-inspired devices.
Collapse
Affiliation(s)
- Gregory S Orf
- Departments of Chemistry and Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | | |
Collapse
|
11
|
Taisova AS, Lukashev EP, Fedorova NV, Zobova AV, Dolgova TA, Fetisova ZG. Experimental proof of optimality of interfacing of chlorosome BChl c and membrane BChl a subantennae in superantenna of photosynthetic green bacteria from the oscillochloridaceae family. DOKL BIOCHEM BIOPHYS 2012; 444:154-7. [PMID: 22772999 DOI: 10.1134/s1607672912030088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Indexed: 11/23/2022]
Affiliation(s)
- A S Taisova
- Belozersky Institute of Physicochemical Biology, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia
| | | | | | | | | | | |
Collapse
|
12
|
Alster J, Polívka T, Arellano JB, Hříbek P, Vácha F, Hála J, Pšenčík J. Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin. PHOTOSYNTHESIS RESEARCH 2012; 111:193-204. [PMID: 21833799 DOI: 10.1007/s11120-011-9670-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/02/2011] [Indexed: 05/31/2023]
Abstract
Chlorosomes, the light-harvesting antennae of green photosynthetic bacteria, are based on large aggregates of bacteriochlorophyll molecules. Aggregates with similar properties to those in chlorosomes can also be prepared in vitro. Several agents were shown to induce aggregation of bacteriochlorophyll c in aqueous environments, including certain lipids, carotenes, and quinones. A key distinguishing feature of bacteriochlorophyll c aggregates, both in vitro and in chlorosomes, is a large (>60 nm) red shift of their Q(y) absorption band compared with that of the monomers. In this study, we investigate the self-assembly of bacteriochlorophyll c with the xanthophyll astaxanthin, which leads to the formation of a new type of complexes. Our results indicate that, due to its specific structure, astaxanthin molecules competes with bacteriochlorophylls for the bonds involved in the aggregation, thus preventing the formation of any significant red shift compared with pure bacteriochlorophyll c in aqueous buffer. A strong interaction between both the types of pigments in the developed assemblies, is manifested by a rather efficient (~40%) excitation energy transfer from astaxanthin to bacteriochlorophyll c, as revealed by fluorescence excitation spectroscopy. Results of transient absorption spectroscopy show that the energy transfer is very fast (<500 fs) and proceeds through the S(2) state of astaxanthin.
Collapse
Affiliation(s)
- J Alster
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Praha, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
13
|
Martiskainen J, Linnanto J, Aumanen V, Myllyperkiö P, Korppi-Tommola J. Excitation Energy Transfer in Isolated Chlorosomes from Chlorobaculum tepidum and Prosthecochloris aestuarii. Photochem Photobiol 2012; 88:675-83. [DOI: 10.1111/j.1751-1097.2012.01098.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Comparative and Functional Genomics of Anoxygenic Green Bacteria from the Taxa Chlorobi, Chloroflexi, and Acidobacteria. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
CsmA Protein is Associated with BChl a in the Baseplate Subantenna of Chlorosomes of the Photosynthetic Green Filamentous Bacterium Oscillochloris trichoides belonging to the Family Oscillochloridaceae. JOURNAL OF BIOPHYSICS 2011; 2011:860382. [PMID: 21941538 PMCID: PMC3175400 DOI: 10.1155/2011/860382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/30/2011] [Accepted: 07/05/2011] [Indexed: 12/05/2022]
Abstract
The baseplate subantenna in chlorosomes of green anoxygenic photosynthetic bacteria, belonging to the families Chloroflexaceae and Chlorobiaceae, is known to represent a complex of bacteriochlorophyll (BChl) a with the ~6 kDa CsmA proteins. Earlier, we showed the existence of a similar BChl a subantenna in chlorosomes of the photosynthetic green bacterium Oscillochloris trichoides, member of Oscillochloridaceae, the third family of green photosynthetic bacteria. However, this BChl a subantenna was not visually identified in absorption spectra of isolated Osc. trichoides chlorosomes in contrast to those of Chloroflexaceae and Chlorobiaceae. In this work, using room and low-temperature absorbance and fluorescence spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of alkaline-treated and untreated chlorosomes of Osc. trichoides, we showed that the baseplate BChl a subantenna does exist in Oscillochloridaceae chlorosomes as a complex of BChl a with the 5.7 kDa CsmA protein. The present results support the idea that the baseplate subantenna, representing a complex of BChl a with a ~6 kDa CsmA protein, is a universal interface between the BChl c subantenna of chlorosomes and the nearest light-harvesting BChl a subantenna in all three known families of green anoxygenic photosynthetic bacteria.
