1
|
Zambrano P, Manrique-Moreno M, Petit K, Colina JR, Jemiola-Rzeminska M, Suwalsky M, Strzalka K. Differential scanning calorimetry in drug-membrane interactions. Biochem Biophys Res Commun 2024; 709:149806. [PMID: 38579619 DOI: 10.1016/j.bbrc.2024.149806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers. The manuscript consolidates data from various studies, providing a comprehensive understanding of the mechanisms underlying drug - membrane interactions, the determinants that influence these interactions, and the crucial role of DSC in elucidating these components. It further explores the interactions of specific classes of drugs with phospholipid membranes, including non-steroidal anti-inflammatory drugs, anticancer agents, natural products with antioxidant properties, and Alzheimer's disease therapeutics. The manuscript underscores the critical importance of DSC in this field and the need for continued research to improve our understanding of these interactions, acting as a valuable resource for researchers.
Collapse
Affiliation(s)
- Pablo Zambrano
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| | - Marcela Manrique-Moreno
- Faculty of Natural of Exact Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin, 050010, Antioquia, Colombia
| | - Karla Petit
- LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, Concepción, Chile
| | - José R Colina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
2
|
Múnera-Jaramillo J, López GD, Suesca E, Carazzone C, Leidy C, Manrique-Moreno M. The role of staphyloxanthin in the regulation of membrane biophysical properties in Staphylococcus aureus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184288. [PMID: 38286247 DOI: 10.1016/j.bbamem.2024.184288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Staphylococcus aureus is an opportunistic pathogen that is considered a global health threat. This microorganism can adapt to hostile conditions by regulating membrane lipid composition in response to external stress factors such as changes in pH and ionic strength. S. aureus synthesizes and incorporates in its membrane staphyloxanthin, a carotenoid providing protection against oxidative damage and antimicrobial agents. Staphyloxanthin is known to modulate the physical properties of the bacterial membranes due to the rigid diaponeurosporenoic group it contains. In this work, preparative thin layer chromatography and liquid chromatography mass spectrometry were used to purify staphyloxanthin from S. aureus and characterize its structure, identifying C15, C17 and C19 as the main fatty acids in this carotenoid. Changes in the biophysical properties of models of S. aureus membranes containing phosphatidylglycerol, cardiolipin, and staphyloxanthin were evaluated. Infrared spectroscopy shows that staphyloxanthin reduces the liquid-crystalline to gel phase transition temperature in the evaluated model systems. Interestingly, these shifts are not accompanied by strong changes in trans/gauche isomerization, indicating that chain conformation in the liquid-crystalline phase is not altered by staphyloxanthin. In contrast, headgroup spacing, measured by Laurdan GP fluorescence spectroscopy, and lipid core dynamics, measured by DPH fluorescence anisotropy, show significant shifts in the presence of staphyloxanthin. The combined results show that staphyloxanthin reduces lipid core dynamics and headgroup spacing without altering acyl chain conformations, therefore decoupling these normally correlated effects. We propose that the rigid diaponeurosporenoic group in staphyloxanthin and its positioning in the membrane is likely responsible for the results observed.
Collapse
Affiliation(s)
- Jessica Múnera-Jaramillo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá, Colombia; PhysCheMath Research Group, Chemistry Department, Universidad de América, Bogotá D.C., Colombia
| | - Elizabeth Suesca
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia.
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
3
|
Triantafyllopoulou E, Selianitis D, Balafouti A, Lagopati N, Gazouli M, Valsami G, Pispas S, Pippa N. Fabricating hybrid DSPC:DOPC:P(OEGMA-co-LMA) structures: Self-assembly as the milestone of their performance. Colloids Surf A Physicochem Eng Asp 2024; 684:133015. [DOI: 10.1016/j.colsurfa.2023.133015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
4
|
Permann C, Stegner M, Roach T, Loacker V, Lewis LA, Neuner G, Holzinger A. Striking differences in frost hardiness and inability to cold acclimate in two Mougeotia species (Zygnematophyceae) from alpine and lowland habitats. PHYSIOLOGIA PLANTARUM 2024; 176:e14167. [PMCID: PMC10952266 DOI: 10.1111/ppl.14167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 02/04/2025]
Abstract
Zygnematophyceae, a class of freshwater green algae, exhibit distinctive seasonal dynamics. The increasing frequency of cold snaps during the growing season might challenge the persistence of some populations. The present study explored the frost hardiness of two Mougeotia species isolated from different elevations and habitats. Additionally, a phylogenetic (rbc L sequence), ultrastructural and physiological characterization was performed. Both species, grown under standard culture conditions and cold acclimated cultures (+4°C), were exposed to freezing temperatures down to −9°C. Furthermore, ultrastructural‐, hydrogen peroxide (H2O2)‐ and photosynthetic pigment analysis were performed on cells exposed to −2°C, with and without induced ice nucleation. The alpine M. disjuncta showed a higher frost hardiness (LT50 = −5.8°C), whereas the lowland M. scalaris was susceptible to ice. However, frost hardiness did not improve after cold acclimation in either species but rather decreased significantly in M. disjuncta (LT50 = −4.7°C). Despite darkness, prolonged sub‐zero temperatures or freezing induced the activation of the xanthophyll (VAZ) cycle in M. scalaris . Our results demonstrate that frost hardiness varies within the genus Mougeotia and that the VAZ cycle can be activated in the dark under subzero temperature‐ and freezing stress but does not necessarily increase frost hardiness. As highly frost hardy cell types are usually formed at the end of the growing season, the ability of young cells to survive ice formation in the upper subzero temperature range represents a crucial survival strategy in populations exposed to late spring frosts.
Collapse
Affiliation(s)
| | | | - Thomas Roach
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Louise A. Lewis
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Gilbert Neuner
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | |
Collapse
|
5
|
Shen H, Zhang C, Wang C, Jiang J, Tang F, Li C, Yuan H, Yang X, Tong Z, Huang Y. Lutein-Based pH and Photo Dual-Responsive Novel Liposomes Coated with Ce6 and PTX for Tumor Therapy. ACS OMEGA 2023; 8:31436-31449. [PMID: 37663483 PMCID: PMC10468958 DOI: 10.1021/acsomega.3c04228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Liposomes are considered the best nanocarrier for delivering cancer drugs such as chlorin e6 (Ce6) and paclitaxel (PTX). However, the poor stability and non-selectivity release of liposomes may severely limit their further applications. In this study, based on the characteristics of lutein (L) photo-response and orthoester (OE) acid-response, stable and dual-responsive liposomes (Dr-lips) have been prepared. The Dr-lips exhibited a spherical shape with a uniform size of approximately 58.27 nm. Moreover, they displayed a zeta potential ranging from -45.45 to -28.25 mV and showed excellent storage stability, indicating stable colloidal properties. Additionally, they achieved high drug encapsulation rates, with 92.27% for PTX and 90.34% for Ce6, respectively. Meanwhile, under near-infrared (NIR) light at 660 nm, Ce6 plays a key role in accelerating the photodegradation rate of lutein and PEG-OE-L while also enhancing tissue penetration ability. Additionally, Dr-lips loaded with Ce6 and PTX not only displayed excellent pH and photo dual-responsiveness for targeted delivering and releasing but also showed remarkable reactive oxygen species (ROS) generation capacity and impressive anti-tumor activity in vitro. Therefore, it provides a novel strategy for optimizing stability and enhancing their targeted drug delivery of liposome.
Collapse
Affiliation(s)
- Hong Shen
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- Department
of Chemistry and Chemical Engineering, Beijing
Forestry University, Beijing 100083, China
- Co-Innovation
Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210042, China
| | - Changwei Zhang
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- Co-Innovation
Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210042, China
| | - Chengzhang Wang
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- Co-Innovation
Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210042, China
| | - Jianxin Jiang
- Department
of Chemistry and Chemical Engineering, Beijing
Forestry University, Beijing 100083, China
| | - Fengxia Tang
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- Department
of Chemistry and Chemical Engineering, Beijing
Forestry University, Beijing 100083, China
| | - Chuan Li
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Hua Yuan
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Xiaoran Yang
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Zhenkai Tong
- Chemical
Engineering of Forest Products, Instituteof Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Yi Huang
- College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| |
Collapse
|
6
|
Mitchison-Field LM, Belin BJ. Bacterial lipid biophysics and membrane organization. Curr Opin Microbiol 2023; 74:102315. [PMID: 37058914 PMCID: PMC10523990 DOI: 10.1016/j.mib.2023.102315] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The formation of lateral microdomains is emerging as a central organizing principle in bacterial membranes. These microdomains are targets of antibiotic development and have the potential to enhance natural product synthesis, but the rules governing their assembly are unclear. Previous studies have suggested that microdomain formation is promoted by lipid phase separation, particularly by cardiolipin (CL) and isoprenoid lipids, and there is strong evidence that CL biosynthesis is required for recruitment of membrane proteins to cell poles and division sites. New work demonstrates that additional bacterial lipids may mediate membrane protein localization and function, opening the field for mechanistic evaluation of lipid-driven membrane organization in vivo.
Collapse
Affiliation(s)
- Lorna My Mitchison-Field
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Brittany J Belin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Triantafyllopoulou E, Selianitis D, Pippa N, Gazouli M, Valsami G, Pispas S. Development of Hybrid DSPC:DOPC:P(OEGMA 950-DIPAEMA) Nanostructures: The Random Architecture of Polymeric Guest as a Key Design Parameter. Polymers (Basel) 2023; 15:1989. [PMID: 37177137 PMCID: PMC10181429 DOI: 10.3390/polym15091989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Hybrid nanoparticles have gained a lot of attention due to their advantageous properties and versatility in pharmaceutical applications. In this perspective, the formation of novel systems and the exploration of their characteristics not only from a physicochemical but also from a biophysical perspective could promote the development of new nanoplatforms with well-defined features. In the current work, lipid/copolymer bilayers were formed in different lipid to copolymer ratios and examined via differential scanning calorimetry as a preformulation study to decipher the interactions between the biomaterials, followed by nanostructure preparation by the thin-film hydration method. Physicochemical and toxicological evaluations were conducted utilizing light scattering techniques, fluorescence spectroscopy, and MTS assay. 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in different weight ratios were the chosen lipids, while a linear random copolymer with pH- and thermoresponsive properties comprised of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA) in different ratios was used. According to our results, non-toxic hybrid nanosystems with stimuli-responsive properties were successfully formulated, and the main parameters influencing their overall performance were the hydrophilic/hydrophobic balance, lipid to polymer ratio, and more importantly the random copolymer topology. Hopefully, this investigation can promote a better understanding of the factors affecting the behavior of hybrid systems.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (E.T.); (N.P.); (G.V.)
| | - Dimitriοs Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (E.T.); (N.P.); (G.V.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine National and Kapodistrian, University of Athens, 11527 Athens, Greece;
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (E.T.); (N.P.); (G.V.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
8
|
Manrique-Moreno M, Jemioła-Rzemińska M, Múnera-Jaramillo J, López GD, Suesca E, Leidy C, Strzałka K. Staphylococcus aureus Carotenoids Modulate the Thermotropic Phase Behavior of Model Systems That Mimic Its Membrane Composition. MEMBRANES 2022; 12:945. [PMID: 36295704 PMCID: PMC9612337 DOI: 10.3390/membranes12100945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Staphylococcus aureus (S. aureus) is a pathogenic gram-positive bacterium that normally resides in the skin and nose of the human body. It is subject to fluctuations in environmental conditions that may affect the integrity of the membrane. S. aureus produces carotenoids, which act as antioxidants. However, these carotenoids have also been implicated in modulating the biophysical properties of the membrane. Here, we investigate how carotenoids modulate the thermotropic phase behavior of model systems that mimic the phospholipid composition of S. aureus. We found that carotenoids depress the main phase transition of DMPG and CL, indicating that they strongly affect cooperativity of membrane lipids in their gel phase. In addition, carotenoids modulate the phase behavior of mixtures of DMPG and CL, indicating that they may play a role in modulation of lipid domain formation in S. aureus membranes.
Collapse
Affiliation(s)
- Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia
| | - Małgorzata Jemioła-Rzemińska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
| | - Jessica Múnera-Jaramillo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Elizabeth Suesca
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Kazimierz Strzałka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
| |
Collapse
|
9
|
Yi X, Gao X, Zhang X, Xia G, Shen X. Preparation of liposomes by glycolipids/phospholipids as wall materials: studies on stability and digestibility. Food Chem 2022; 402:134328. [DOI: 10.1016/j.foodchem.2022.134328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
|
10
|
Rizk S, Henke P, Santana-Molina C, Martens G, Gnädig M, Nguyen NA, Devos DP, Neumann-Schaal M, Saenz JP. Functional diversity of isoprenoid lipids in Methylobacterium extorquens PA1. Mol Microbiol 2021; 116:1064-1078. [PMID: 34387371 DOI: 10.1111/mmi.14794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Hopanoids and carotenoids are two of the major isoprenoid-derived lipid classes in prokaryotes that have been proposed to have similar membrane ordering properties as sterols. Methylobacterium extorquens contains hopanoids and carotenoids in their outer membrane, making them an ideal system to investigate the role of isoprenoid lipids in surface membrane function and cellular fitness. By genetically knocking out hpnE, and crtB we disrupted the production of squalene, and phytoene in Methylobacterium extorquens PA1, which are the presumed precursors for hopanoids and carotenoids, respectively. Deletion of hpnE revealed that carotenoid biosynthesis utilizes squalene as a precursor resulting in pigmentation with a C30 backbone, rather than the previously predicted canonical C40 phytoene-derived pathway. Phylogenetic analysis suggested that M. extorquens may have acquired the C30 pathway through lateral gene transfer from Planctomycetes. Surprisingly, disruption of carotenoid synthesis did not generate any major growth or membrane biophysical phenotypes, but slightly increased sensitivity to oxidative stress. We further demonstrated that hopanoids but not carotenoids are essential for growth at higher temperatures, membrane permeability and tolerance of low divalent cation concentrations. These observations show that hopanoids and carotenoids serve diverse roles in the outer membrane of M. extorquens PA1.