Collapse
|
16
|
Tokita S, Shimada K, Watabe K, Matsuura K, Mimuro M. A novel and mild isolation procedure of chlorosomes from the green sulfur bacterium Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2011; 108:183-190. [PMID: 21870189 DOI: 10.1007/s11120-011-9679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
In this article, we developed a new and mild procedure for the isolation of chlorosomes from a green sulfur bacterium Chlorobaculum tepidum. In this procedure, Fenna-Matthews-Olson (FMO) protein was released by long cold treatment (6°C) of cells under the presence of a chaotrope (2 M NaSCN) and 0.6 M sucrose. Chlorosomes were released by an osmotic shock of the cold-treated cells after the formation of spheroplasts without mechanical disruption. Chlorosomes were finally purified by a sucrose step-wise density gradient centrifugation. We obtained two samples with different density (20 and 23% sucrose band, respectively) and compared them by SDS-PAGE, absorption spectroscopy at 80 K, fluorescence and CD spectroscopy at room temperature. Cells whose absorption maximum was longer than 750 nm yielded higher amount of the 20% sucrose fraction than those having an absorption maximum shorter than 750 nm.
Collapse
Affiliation(s)
- Seiji Tokita
- Department of Biology, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| | | | | | | | | |
Collapse
|
17
|
Pedersen MØ, Linnanto J, Frigaard NU, Nielsen NC, Miller M. A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria. PHOTOSYNTHESIS RESEARCH 2010; 104:233-243. [PMID: 20077007 DOI: 10.1007/s11120-009-9519-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 12/16/2009] [Indexed: 05/28/2023]
Abstract
In contrast to photosynthetic reaction centers, which share the same structural architecture, more variety is found in the light-harvesting antenna systems of phototrophic organisms. The largest antenna system described, so far, is the chlorosome found in anoxygenic green bacteria, as well as in a recently discovered aerobic phototroph. Chlorosomes are the only antenna system, in which the major light-harvesting pigments are organized in self-assembled supramolecular aggregates rather than on protein scaffolds. This unique feature is believed to explain why some green bacteria are able to carry out photosynthesis at very low light intensities. Encasing the chlorosome pigments is a protein-lipid monolayer including an additional antenna complex: the baseplate, a two-dimensional paracrystalline structure containing the chlorosome protein CsmA and bacteriochlorophyll a (BChl a). In this article, we review current knowledge of the baseplate antenna complex, which physically and functionally connects the chlorosome pigments to the reaction centers via the Fenna-Matthews-Olson protein, with special emphasis on the well-studied green sulfur bacterium Chlorobaculum tepidum (previously Chlorobium tepidum). A possible role for the baseplate in the biogenesis of chlorosomes is discussed. In the final part, we present a structural model of the baseplate through combination of a recent NMR structure of CsmA and simulation of circular dichroism and optical spectra for the CsmA-BChl a complex.
Collapse
Affiliation(s)
- Marie Ø Pedersen
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, Arhus C, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
18
|
Linearly polarized light absorption spectra of chlorosomes, light-harvesting antennas of photosynthetic green sulfur bacteria. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2009.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Envelope proteins of the CsmB/CsmF and CsmC/CsmD motif families influence the size, shape, and composition of chlorosomes in Chlorobaculum tepidum. J Bacteriol 2009; 191:7109-20. [PMID: 19749040 DOI: 10.1128/jb.00707-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chlorosome envelope of Chlorobaculum tepidum contains 10 proteins that belong to four structural motif families. A previous mutational study (N.-U. Frigaard, H. Li, K. J. Milks, and D. A. Bryant, J. Bacteriol. 186:646-653, 2004) suggested that some of these proteins might have redundant functions. Six multilocus mutants were constructed to test the effects of eliminating the proteins of the CsmC/CsmD and CsmB/CsmF motif families, and the resulting strains were characterized physiologically and biochemically. Mutants lacking all proteins of either motif family still assembled functional chlorosomes, and as measured by growth rates of the mutant strains, light harvesting was affected only at the lowest light intensities tested (9 and 32 micromol photons m(-2) s(-1)). The size, composition, and biogenesis of the mutant chlorosomes differed from those of wild-type chlorosomes. Mutants lacking proteins of the CsmC/CsmD motif family produced smaller chlorosomes than did the wild type, and the Q(y) absorbance maximum for the bacteriochlorophyll c aggregates in these chlorosomes was strongly blueshifted. Conversely, the chlorosomes of mutants lacking proteins of the CsmB/CsmF motif family were larger than wild-type chlorosomes, and the Q(y) absorption for their bacteriochlorophyll c aggregates was redshifted. When CsmH was eliminated in addition to other proteins of either motif family, chlorosomes had smaller diameters. These data show that the chlorosome envelope proteins of the CsmB/CsmF and CsmC/CsmD families play important roles in determining chlorosome size as well as the assembly and supramolecular organization of the bacteriochlorophyll c aggregates within the chlorosome.
Collapse
|
20
|
Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus. J Bacteriol 2009; 191:6701-8. [PMID: 19717605 DOI: 10.1128/jb.00690-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The green filamentous bacterium Chloroflexus aurantiacus employs chlorosomes as photosynthetic antennae. Chlorosomes contain bacteriochlorophyll aggregates and are attached to the inner side of a plasma membrane via a protein baseplate. The structure of chlorosomes from C. aurantiacus was investigated by using a combination of cryo-electron microscopy and X-ray diffraction and compared with that of Chlorobi species. Cryo-electron tomography revealed thin chlorosomes for which a distinct crystalline baseplate lattice was visualized in high-resolution projections. The baseplate is present only on one side of the chlorosome, and the lattice dimensions suggest that a dimer of the CsmA protein is the building block. The bacteriochlorophyll aggregates inside the chlorosome are arranged in lamellae, but the spacing is much greater than that in Chlorobi species. A comparison of chlorosomes from different species suggested that the lamellar spacing is proportional to the chain length of the esterifying alcohols. C. aurantiacus chlorosomes accumulate larger quantities of carotenoids under high-light conditions, presumably to provide photoprotection. The wider lamellae allow accommodation of the additional carotenoids and lead to increased disorder within the lamellae.
Collapse
|
21
|
Sridharan A, Muthuswamy J, Pizziconi VB. Optoelectronic energy transfer at novel biohybrid interfaces using light harvesting complexes from Chloroflexus aurantiacus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:6508-6516. [PMID: 19405485 DOI: 10.1021/la900112p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In nature, nanoscale supramolecular light harvesting complexes initiate the photosynthetic energy collection process at high quantum efficiencies. In this study, the distinctive antenna structure from Chloroflexus aurantiacusthe chlorosomeis assessed for potential exploitation in novel biohybrid optoelectronic devices. Electrochemical characterization of bacterial fragments containing intact chlorosomes with the photosynthetic apparatus show an increase in the charge storage density near the working electrode upon light stimulation and suggest that chlorosomes contribute approximately one-third of the overall photocurrent. Further, isolated chlorosomes (without additional photosynthetic components, e.g., reaction centers, biochemical mediators) produce a photocurrent (approximately 8-10 nA) under light saturation conditions. Correlative experiments indicate that the main chlorosome pigment, bacteriochlorophyll-c, contributes to the photocurrent via an oxidative mechanism. The results reported herein are the first to demonstrate that isolated chlorosomes (lipid-enclosed sacs of pigments) directly transduce light energy in an electrochemical manner, laying an alternative, biomimetic approach for designing photosensitized interfaces in biofuel cells and biomedical devices, such as bioenhanced retinal prosthetics.
Collapse
Affiliation(s)
- Arati Sridharan
- Harrington Department of Bioengineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | | | | |
Collapse
|
22
|
Abstract
The green phototrophic bacteria contain a unique complement of chlorophyll pigments, which self-assemble efficiently into antenna structures known as chlorosomes with little involvement of protein. The few proteins found in chlorosomes have previously been thought to have a primarily structural function. The biosynthetic pathway of the chlorosome pigments, bacteriochlorophylls c, d, and e, is not well understood. In this report, we used spectroscopic, proteomic, and gene expression approaches to investigate the chlorosome proteins of the green filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. Surprisingly, Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase, AcsF, was identified under anaerobic growth conditions. The AcsF protein was found in the isolated chlorosome fractions, and the proteomics analysis suggested that significant portions of the AcsF proteins are not accessible to protease digestion. Additionally, quantitative real-time PCR studies showed that the transcript level of the acsF gene is not lower in anaerobic growth than in semiaerobic growth. Since the proposed enzymatic activity of AcsF requires molecular oxygen, our studies suggest that the roles of AcsF in C. aurantiacus need to be investigated further.
Collapse
|
23
|
Mizoguchi T, Kim TY, Sawamura S, Tamiaki H. Pressure-Induced Red Shift and Broadening of the Qy Absorption of Main Light-Harvesting Antennae Chlorosomes from Green Photosynthetic Bacteria and Their Dependency upon Alkyl Substituents of the Composite Bacteriochlorophylls. J Phys Chem B 2008; 112:16759-65. [DOI: 10.1021/jp804990f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tadashi Mizoguchi
- Department of Bioscience and Biotechnology and Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tae-Yeun Kim
- Department of Bioscience and Biotechnology and Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Seiji Sawamura
- Department of Bioscience and Biotechnology and Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Department of Bioscience and Biotechnology and Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
24
|
Arellano JB, Psencik J, Borrego CM, Ma YZ, Guyoneaud R, Garcia-Gil J, Gillbro T. Effect of Carotenoid Biosynthesis Inhibition on the Chlorosome Organization in Chlorobium phaeobacteroides Strain CL1401. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710715eocbio2.0.co2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Arellano JB, Bernt Melø T, Borrego CM, Naqvi KR. Bacteriochlorophyll e Monomers, but Not Aggregates, Sensitize Singlet Oxygen: Implications for a Self-photoprotection Mechanism in Chlorosomes¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760373bembna2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Arellano JB, Bernt Melø T, Borrego CM, Garcia-Gil J, Naqvi KR. Nanosecond Laser Photolysis Studies of Chlorosomes and Artificial Aggregates Containing Bacteriochlorophyll e: Evidence for the Proximity of Carotenoids and Bacteriochlorophyll a in Chlorosomes from Chlorobium phaeobacteroides strain CL1401¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720669nlpsoc2.0.co2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Kim H, Li H, Maresca JA, Bryant DA, Savikhin S. Triplet exciton formation as a novel photoprotection mechanism in chlorosomes of Chlorobium tepidum. Biophys J 2007; 93:192-201. [PMID: 17434948 PMCID: PMC1914439 DOI: 10.1529/biophysj.106.103556] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlorosomes comprise thousands of bacteriochlorophylls (BChl c, d, or e) in a closely packed structure surrounded by a lipid-protein envelope and additionally contain considerable amounts of carotenoids, quinones, and BChl a. It has been suggested that carotenoids in chlorosomes provide photoprotection by rapidly quenching triplet excited states of BChl via a triplet-triplet energy transfer mechanism that prevents energy transfer to oxygen and the formation of harmful singlet oxygen. In this work we studied triplet energy transfer kinetics and photodegradation of chlorosomes isolated from wild-type Chlorobium tepidum and from genetically modified species with different types of carotenoids and from a carotenoid-free mutant. Supporting a photoprotective function of carotenoids, carotenoid-free chlorosomes photodegrade approximately 3 times faster than wild-type chlorosomes. However, a significant fraction of the BChls forms a long-lived, triplet-like state that does not interact with carotenoids or with oxygen. We propose that these states are triplet excitons that form due to triplet-triplet interaction between the closely packed BChls. Numerical exciton simulations predict that the energy of these triplet excitons may fall below that of singlet oxygen and triplet carotenoids; this would prevent energy transfer from triplet BChl. Thus, the formation of triplet excitons in chlorosomes serves as an alternative photoprotection mechanism.