Collapse
Affiliation(s)
- Sandra Rizk
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Petra Henke
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Carlos Santana-Molina
- Centro Andaluz de Biologıa del Desarrollo (CABD)-CSIC, Junta de Andalucıa, Universidad Pablo de Olavide, Seville, Spain
| | - Gesa Martens
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Marén Gnädig
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | | | - Damien P Devos
- Centro Andaluz de Biologıa del Desarrollo (CABD)-CSIC, Junta de Andalucıa, Universidad Pablo de Olavide, Seville, Spain
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - James P Saenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| |
Collapse
|
11
|
Perera-Castro AV, Flexas J, González-Rodríguez ÁM, Fernández-Marín B. Photosynthesis on the edge: photoinhibition, desiccation and freezing tolerance of Antarctic bryophytes. PHOTOSYNTHESIS RESEARCH 2021; 149:135-153. [PMID: 33033976 DOI: 10.1007/s11120-020-00785-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/23/2020] [Indexed: 05/11/2023]
Abstract
In Antarctica, multiple stresses (low temperatures, drought and excessive irradiance) hamper photosynthesis even in summer. We hypothesize that controlled inactivation of PSII reaction centres, a mechanism widely studied by pioneer work of Fred Chow and co-workers, may effectively guarantee functional photosynthesis under these conditions. Thus, we analysed the energy partitioning through photosystems in response to temperature in 15 bryophyte species presenting different worldwide distributions but all growing in Livingston Island, under controlled and field conditions. We additionally tested their tolerance to desiccation and freezing and compared those with their capability for sexual reproduction in Antarctica (as a proxy to overall fitness). Under field conditions, when irradiance rules air temperature by the warming of shoots (up to 20 °C under sunny days), a predominance of sustained photoinhibition beyond dynamic heat dissipation was observed at low temperatures. Antarctic endemic and polar species showed the largest increases of photoinhibition at low temperatures. On the contrary, the variation of thermal dissipation with temperature was not linked to species distribution. Instead, maximum non-photochemical quenching at 20 °C was related (strongly and positively) with desiccation tolerance, which also correlated with fertility in Antarctica, but not with freezing tolerance. Although all the analysed species tolerated - 20 °C when dry, the tolerance to freezing in hydrated state ranged from the exceptional ability of Schistidium rivulare (that survived for 14 months at - 80 °C) to the susceptibility of Bryum pseudotriquetrum (that died after 1 day at - 20 °C unless being desiccated before freezing).
Collapse
Affiliation(s)
- Alicia Victoria Perera-Castro
- Department of Biology, Universitat de Les Illes Balears / INAGEA, Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain.
| | - Jaume Flexas
- Department of Biology, Universitat de Les Illes Balears / INAGEA, Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain
| | | | - Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna (ULL), 38200 La Laguna, Canarias, Spain
| |
Collapse
|
12
|
Ademowo OS, Dias IHK, Diaz-Sanchez L, Sanchez-Aranguren L, Stahl W, Griffiths HR. Partial Mitigation of Oxidized Phospholipid-Mediated Mitochondrial Dysfunction in Neuronal Cells by Oxocarotenoids. J Alzheimers Dis 2021; 74:113-126. [PMID: 31985464 DOI: 10.3233/jad-190923] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria are important (patho)physiological sources of reactive oxygen species (ROS) that mediate mitochondrial dysfunction and phospholipid oxidation; an increase in mitochondrial content of oxidized phospholipid (OxPL) associates with cell death. Previously we showed that the circulating OxPL 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) increases in patients with Alzheimer's disease (AD), and associates with lower plasma antioxidant oxocarotenoids, zeaxanthin, and lutein. Since oxocarotenoids are metabolized in mitochondria, we propose that during AD, lower concentrations of mitochondrial zeaxanthin and lutein may result in greater phospholipid oxidation and predispose to neurodegeneration. Here, we have investigated whether non-toxic POVPC concentrations impair mitochondrial metabolism in differentiated (d)SH-SY5Y neuronal cells and whether there is any protective role for oxocarotenoids against mitochondrial dysfunction. After 24 hours, glutathione (GSH) concentration was lower in neuronal cells exposed to POVPC (1-20 μM) compared with vehicle control without loss of viability compared to control. However, mitochondrial ROS production (determined by MitoSOX oxidation) was increased by 50% only after 20 μM POVPC. Following delivery of lutein (0.1-1 μM) and zeaxanthin (0.5-5 μM) over 24 hours in vitro, oxocarotenoid recovery from dSH-SY5Y cells was > 50%. Co-incubation with oxocarotenoids prevented loss of GSH after 1 μM but not 20 μM POVPC, whereas the increase in ROS production induced by 20 μM POVPC was prevented by lutein and zeaxanthin. Mitochondrial uncoupling increases and ATP production is inhibited by 20 μM but not 1 μM POVPC; carotenoids protected against uncoupling although did not restore ATP production. In summary, 20 μM POVPC induced loss of GSH and a mitochondrial bioenergetic deficit in neuronal cells that was not mitigated by oxocarotenoids.