Collapse
Affiliation(s)
- Hanyoup Kim
- Department of Physics, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | |
Collapse
|
28
|
van de Meene AML, Le Olson T, Collins AM, Blankenship RE. Initial characterization of the photosynthetic apparatus of "Candidatus Chlorothrix halophila," a filamentous, anoxygenic photoautotroph. J Bacteriol 2007; 189:4196-203. [PMID: 17369303 PMCID: PMC1913384 DOI: 10.1128/jb.01711-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Chlorothrix halophila" is a recently described halophilic, filamentous, anoxygenic photoautotroph (J. A. Klappenbach and B. K. Pierson, Arch. Microbiol. 181:17-25, 2004) that was enriched from the hypersaline microbial mats at Guerrero Negro, Mexico. Analysis of the photosynthetic apparatus by negative staining, spectroscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the photosynthetic apparatus in this organism has similarities to the photosynthetic apparatus in both the Chloroflexi and Chlorobi phyla of green photosynthetic bacteria. The chlorosomes were found to be ellipsoidal and of various sizes, characteristics that are comparable to characteristics of chlorosomes in other species of green photosynthetic bacteria. The absorption spectrum of whole cells was dominated by the chlorosome bacteriochlorophyll c (BChl c) peak at 759 nm, with fluorescence emission at 760 nm. A second fluorescence emission band was observed at 870 nm and was tentatively attributed to a membrane-bound antenna complex. Fluorescence emission spectra obtained at 77 K revealed another complex that fluoresced at 820 nm, which probably resulted from the chlorosome baseplate complex. All of these results suggest that BChl c is present in the chlorosomes of "Ca. Chlorothrix halophila," that BChl a is present in the baseplate, and that there is a membrane-bound antenna complex. Analysis of the proteins in the chlorosomes revealed an approximately 6-kDa band, which was found to be related to the BChl c binding protein CsmA found in other green bacteria. Overall, the absorbance and fluorescence spectra of "Ca. Chlorothrix halophila" revealed an interesting mixture of photosynthetic characteristics that seemed to have properties similar to properties of both phyla of green bacteria when they were compared to the photosynthetic characteristics of Chlorobium tepidum and Chloroflexus aurantiacus.
Collapse
|
29
|
Pedersen MØ, Borch J, Højrup P, Cox RP, Miller M. The light-harvesting antenna of Chlorobium tepidum: interactions between the FMO protein and the major chlorosome protein CsmA studied by surface plasmon resonance. PHOTOSYNTHESIS RESEARCH 2006; 89:63-9. [PMID: 16915355 DOI: 10.1007/s11120-006-9081-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 06/29/2006] [Indexed: 05/11/2023]
Abstract
Green sulfur bacteria possess two external light-harvesting antenna systems, the chlorosome and the FMO protein, which participate in a sequential energy transfer to the reaction centers embedded in the cytoplasmic membrane. However, little is known about the physical interaction between these two antenna systems. We have studied the interaction between the major chlorosome protein, CsmA, and the FMO protein in Chlorobium tepidum using surface plasmon resonance (SPR). Our results show an interaction between the FMO protein and an immobilized synthetic peptide corresponding to 17 amino acids at the C terminal of CsmA. This interaction is dependent on the presence of a motif comprising six amino acids that are highly conserved in all the currently available CsmA protein sequences.
Collapse
Affiliation(s)
- Marie Østergaard Pedersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | | | | | | | | |
Collapse
|
30
|
Frigaard NU, Bryant DA. Chlorosomes: Antenna Organelles in Photosynthetic Green Bacteria. MICROBIOLOGY MONOGRAPHS 2006. [DOI: 10.1007/7171_021] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Frigaard NU, Li H, Martinsson P, Das SK, Frank HA, Aartsma TJ, Bryant DA. Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum. PHOTOSYNTHESIS RESEARCH 2005; 86:101-11. [PMID: 16172929 DOI: 10.1007/s11120-005-1331-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 01/27/2005] [Indexed: 05/04/2023]
Abstract
Chlorosomes are the light-harvesting organelles in photosynthetic green bacteria and typically contain large amounts of bacteriochlorophyll (BChl) c in addition to smaller amounts of BChl a, carotenoids, and several protein species. We have isolated vestigial chlorosomes, denoted carotenosomes, from a BChl c-less, bchK mutant of the green sulfur bacterium Chlorobium tepidum. The physical shape of the carotenosomes (86 +/- 17 nm x 66 +/- 13 nm x 4.3 +/- 0.8 nm on average) was reminiscent of a flattened chlorosome. The carotenosomes contained carotenoids, BChl a, and the proteins CsmA and CsmD in ratios to each other comparable to their ratios in wild-type chlorosomes, but all other chlorosome proteins normally found in wild-type chlorosomes were found only in trace amounts or were not detected. Similar to wild-type chlorosomes, the CsmA protein in the carotenosomes formed oligomers at least up to homo-octamers as shown by chemical cross-linking and immunoblotting. The absorption spectrum of BChl a in the carotenosomes was also indistinguishable from that in wild-type chlorosomes. Energy transfer from the bulk carotenoids to BChl a in carotenosomes was poor. The results indicate that the carotenosomes have an intact baseplate made of remarkably stable oligomeric CsmA-BChl a complexes but are flattened in structure due to the absence of BChl c. Carotenosomes thus provide a valuable material for studying the biogenesis, structure, and function of the photosynthetic antennae in green bacteria.
Collapse
Affiliation(s)
- Niels-Ulrik Frigaard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Milks KJ, Danielsen M, Persson S, Jensen ON, Cox RP, Miller M. Chlorosome proteins studied by MALDI-TOF-MS: topology of CsmA in Chlorobium tepidum. PHOTOSYNTHESIS RESEARCH 2005; 86:113-21. [PMID: 16172930 DOI: 10.1007/s11120-005-3757-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 03/15/2005] [Indexed: 05/04/2023]
Abstract
Chlorosomes, the light-harvesting apparatus of green bacteria, are a unique antenna system, in which pigments are organized in aggregates rather than associated with proteins. Isolated chlorosomes from the green sulphur bacterium Chlorobium tepidum contain 10 surface-exposed proteins. Treatment of chlorosomes from Chlorobium tepidum with protease caused changes in the spectral properties of bacteriochlorophyll c and digestion of chlorosome proteins. Using SDS-PAGE analysis, immunoblotting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) we have investigated the topology of the 59-residue CsmA protein. Our results show that at the N-terminus, the only amino acid available for protease degradation is the methionine. At the C-terminus, amino acids can be removed by protease treatment to produce a residual protein containing at least the sequence between residues 2 and 38. These results indicate that the N-terminal portion of the CsmA protein, which is predicted to be mainly hydrophobic, is buried in the chlorosome envelope.
Collapse
Affiliation(s)
- Kirstin J Milks
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
33
|
Frigaard NU, Bryant DA. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 2004; 182:265-76. [PMID: 15340781 DOI: 10.1007/s00203-004-0718-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2004] [Revised: 07/21/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria (Chlorobi) and the filamentous anoxygenic phototrophic bacteria ("Chloroflexales"), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus and the oxidation of inorganic sulfur compounds in two model organisms that represent these taxa, Chlorobium tepidum and Chloroflexus aurantiacus. The genes involved in bacteriochlorophyll (BChl) c and carotenoid biosynthesis in these two organisms were identified by sequence homology with known BChl a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic nature, Cfx. aurantiacus in some cases apparently produces structurally different enzymes for heme and BChl biosynthesis, in which one enzyme functions under anoxic conditions and the other performs the same reaction under oxic conditions. The Chl. tepidum mutants produced with modified BChl c and carotenoid species also allow the functions of these pigments to be studied in vivo.
Collapse
Affiliation(s)
- Niels-Ulrik Frigaard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA.
| | | |
Collapse
|
34
|
Frigaard NU, Maresca JA, Yunker CE, Jones AD, Bryant DA. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 2004; 186:5210-20. [PMID: 15292122 PMCID: PMC490927 DOI: 10.1128/jb.186.16.5210-5220.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 05/14/2004] [Indexed: 11/20/2022] Open
Abstract
The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C. tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants by converting phytoene into lycopene using two plant-like desaturases (CrtP and CrtQ) and a plant-like cis-trans isomerase (CrtH) and thus differs from the pathway known in all other bacteria. In contrast to the situation in cyanobacteria and plants, the construction of a crtB mutant completely lacking carotenoids demonstrates that carotenoids are not essential for photosynthetic growth of green sulfur bacteria. However, the bacteriochlorophyll a contents of mutants lacking colored carotenoids (crtB, crtP, and crtQ mutants) were decreased from that of the wild type, and these mutants exhibited a significant growth rate defect under all light intensities tested. Therefore, colored carotenoids may have both structural and photoprotection roles in green sulfur bacteria. The ability to manipulate the carotenoid composition so dramatically in C. tepidum offers excellent possibilities for studying the roles of carotenoids in the light-harvesting chlorosome antenna and iron-sulfur-type (photosystem I-like) reaction center. The phylogeny of carotenogenic enzymes in green sulfur bacteria and green filamentous bacteria is also discussed.