Collapse
Affiliation(s)
- Opeyemi S Ademowo
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, UK
| | - Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, UK
| | - Lorena Diaz-Sanchez
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, UK
| | | | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology 1, Faculty of Medicine, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Helen R Griffiths
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, UK.,Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, UK
| |
Collapse
|
13
|
Widomska J, Gruszecki WI, Subczynski WK. Factors Differentiating the Antioxidant Activity of Macular Xanthophylls in the Human Eye Retina. Antioxidants (Basel) 2021; 10:601. [PMID: 33919673 PMCID: PMC8070478 DOI: 10.3390/antiox10040601] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Macular xanthophylls, which are absorbed from the human diet, accumulate in high concentrations in the human retina, where they efficiently protect against oxidative stress that may lead to retinal damage. In addition, macular xanthophylls are uniquely spatially distributed in the retina. The zeaxanthin concentration (including the lutein metabolite meso-zeaxanthin) is ~9-fold greater than lutein concentration in the central fovea. These numbers do not correlate at all with the dietary intake of xanthophylls, for which there is a dietary zeaxanthin-to-lutein molar ratio of 1:12 to 1:5. The unique spatial distributions of macular xanthophylls-lutein, zeaxanthin, and meso-zeaxanthin-in the retina, which developed during evolution, maximize the protection of the retina provided by these xanthophylls. We will correlate the differences in the spatial distributions of macular xanthophylls with their different antioxidant activities in the retina. Can the major protective function of macular xanthophylls in the retina, namely antioxidant actions, explain their evolutionarily determined, unique spatial distributions? In this review, we will address this question.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Wieslaw I. Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| |
Collapse
|
14
|
Dias IHK, Milic I, Heiss C, Ademowo OS, Polidori MC, Devitt A, Griffiths HR. Inflammation, Lipid (Per)oxidation, and Redox Regulation. Antioxid Redox Signal 2020; 33:166-190. [PMID: 31989835 DOI: 10.1089/ars.2020.8022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Inflammation increases during the aging process. It is linked to mitochondrial dysfunction and increased reactive oxygen species (ROS) production. Mitochondrial macromolecules are critical targets of oxidative damage; they contribute to respiratory uncoupling with increased ROS production, redox stress, and a cycle of senescence, cytokine production, and impaired oxidative phosphorylation. Targeting the formation or accumulation of oxidized biomolecules, particularly oxidized lipids, in immune cells and mitochondria could be beneficial for age-related inflammation and comorbidities. Recent Advances: Inflammation is central to age-related decline in health and exhibits a complex relationship with mitochondrial redox state and metabolic function. Improvements in mass spectrometric methods have led to the identification of families of oxidized phospholipids (OxPLs), cholesterols, and fatty acids that increase during inflammation and which modulate nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), activator protein 1 (AP1), and NF-κB redox-sensitive transcription factor activity. Critical Issues: The kinetic and spatial resolution of the modified lipidome has profound and sometimes opposing effects on inflammation, promoting initiation at high concentration and resolution at low concentration of OxPLs. Future Directions: There is an emerging opportunity to prevent or delay age-related inflammation and vascular comorbidity through a resolving (oxy)lipidome that is dependent on improving mitochondrial quality control and restoring redox homeostasis.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Ivana Milic
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Christian Heiss
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Opeyemi S Ademowo
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Cologne Center for Molecular Medicine Cologne, and CECAD, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Andrew Devitt
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Helen R Griffiths
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
15
|
Kuczynska P, Jemiola-Rzeminska M, Nowicka B, Jakubowska A, Strzalka W, Burda K, Strzalka K. The xanthophyll cycle in diatom Phaeodactylum tricornutum in response to light stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:125-137. [PMID: 32416342 DOI: 10.1016/j.plaphy.2020.04.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 05/11/2023]
Abstract
Chosen aspects of the functioning of diadinoxanthin cycle in a model diatom Phaeodactylum tricornutum grown under low light conditions (LL) and under high light conditions (HL), which cause activation of violaxanthin cycle, were examined. Heterogeneity of the kinetics of diadinoxanthin ↔ diatoxanthin conversions regulated by de-epoxidase/epoxidase enzymes was detected. Three different rates of diadinoxanthin de-epoxidation (τ > 20 min, 5 min > τ > 1.5 min and τ ≤ 1 min) were observed. Appearance and contribution of these phases depended on the light conditions and xanthophylls subpopulations in membranes. Moreover, diadinoxanthin de-epoxidation was postulated to occur in darkness and its rate was estimated to be almost two times faster (τ ≈ 14 min) than diatoxanthin-epoxidation in LL- and HL-grown diatoms collected after the dark phase of the photoperiod and exposed to very high light and subsequent darkness. The level of lipid hydroperoxides and the expression of genes encoding xanthophyll cycle enzymes was measured. Our observations suggest that isoforms of these enzymes may participate in carotenoid synthesis or be exclusively involved in xanthophyll conversions. Violaxanthin cycle pigments present in HL-acclimated diatoms change thermodynamic properties of thylakoid membranes. Zeaxanthin is known to localize preferentially in the inner part of the lipid bilayer and diatoxanthin in its outer part. The different localization of these pigments probably decide about their complementary action in protection of the membranes against reactive oxygen species.
Collapse
Affiliation(s)
- Paulina Kuczynska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Malgorzata Jemiola-Rzeminska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland
| | - Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Agata Jakubowska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Kvetoslava Burda
- Faculty of Physics and Applied Computer Science, University of Science and Technology, Reymonta 19, 30-059, Krakow, Poland
| | - Kazimierz Strzalka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland
| |
Collapse
|
16
|
Duda M, Cygan K, Wisniewska-Becker A. Effects of Curcumin on Lipid Membranes: an EPR Spin-label Study. Cell Biochem Biophys 2020; 78:139-147. [PMID: 32236880 PMCID: PMC7266845 DOI: 10.1007/s12013-020-00906-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/12/2020] [Indexed: 02/01/2023]
Abstract
Curcumin is a yellow–orange dye widely used as a spice, food coloring and food preservative. It also exhibits a broad range of therapeutic effects against different disorders such as cancer, diabetes, or neurodegenerative diseases. As a compound insoluble in water curcumin accumulates in cell membranes and due to this location it may indirectly lead to the observed effects by structurally altering the membrane environment. To exert strong structural effects on membrane curcumin needs to adopt a transbilayer orientation. However, there is no agreement in literature as to curcumin’s orientation and its structural effects on membranes. Here, we investigated the effects of curcumin on lipid order, lipid phase transition, and local polarity in a model liposome membranes made of DMPC or DSPC using electron paramagnetic resonance (EPR) spin labeling technique. Curcumin affected lipid order at different depths within the membrane: it slightly increased the phospholipid polar headgroup mobility as monitored by spectral parameters of T-PC, while along the acyl chain the ordering effect was observed in terms of order parameter S. Also, rotational correlation times τ2B and τ2C of 16-PC in the membrane center were increased by curcumin. Polarity measurements performed in frozen suspensions of liposomes revealed enhancement of water penetration by curcumin in the membrane center (16-PC) and in the polar headgroup region (T-PC) while the intermediate positions along the acyl chain (5-PC and 10-PC) were not significantly affected. Curcumin at a lower concentration (5 mol%) shifted the temperature of the DMPC main phase transition to lower values and increased the transition width, and at a higher concentration (10 mol%) abolished the transition completely. The observed effects suggest that curcumin adopts a transbilayer orientation within the membrane and most probably form oligomers of two molecules, each of them spanning the opposite bilayer leaflets. The effects are also discussed in terms of curcumin’s protective activity and compared with those imposed on membranes by other natural dyes known for their protective role, namely polar carotenoids, lutein and zeaxanthin.