Collapse
Affiliation(s)
- Niels-Ulrik Frigaard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
35
|
Frigaard NU, Li H, Milks KJ, Bryant DA. Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. J Bacteriol 2004; 186:646-53. [PMID: 14729689 PMCID: PMC321489 DOI: 10.1128/jb.186.3.646-653.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlorosomes of the green sulfur bacterium Chlorobium tepidum comprise mostly bacteriochlorophyll c (BChl c), small amounts of BChl a, carotenoids, and quinones surrounded by a lipid-protein envelope. These structures contain 10 different protein species (CsmA, CsmB, CsmC, CsmD, CsmE, CsmF, CsmH, CsmI, CsmJ, and CsmX) but contain relatively little total protein compared to other photosynthetic antenna complexes. Except for CsmA, which has been suggested to bind BChl a, the functions of the chlorosome proteins are not known. Nine mutants in which a single csm gene was inactivated were created; these mutants included genes encoding all chlorosome proteins except CsmA. All mutants had BChl c contents similar to that of the wild-type strain and had growth rates indistinguishable from or within approximately 90% (CsmC(-) and CsmJ(-)) of those of the wild-type strain. Chlorosomes isolated from the mutants lacked only the protein whose gene had been inactivated and were generally similar to those from the wild-type strain with respect to size, shape, and BChl c, BChl a, and carotenoid contents. However, chlorosomes from the csmC mutant were about 25% shorter than those from the wild-type strain, and the BChl c absorbance maximum was blue-shifted about 8 nm, indicating that the structure of the BChl c aggregates in these chlorosomes is altered. The results of the present study establish that, except with CsmA, when the known chlorosome proteins are eliminated individually, none of them are essential for the biogenesis, light harvesting, or structural organization of BChl c and BChl a within the chlorosome. These results demonstrate that chlorosomes are remarkably robust structures that can tolerate considerable changes in protein composition.
Collapse
Affiliation(s)
- Niels-Ulrik Frigaard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | |
Collapse
|
36
|
Nakajima Y, Okada H, Oguri K, Suga H, Kitazato H, Koizumi Y, Fukui M, Ohkouchi N. Distribution of chloropigments in suspended particulate matter and benthic microbial mat of a meromictic lake, Lake Kaiike, Japan. Environ Microbiol 2003; 5:1103-10. [PMID: 14641590 DOI: 10.1046/j.1462-2920.2003.00517.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the distribution of chloropigments in a small meromictic lake, Lake Kaiike, south-west Japan. In the water-column, concentrations of Chl a related to cyanobacteria, BChl a related to purple sulphur bacteria, and three types of BChl e homologues (BChls e1, e2 and e3) related to brown-coloured green sulphur bacteria, were maximal at the redox boundary. Below the redox boundary, absolute concentrations of Chl a and BChl a gradually decreased with depth, whereas BChls e remained rather constant. Suspended particulate matter (SPM) at the deeper region of the anoxic water-column was enriched in highly alkylated BChl e homologues compared with SPM at the redox boundary. The shift in the relative content of highly alkylated BChl e homologues beneath the boundary was associated with community related adaptation of brown-coloured green sulphur bacteria to changes in light quality/quantity, resulting from the optical absorption and reflectance of SPMs in the overlying water-column. Benthic microbial mats were characterized by high abundances of BChls e, in which highly alkylated homologues were substantially abundant. This suggests that the BChls e in the microbial mat may be derived from the low-light adapted brown-coloured green sulphur bacteria forming the bacterial mat.
Collapse
Affiliation(s)
- Yoji Nakajima
- Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Blankenship RE, Matsuura K. Antenna Complexes from Green Photosynthetic Bacteria. LIGHT-HARVESTING ANTENNAS IN PHOTOSYNTHESIS 2003. [DOI: 10.1007/978-94-017-2087-8_6] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Arellano JB, Melø TB, Borrego CM, Naqvi KR. Bacteriochlorophyll e monomers, but not aggregates, sensitize singlet oxygen: implications for a self-photoprotection mechanism in chlorosomes. Photochem Photobiol 2002; 76:373-80. [PMID: 12405142 DOI: 10.1562/0031-8655(2002)076<0373:bembna>2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sensitization of singlet delta oxygen (O2(1delta(g))) by bacteriochlorophyll e (BChle) has been investigated to gain a better understanding of the photoprotection mechanism(s) operating in chlorosomes of green photosynthetic bacteria. The sensitization process has been studied in media where BChle forms monomers (acetone and aqueous solutions containing 0.5% Triton X-100 [TX]) and in systems where BChle aggregates, namely, aqueous solutions containing 0.003% monogalactosyl diglyceride (MGDG) and chlorosomes(control as well as hexanol perturbed) from Chlorobium phaeobacteroides strain CL1401. In Ar-purged acetone, BChle triplets (BChle triplets) have a lifetime of a few tens of microseconds; however, in air-saturated acetone, quenching of BChle triplets by ground-state oxygen (O2(3sigma(-)g)) and formation of O2(1delta(g)) take place. The O2(1delta(g)) so formed is susceptible to quenching by BChle0, a ground-state BChle molecule. A Stern-Volmer analysis reveals a linear fit between the decay rate of O2(1delta(g)) and the BChle concentration. The rate constants for the quenching of O2(1delta(g)) by BChle0 and for the deactivation of O2(1delta(g)) by the solvent come out to be kq = (1.4 +/- 0.1) x 10(9) M(-1) s(-1) and k0 = (18.5 +/- 0.7) x 10(3) s(-1), respectively. The absolute quantum yield of O2(1delta(g)) sensitization by BChle monomers is 0.65 +/- 0.15 in air-saturated acetone. In aqueous phase, the triplet lifetime of BChle aggregates in native or hexanol-perturbed chlorosomes shortens by more than two orders of magnitude when compared with the triplet lifetime of BChle monomers in 0.5% TX solution (a few hundreds of microseconds). Quenching by carotenoids (Car) makes only a minor contribution to the decay of BChle triplets in aggregates. Because O2(1delta(g)) sensitization by BChle triplets could be detected neither in MGDG aggregates nor in chlorosomes (control as well as hexanol perturbed), it is concluded that (1) this process is highly likely when BChle is present as a monomer but not when it is tightly packed in artificial aggregates or in chlorosomes; and (2) Car, though vital for the baseplate BChla, are dispensable for BChle.
Collapse
Affiliation(s)
- Juan B Arellano
- Department of Physics, Norwegian University of Science and Technology, Trondheim.
| | | | | | | |
Collapse
|
39
|
Frigaard NU, Voigt GD, Bryant DA. Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. J Bacteriol 2002; 184:3368-76. [PMID: 12029054 PMCID: PMC135091 DOI: 10.1128/jb.184.12.3368-3376.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Accepted: 03/25/2002] [Indexed: 11/20/2022] Open
Abstract
The gene encoding bacteriochlorophyll (BChl) c synthase was identified by insertional inactivation in the photosynthetic green sulfur bacterium Chlorobium tepidum and was named bchK. The bchK mutant of C. tepidum was rusty-orange in color and completely lacked BChl c. Because of the absence of the BChl c antenna, the mutant grew about seven times slower than the wild type at light intensities that were limiting to the wild type (< 90 micromol m(-2) s(-1)). Various pheophorbides, which probably represent precursors of BChl c which had lost magnesium, accumulated in the mutant cells. A small fraction of these pheophorbides were apparently esterified by the remaining chlorophyll (Chl) a and BChl a synthases in cells. The amounts of BChl a, Chl a, isoprenoid quinones, carotenoids, Fenna-Matthews-Olson protein, and chlorosome envelope protein CsmA were not significantly altered on a cellular basis in the mutant compared to in the wild type. This suggests that the BChl a antennae, photosynthetic reaction centers, and remaining chlorosome components were essentially unaffected in the mutant. Electron microscopy of thin sections revealed that the mutant lacked normal chlorosomes. However, a fraction containing vestigial chlorosomes, denoted "carotenosomes," was partly purified by density centrifugation; these structures contained carotenoids, isoprenoid quinones, and a 798-nm-absorbing BChl a species that is probably protein associated. Because of the absence of the strong BChl c absorption found in the wild type, the bchK mutant should prove valuable for future analyses of the photosynthetic reaction center and of the roles of BChl a in photosynthesis in green bacteria. An evolutionary implication of our findings is that the photosynthetic ancestor of green sulfur bacteria could have evolved without chlorosomes and BChl c and instead used only BChl a-containing proteins as the major light-harvesting antennae.
Collapse
Affiliation(s)
- Niels-Ulrik Frigaard
- Department of Biochemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
40
|
Hauska G, Schoedl T, Remigy H, Tsiotis G. The reaction center of green sulfur bacteria(1). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:260-77. [PMID: 11687219 DOI: 10.1016/s0005-2728(01)00200-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The composition of the P840-reaction center complex (RC), energy and electron transfer within the RC, as well as its topographical organization and interaction with other components in the membrane of green sulfur bacteria are presented, and compared to the FeS-type reaction centers of Photosystem I and of Heliobacteria. The core of the RC is homodimeric, since pscA is the only gene found in the genome of Chlorobium tepidum which resembles the genes psaA and -B for the heterodimeric core of Photosystem I. Functionally intact RC can be isolated from several species of green sulfur bacteria. It is generally composed of five subunits, PscA-D plus the BChl a-protein FMO. Functional cores, with PscA and PscB only, can be isolated from Prostecochloris aestuarii. The PscA-dimer binds P840, a special pair of BChl a-molecules, the primary electron acceptor A(0), which is a Chl a-derivative and FeS-center F(X). An equivalent to the electron acceptor A(1) in Photosystem I, which is tightly bound phylloquinone acting between A(0) and F(X), is not required for forward electron transfer in the RC of green sulfur bacteria. This difference is reflected by different rates of electron transfer between A(0) and F(X) in the two systems. The subunit PscB contains the two FeS-centers F(A) and F(B). STEM particle analysis suggests that the core of the RC with PscA and PscB resembles the PsaAB/PsaC-core of the P700-reaction center in Photosystem I. PscB may form a protrusion into the cytoplasmic space where reduction of ferredoxin occurs, with FMO trimers bound on both sides of this protrusion. Thus the subunit composition of the RC in vivo should be 2(FMO)(3)(PscA)(2)PscB(PscC)(2)PscD. Only 16 BChl a-, four Chl a-molecules and two carotenoids are bound to the RC-core, which is substantially less than its counterpart of Photosystem I, with 85 Chl a-molecules and 22 carotenoids. A total of 58 BChl a/RC are present in the membranes of green sulfur bacteria outside the chlorosomes, corresponding to two trimers of FMO (42 Bchl a) per RC (16 BChl a). The question whether the homodimeric RC is totally symmetric is still open. Furthermore, it is still unclear which cytochrome c is the physiological electron donor to P840(+). Also the way of NAD(+)-reduction is unknown, since a gene equivalent to ferredoxin-NADP(+) reductase is not present in the genome.