Collapse
Affiliation(s)
- Mariusz Duda
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Kaja Cygan
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Wisniewska-Becker
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
17
|
Elkholy NS, Shafaa MW, Mohammed HS. Biophysical characterization of lutein or beta carotene-loaded cationic liposomes. RSC Adv 2020; 10:32409-32422. [PMID: 35685615 PMCID: PMC9127840 DOI: 10.1039/d0ra05683a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
The interactions between carotenoids and membrane constituents are vital for understanding the mechanism of their dynamic action. Lutein and beta-carotene were loaded separately into the bilayer of dipalmitoylphosphatidylcholine (DPPC) mixed at a molar ratio with l-α-phosphatidylethanolamine derived from sheep brain (cephalin) and stearylamine (SA) to form cationic liposomes. The molecular interaction between lutein or beta-carotene with cationic liposomes was studied using transmission electron microscopy (TEM), dynamic light scattering (DLS), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. Encapsulation efficiency (EE %) and in vitro drug release were determined. The DLS measurements confirmed the mono-dispersity of all samples. TEM results revealed that liposomal samples were oval-shaped and there was a change in their morphology and size upon encapsulation of lutein or beta-carotene. Beta-carotene was observed to adhere to the boundary surface within the liposomal assembly with external morphological alterations. EE% of lutein and beta-carotene exceeded 98.8 ± 0.3% and 87 ± 4%, respectively. Lutein doped with cationic liposomes shows better in vitro release stability (about 30%) than beta-carotene (about 45%) between the 3rd and the 6th hour manifested by lower leakage rate percentage of lutein which would lead to higher lutein retention. The incorporated lutein resulted in broadening and shifting of the major endothermic peak of the co-liposomes, while the incorporation of beta-carotene did not induce a noticeable shift. An FTIR study was employed to reveal structure alterations in the vesicles after the encapsulation of lutein or beta-carotene into liposomes. Encapsulation of lutein or beta-carotene into liposomes induced a change in the frequency of the symmetric and asymmetric CH2 stretching bands in the acyl chain that may influence the order of the membrane. The interactions between carotenoids and membrane constituents are vital for understanding the mechanism of their dynamic action.![]()
Collapse
Affiliation(s)
- Nourhan S. Elkholy
- Medical Biophysics Division
- Physics Department
- Faculty of Science
- Helwan University
- Cairo
| | - Medhat W. Shafaa
- Medical Biophysics Division
- Physics Department
- Faculty of Science
- Helwan University
- Cairo
| | | |
Collapse
|
18
|
Kumar SV, Taylor G, Hasim S, Collier CP, Farmer AT, Campagna SR, Bible AN, Doktycz MJ, Morrell-Falvey J. Loss of carotenoids from membranes of Pantoea sp. YR343 results in altered lipid composition and changes in membrane biophysical properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1338-1345. [PMID: 31095944 DOI: 10.1016/j.bbamem.2019.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Bacterial membranes are complex mixtures of lipids and proteins, the combination of which confers biophysical properties that allows cells to respond to environmental conditions. Carotenoids are sterol analogs that are important for regulating membrane dynamics. The membrane of Pantoea sp. YR343 is characterized by the presence of the carotenoid zeaxanthin, and a carotenoid-deficient mutant, ΔcrtB, displays defects in root colonization, reduced secretion of indole-3-acetic acid, and defects in biofilm formation. Here we demonstrate that the loss of carotenoids results in changes to the membrane lipid composition in Pantoea sp. YR343, including increased amounts of unsaturated fatty acids in the ΔcrtB mutant membranes. These mutant cells displayed less fluid membranes in comparison to wild type cells as measured by fluorescence anisotropy of whole cells. Studies with artificial systems, however, have shown that carotenoids impart membrane rigidifying properties. Thus, we examined membrane fluidity using spheroplasts and vesicles composed of lipids extracted from either wild type or mutant cells. Interestingly, with the removal of the cell wall and membrane proteins, ΔcrtB vesicles were more fluid than vesicles made from lipids extracted from wild type cells. In addition, carotenoids appeared to stabilize membrane fluidity during rapidly changing temperatures. Taken together, these results suggest that Pantoea sp. YR343 compensates for the loss of carotenoids by changing lipid composition, which together with membrane proteins, results in reduced membrane fluidity. These changes may influence the abundance or function of membrane proteins that are responsible for the physiological changes observed in the ΔcrtB mutant cells.
Collapse
Affiliation(s)
- Sushmitha Vijaya Kumar
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Graham Taylor
- UT-ORNL Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sahar Hasim
- Department of Biology, Columbus State University, Columbus, GA, USA
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Abigail T Farmer
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Amber N Bible
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Mitchel J Doktycz
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jennifer Morrell-Falvey
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
19
|
Gryz E, Perlińska-Lenart U, Gawarecka K, Jozwiak A, Piłsyk S, Lipko A, Jemiola-Rzeminska M, Bernat P, Muszewska A, Steczkiewicz K, Ginalski K, Długoński J, Strzalka K, Swiezewska E, Kruszewska JS. Poly-Saturated Dolichols from Filamentous Fungi Modulate Activity of Dolichol-Dependent Glycosyltransferase and Physical Properties of Membranes. Int J Mol Sci 2019; 20:ijms20123043. [PMID: 31234450 PMCID: PMC6628320 DOI: 10.3390/ijms20123043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 11/17/2022] Open
Abstract
Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in A. fumigatus and A. niger. Here we confirm using an LC-ESI-QTOF-MS analysis, that poly-saturated dolichols are abundant in other filamentous fungi, Trichoderma reesei, A. nidulans and Neurospora crassa, while the yeast Saccharomyces cerevisiae only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS). The activity of this enzyme from T. reesei and S. cerevisiae was strongly affected by the structure of dolichols. Additionally, the structure of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) model membranes was more strongly disturbed by the poly-saturated dolichols from Trichoderma than by the mono-saturated dolichols from yeast. By comparing the lipidome of filamentous fungi with that from S. cerevisiae, we revealed significant differences in the PC/PE ratio and fatty acids composition. Filamentous fungi differ from S. cerevisiae in the lipid composition of their membranes and the structure of dolichols. The structure of dolichols profoundly affects the functioning of dolichol-dependent enzyme, DPMS.
Collapse
Affiliation(s)
- Elżbieta Gryz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Urszula Perlińska-Lenart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Katarzyna Gawarecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Adam Jozwiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Agata Lipko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Malgorzata Jemiola-Rzeminska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland.
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| | - Jerzy Długoński
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Kazimierz Strzalka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland.
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Joanna S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
20
|
Bojko M, Olchawa-Pajor M, Goss R, Schaller-Laudel S, Strzałka K, Latowski D. Diadinoxanthin de-epoxidation as important factor in the short-term stabilization of diatom photosynthetic membranes exposed to different temperatures. PLANT, CELL & ENVIRONMENT 2019; 42:1270-1286. [PMID: 30362127 DOI: 10.1111/pce.13469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/17/2018] [Indexed: 05/25/2023]
Abstract
The importance of diadinoxanthin (Ddx) de-epoxidation in the short-term modulation of the temperature effect on photosynthetic membranes of the diatom Phaeodactylum tricornutum was demonstrated by electron paramagnetic resonance (EPR), Laurdan fluorescence spectroscopy, and high-performance liquid chromatography. The 5-SASL spin probe employed for the EPR measurements and Laurdan provided information about the membrane area close to the polar head groups of the membrane lipids, whereas with the 16-SASL spin probe, the hydrophobic core, where the fatty acid residues are located, was probed. The obtained results indicate that Ddx de-epoxidation induces a two component mechanism in the short-term regulation of the membrane fluidity of diatom thylakoids during changing temperatures. One component has been termed the "dynamic effect" and the second the "stable effect" of Ddx de-epoxidation. The "dynamic effect" includes changes of the membrane during the time course of de-epoxidation whereas the "stable effect" is based on the rigidifying properties of Dtx. The combination of both effects results in a temporary increase of the rigidity of both peripheral and internal parts of the membrane whereas the persistent increase of the rigidity of the hydrophobic core of the membrane is solely based on the "stable effect."
Collapse
Affiliation(s)
- Monika Bojko
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Olchawa-Pajor
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Reimund Goss
- Institute of Biology, University of Leipzig, Leipzig, Germany
| | | | - Kazimierz Strzałka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
21
|
Naumowicz M, Kruszewski MA, Gál M. Electrical properties of phosphatidylcholine bilayers containing canthaxanthin or β -carotene, investigated by electrochemical impedance spectroscopy. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Encapsulation of lutein in liposomes using supercritical carbon dioxide. Food Res Int 2017; 100:168-179. [PMID: 28873676 DOI: 10.1016/j.foodres.2017.06.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 11/23/2022]
Abstract
Liposomes loaded with lutein were prepared utilizing supercritical carbon dioxide (SC-CO2). The effects of pressure, depressurization rate, temperature and lutein-to-lipid ratio on particle size distribution, zeta potential, encapsulation efficiency (EE), bioactive loading, morphology, phase transition and crystallinity were investigated. Liposomes prepared by the SC-CO2 method had a particle size of 147.6±1.9nm-195.4±2.3nm, an encapsulation efficiency of 56.7±0.7%-97.0±0.8% and a zeta potential of -54.5±1.2mV to -61.7±0.6mV. A higher pressure (200-300bar) and depressurization rate (90-200bar/min) promoted a higher encapsulation of lutein whereas the lutein-to-lipid ratio had the dominant effect on the morphology of vesicles along with size distribution and EE. X-ray diffraction data implied a substantial drop in the crystallinity of lutein upon its redistribution in the liposome membranes. Differential scanning calorimetry indicated a broadened phase transition upon the simultaneous rearrangement of lutein and phospholipid molecules into liposomal vesicles. The SC-CO2 method resulted in particle characteristics highly associated with the ability of CO2 to disperse phospholipids and lutein molecules. It offers a promising approach to use dense phase CO2 to homogenize hydrophobic or amphiphilic aggregates suspended in an aqueous medium and regulate the vesicular characteristics via pressure and depressurization rate. The SC-CO2 method has potential for scalable production of liposomal nanovesicles with desirable characteristics and free of organic solvents.
Collapse
|
23
|
Augustyńska D, Burda K, Jemioła-Rzemińska M, Strzałka K. Temperature-dependent bifurcation of cooperative interactions in pure and enriched in β-carotene DPPC liposomes. Chem Biol Interact 2016; 256:236-48. [DOI: 10.1016/j.cbi.2016.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022]
|
24
|
Augustynska D, Jemioła-Rzemińska M, Burda K, Strzałka K. Influence of polar and nonpolar carotenoids on structural and adhesive properties of model membranes. Chem Biol Interact 2015; 239:19-25. [PMID: 26102011 DOI: 10.1016/j.cbi.2015.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/01/2015] [Accepted: 06/18/2015] [Indexed: 11/26/2022]
Abstract
Carotenoids, which are known primarily for their photoprotective and antioxidant properties, may also strongly influence the physical properties of membranes. The localization and orientation of these pigments in the lipid bilayer depends on their structure and is determined by their interactions with lipid molecules. This affects both phase behavior and the mechanical properties of membranes. Differential scanning calorimetry (DSC) and atomic force microscopy (AFM) allowed us to gain a direct insight into the differences between the interaction of the non-polar β-carotene and polar zeaxanthin embedded into DPPC liposomes. DSC results showed that zeaxanthin, having polar ionone rings, interacts more strongly with the membrane lipids than β-carotene. The decrease in molar heat capacity by a factor of 2 with a simultaneous broadening of the main phase transition (gel-to-liquid crystalline phase transition) as compared to the two other systems studied suggests some increased length of the coupled interactions between the polar xanthophyll and lipids. Long-distance interactions lead to the formation of larger clusters which may exhibit higher flexibility than small clusters when only short-distance interactions occur. AFM experiments show that adhesive forces are 2 and 10 times higher for DPPC membranes enriched in β-carotene and zeaxanthin, respectively, than those observed for an untreated system. Temperature dependent measurements of adhesion revealed that subphases can be formed in the gel lamellar state of DPPC bilayers. The presence of the non-polar carotenoid enhanced the effect and even a bifurcation of the substates was detected within a temperature range of 30.0-32.5°C prior to pretransition. It is the first time when the presence of subphases has been demonstrated. This knowledge can be helpful in better understanding the functioning of carotenoids in biological membranes. AFM seem to be a very unique and sensitive method for detecting such fine changes in the lipid bilayers.
Collapse
Affiliation(s)
- Dominika Augustynska
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Mickiewicza 30, 30-059 Kraków, Poland.
| | - Małgorzata Jemioła-Rzemińska
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Kraków, Poland; Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Kvetoslava Burda
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Mickiewicza 30, 30-059 Kraków, Poland.
| | - Kazimierz Strzałka
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Kraków, Poland; Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
25
|
Singh M, Bajaj A. Unraveling the impact of hydroxylation on interactions of bile acid cationic lipids with model membranes by in-depth calorimetry studies. Phys Chem Chem Phys 2015; 16:19266-74. [PMID: 25098317 DOI: 10.1039/c4cp02283a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We used eight bile acid cationic lipids differing in the number of hydroxyl groups and performed in-depth differential scanning calorimetry studies on model membranes doped with different percentages of these cationic bile acids. These studies revealed that the number and positioning of free hydroxyl groups on bile acids modulate the phase transition and co-operativity of membranes. Lithocholic acid based cationic lipids having no free hydroxyl groups gel well with dipalmitoylphosphatidylcholine (DPPC) membranes. Chenodeoxycholic acid lipids having one free hydroxyl group at the 7'-carbon position disrupt the membranes and lower their co-operativity. Deoxycholic acid and cholic acid based cationic lipids have free hydroxyl groups at the 12'-carbon position, and at 7'- and 12'-carbon positions respectively. Doping of these lipids at high concentrations increases the co-operativity of membranes suggesting that these lipids might induce self-assembly in DPPC membranes. These different modes of interactions between cationic lipids and model membranes would help in future for exploring their use in DNA/drug delivery.