Collapse
Affiliation(s)
- G Hauska
- Lehstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Germany.
| | | | | | | |
Collapse
|
41
|
Arellano JB, Melø TB, Borrego CM, Garcia-Gil J, Naqvi KR. Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401. Photochem Photobiol 2000; 72:669-75. [PMID: 11107853 DOI: 10.1562/0031-8655(2000)072<0669:nlpsoc>2.0.co;2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Time-resolved, laser-induced changes in absorbance, delta A(lambda; t), have been recorded with a view to probing pigment-pigment interactions in chlorosomes (control as well as carotenoid-depleted) and artificial aggregates of bacteriochlorophyll e (BChle). Control chlorosomes were isolated from Chlorobium phaeobacteroides strain CL1401, whose chromophores comprise BChle, bacteriochlorophyll a (BChla) and several carotenoid (Car) pigments; Car-depleted chlorosomes, from cells grown in cultures containing 2-hydroxybiphenyl. Artificial aggregates were prepared by dispersing BChle in aqueous phase in the presence of monogalactosyl diglyceride. In chlorosomes delta A(lambda; t) shows, besides a signal attributable to triplet Car (with a half-life of about 4 microseconds), signals in the Qy regions of both BChl. The BChla signal decays at the same rate as the Car signal, which is explained by postulating that some Car are in intimate contact with some baseplate BChla pigments, and that when a ground-state Car changes into a triplet Car, the absorption spectrum of its BChla neighbors undergoes a concomitant change (termed transient environment-induced perturbation). The signal in the Qy-region of BChle behaves differently: its amplitude falls, under reducing conditions, by more than a factor of two during the first 0.5 microsecond (a period during which the Car signal suffers negligible diminution), and is much smaller under nonreducing conditions. The BChle signal is also attributed to transient environment-induced perturbation, but in this case the perturber is a BChle photoproduct (probably a triplet or a radical ion). The absence of long-lived BChle triplets in all three systems, and of long-lived BChla triplets in chlorosomes, indicates that BChle in densely packed assemblies is less vulnerable to photodamage than monomeric BChle and that, in chlorosome, BChla rather than BChle needs, and receives, photoprotection from an adjacent Car.
Collapse
Affiliation(s)
- J B Arellano
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | | | | | | | | |
Collapse
|
42
|
Tamiaki H, Kubo M, Oba T. Synthesis and Self-Assembly of Zinc Methyl Bacteriopheophorbide-f and its Homolog. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00590-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Frigaard N, Tokita S, Matsuura K. Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1413:108-16. [PMID: 10556623 DOI: 10.1016/s0005-2728(99)00094-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the photosynthetic green filamentous bacterium Chloroflexus aurantiacus, excitation energy is transferred from a large bacteriochlorophyll (BChl) c antenna via smaller BChl a antennas to the reaction center. The effects of substituted 1,4-naphthoquinones on BChl c and BChl a fluorescence and on flash-induced cytochrome c oxidation were studied in whole cells under aerobic conditions. BChl c fluorescence in a cell suspension with 5.4 microM BChl c was quenched to 50% by addition of 0.6 microM shikonin ((R)-2-(1-hydroxy-4-methyl-3-pentenyl)-5,8-dihydroxy-1, 4-naphthoquinone), 0.9 microM 5-hydroxy-1,4-naphthoquinone, or 4 microM 2-acetyl-3-methyl-1,4-naphthoquinone. Between 25 and 100 times higher quinone concentrations were needed to quench BChl a fluorescence to a similar extent. These quinones also efficiently inhibited flash-induced cytochrome c oxidation when BChl c was excited, but not when BChl a was excited. The quenching of BChl c fluorescence induced by these quinones correlated with the inhibition of flash-induced cytochrome c oxidation. We concluded that the quinones inhibited electron transfer in the reaction center by specifically quenching the excitation energy in the BChl c antenna. Our results provide a model system for studying the redox-dependent antenna quenching in green sulfur bacteria because the antennas in these bacteria inherently exhibit a sensitivity to O(2) similar to the quinone-supplemented cells of Cfx. aurantiacus.
Collapse
Affiliation(s)
- N Frigaard
- Department of Biology, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji, 192-0397, Tokyo, Japan.
| | | | | |
Collapse
|