Collapse
Affiliation(s)
- Manish Singh
- The Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 180 UdyogVihar, Phase I, Gurgaon-122016, Haryana, India.
| | | |
Collapse
|
26
|
Modulating effect of lipid bilayer-carotenoid interactions on the property of liposome encapsulation. Colloids Surf B Biointerfaces 2015; 128:172-180. [PMID: 25747311 DOI: 10.1016/j.colsurfb.2015.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 01/21/2015] [Accepted: 02/01/2015] [Indexed: 11/21/2022]
Abstract
Liposomes have become an attractive alternative to encapsulate carotenoids to improve their solubility, stability and bioavailability. The interaction mechanism of carotenoid with lipid bilayer is one of the major concerns in improving the delivery efficiency of liposomes. In this study, the microstructure and carotenoid encapsulation efficiency of liposomes composed of native phospholipid (egg yolk phosphatidylcholine, EYPC) and nonionic surfactant Tween 80 were investigated by atomic force microscopy, dynamic light scattering, and Raman spectroscopy, respectively. Subsequently, the effects of carotenoid incorporation on the physical properties of liposomal membrane were performed by Raman spectroscopy, fluorescence polarization, and electron paramagnetic resonance. Results showed that the incorporation of carotenoids affected the liposomes morphology, size and size distribution to various extents. Analysis on the Raman characteristic peaks of carotenoids revealed that lutein exhibited the strongest incorporating ability into liposomes, followed by β-carotene, lycopene, and canthaxanthin. Furthermore, it was demonstrated that carotenoids modulated the dynamics, structure and hydrophobicity of liposomal membrane, highly depending on their molecular structures and incorporated concentration. These modulations were closely correlated with the stabilization of liposomes, including mediating particle aggregation and fusion. These findings should guide the rationale designing for liposomal encapsulation technology to efficiently deliver carotenoids in pharmaceutics, nutraceuticals and functional foods.
Collapse
|
27
|
Penu R, Litescu SC, Eremia SAV, Vasilescu I, Radu GL, Giardi MT, Pezzotti G, Rea G. Application of an optimized electrochemical sensor for monitoring astaxanthin antioxidant properties against lipoperoxidation. NEW J CHEM 2015. [DOI: 10.1039/c5nj00457h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper reports the first renewable electrochemical sensor that is able to provide reliablein vitroinformation on carotenoid antioxidant properties by mimicking their natural position and orientation in the cellular membrane.
Collapse
Affiliation(s)
- Ramona Penu
- National Institute of Research and Development for Biological Sciences
- Centre of Bioanalisys
- Bucharest
- Romania
- Faculty of Applied Chemistry and Materials Science
| | - Simona Carmen Litescu
- National Institute of Research and Development for Biological Sciences
- Centre of Bioanalisys
- Bucharest
- Romania
| | - Sandra A. V. Eremia
- National Institute of Research and Development for Biological Sciences
- Centre of Bioanalisys
- Bucharest
- Romania
| | - Ioana Vasilescu
- National Institute of Research and Development for Biological Sciences
- Centre of Bioanalisys
- Bucharest
- Romania
| | - Gabriel-Lucian Radu
- Faculty of Applied Chemistry and Materials Science
- University Politehnica Bucharest
- Bucharest
- Romania
| | - Maria Teresa Giardi
- Italian National Research Council
- Institute of Crystallography Departments of Agrofood and Molecular Design
- CNR 00015 Monterotondo Scalo
- Rome
- Italy
| | | | - Giuseppina Rea
- Italian National Research Council
- Institute of Crystallography Departments of Agrofood and Molecular Design
- CNR 00015 Monterotondo Scalo
- Rome
- Italy
| |
Collapse
|
28
|
Jajić I, Wiśniewska-Becker A, Sarna T, Jemioła-Rzemińska M, Strzałka K. EPR spin labeling measurements of thylakoid membrane fluidity during barley leaf senescence. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1046-1053. [PMID: 24974331 DOI: 10.1016/j.jplph.2014.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/26/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
Physical properties of thylakoid membranes isolated from barley were investigated by the electron paramagnetic resonance (EPR) spin labeling technique. EPR spectra of stearic acid spin labels 5-SASL and 16-SASL were measured as a function of temperature in secondary barley leaves during natural and dark-induced senescence. Oxygen transport parameter was determined from the power saturation curves of the spin labels obtained in the presence and absence of molecular oxygen at 25°C. Parameters of EPR spectra of both spin labels showed an increase in the thylakoid membrane fluidity during senescence, in the headgroup area of the membrane, as well as in its interior. The oxygen transport parameter also increased with age of barley, indicating easier diffusion of oxygen within the membrane and its higher fluidity. The data are consistent with age-related changes of the spin label parameters obtained directly by EPR spectroscopy. Similar outcome was also observed when senescence was induced in mature secondary barley leaves by dark incubation. Such leaves showed higher membrane fluidity in comparison with leaves of the same age, grown under light conditions. Changes in the membrane fluidity of barley secondary leaves were compared with changes in the levels of carotenoids (car) and proteins, which are known to modify membrane fluidity. Determination of total car and proteins showed linear decrease in their level with senescence. The results indicate that thylakoid membrane fluidity of barley leaves increases with senescence; the changes are accompanied with a decrease in the content of car and proteins, which could be a contributing factor.
Collapse
Affiliation(s)
- Ivan Jajić
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Ul. Gronostajowa, 7, 30-387 Krakow, Poland
| | - Anna Wiśniewska-Becker
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Ul. Gronostajowa, 7, 30-387 Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Ul. Gronostajowa, 7, 30-387 Krakow, Poland
| | - Małgorzata Jemioła-Rzemińska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Ul. Gronostajowa, 7, 30-387 Krakow, Poland
| | - Kazimierz Strzałka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Ul. Gronostajowa, 7, 30-387 Krakow, Poland.
| |
Collapse
|
29
|
Bicellar systems as vehicle for the treatment of impaired skin. Eur J Pharm Biopharm 2014; 86:212-8. [DOI: 10.1016/j.ejpb.2013.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 11/23/2022]
|
30
|
Tan C, Xue J, Lou X, Abbas S, Guan Y, Feng B, Zhang X, Xia S. Liposomes as delivery systems for carotenoids: comparative studies of loading ability, storage stability and in vitro release. Food Funct 2014; 5:1232-40. [DOI: 10.1039/c3fo60498e] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Tan C, Xia S, Xue J, Xie J, Feng B, Zhang X. Liposomes as vehicles for lutein: preparation, stability, liposomal membrane dynamics, and structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8175-8184. [PMID: 23906192 DOI: 10.1021/jf402085f] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lutein was loaded into liposomes, and their stability against environmental stress was investigated. Subsequently, these findings were correlated with the interactions between lutein and lipid bilayer. Results showed that the liposomes with loaded lutein at concentrations of 1 and 2% remained stable during preparation, heating, storage, and surfactant dissolution. However, with further increase in the loading concentration to 5 and 10%, the stabilization role of lutein on membrane was not pronounced or even opposite. Membrane fluidity demonstrated that at 1 and 2%, lutein displayed less fluidizing properties both in the headgroup region and in the hydrophobic core of the liposome, whereas this effect was not significant at 5 and 10%. Raman spectra demonstrated that lutein incorporation greatly affected the lateral packing order between acyl chains and longitudinal packing order of lipid acyl chains. These results may guide the potential application of liposomes as carriers for lutein in nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Chen Tan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | | | | | | | | | | |
Collapse
|
32
|
Fernández-Marín B, Kranner I, San Sebastián M, Artetxe U, Laza JM, Vilas JL, Pritchard HW, Nadajaran J, Míguez F, Becerril JM, García-Plazaola JI. Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3033-43. [PMID: 23761488 PMCID: PMC3697941 DOI: 10.1093/jxb/ert145] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Desiccation-tolerant plants are able to withstand dehydration and resume normal metabolic functions upon rehydration. These plants can be dehydrated until their cytoplasm enters a 'glassy state' in which molecular mobility is severely reduced. In desiccation-tolerant seeds, longevity can be enhanced by drying and lowering storage temperature. In these conditions, they still deteriorate slowly, but it is not known if deteriorative processes include enzyme activity. The storage stability of photosynthetic organisms is less studied, and no reports are available on the glassy state in photosynthetic tissues. Here, the desiccation-tolerant moss Syntrichia ruralis was dehydrated at either 75% or <5% relative humidity, resulting in slow (SD) or rapid desiccation (RD), respectively, and different residual water content of the desiccated tissues. The molecular mobility within dry mosses was assessed through dynamic mechanical thermal analysis, showing that at room temperature only rapidly desiccated samples entered the glassy state, whereas slowly desiccated samples were in a 'rubbery' state. Violaxanthin cycle activity, accumulation of plastoglobules, and reorganization of thylakoids were observed upon SD, but not upon RD. Violaxanthin cycle activity critically depends on the activity of violaxanthin de-epoxidase (VDE). Hence, it is proposed that enzymatic activity occurred in the rubbery state (after SD), and that in the glassy state (after RD) no VDE activity was possible. Furthermore, evidence is provided that zeaxanthin has some role in recovery apparently independent of its role in non-photochemical quenching of chlorophyll fluorescence.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Aptdo. 644, 48080 Bilbao, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Arpicco S, Lerda C, Dalla Pozza E, Costanzo C, Tsapis N, Stella B, Donadelli M, Dando I, Fattal E, Cattel L, Palmieri M. Hyaluronic acid-coated liposomes for active targeting of gemcitabine. Eur J Pharm Biopharm 2013; 85:373-80. [PMID: 23791684 DOI: 10.1016/j.ejpb.2013.06.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 03/26/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
The aim of this work was the preparation, characterization, and preliminary evaluation of the targeting ability toward pancreatic adenocarcinoma cells of liposomes containing the gemcitabine lipophilic prodrug [4-(N)-lauroyl-gemcitabine, C12GEM]. Hyaluronic acid (HA) was selected as targeting agent since it is biodegradable, biocompatible, and can be chemically modified and its cell surface receptor CD44 is overexpressed on various tumors. For this purpose, conjugates between a phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and HA of two different low molecular weights 4800 Da (12 disaccharidic units) and 12,000 Da (32 disaccharidic units), were prepared, characterized, and introduced in the liposomes during the preparation. Different liposomal formulations were prepared and their characteristics were analyzed: size, Z potential, and TEM analyses underline a difference in the HA-liposomes from the non-HA ones. In order to better understand the HA-liposome cellular localization and to evaluate their interaction with CD44 receptor, confocal microscopy studies were performed. The results demonstrate that HA facilitates the recognition of liposomes by MiaPaCa2 cells (CD44(+)) and that the uptake increases with increase in the polymer molecular weight. Finally, the cytotoxicity of the different preparations was evaluated and data show that incorporation of C12GEM increases their cytotoxic activity and that HA-liposomes inhibit cell growth more than plain liposomes. Altogether, the results demonstrate the specificity of C12GEM targeting toward CD44-overexpressing pancreatic adenocarcinoma cell line using HA as a ligand.
Collapse
Affiliation(s)
- Silvia Arpicco
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Sowmya R, Sachindra N. Evaluation of antioxidant activity of carotenoid extract from shrimp processing byproducts by in vitro assays and in membrane model system. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.147] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Yokota D, Moraes M, Pinho SC. Characterization of lyophilized liposomes produced with non-purified soy lecithin: a case study of casein hydrolysate microencapsulation. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2012. [DOI: 10.1590/s0104-66322012000200013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Fernández-Marín B, Míguez F, Becerril JM, García-Plazaola JI. Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata. BMC PLANT BIOLOGY 2011; 11:181. [PMID: 22269024 PMCID: PMC3264673 DOI: 10.1186/1471-2229-11-181] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 12/26/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND In the violaxanthin (V) cycle, V is de-epoxidized to zeaxanthin (Z) when strong light or light combined with other stressors lead to an overexcitation of photosystems. However, plants can also suffer stress in darkness and recent reports have shown that dehydration triggers V-de-epoxidation in the absence of light. In this study, we used the highly stress-tolerant brown alga Pelvetia canaliculata as a model organism, due to its lack of lutein and its non-photochemical quenching independent of the transthylakoidal-ΔpH, to study the triggering of the V-cycle in darkness induced by abiotic stressors. RESULTS We have shown that besides desiccation, other factors such as immersion, anoxia and high temperature also induced V-de-epoxidation in darkness. This process was reversible once the treatments had ceased (with the exception of heat, which caused lethal damage). Irrespective of the stressor applied, the resulting de-epoxidised xanthophylls correlated with a decrease in Fv/Fm, suggesting a common function in the down-regulation of photosynthetical efficiency. The implication of the redox-state of the plastoquinone-pool and of the differential activity of V-cycle enzymes on V-de-epoxidation in darkness was also examined. Current results suggest that both violaxanthin de-epoxidase (VDE) and zeaxanthin-epoxidase (ZE) have a basal constitutive activity even in darkness, being ZE inhibited under stress. This inhibition leads to Z accumulation. CONCLUSION This study demonstrates that V-cycle activity is triggered by several abiotic stressors even when they occur in an absolute absence of light, leading to a decrease in Fv/Fm. This finding provides new insights into an understanding of the regulation mechanism of the V-cycle and of its ecophysiological roles.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Plant Physiology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, 48080 Bilbao, Spain
| | - Fátima Míguez
- Department of Plant Physiology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, 48080 Bilbao, Spain
| | - José María Becerril
- Department of Plant Physiology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, 48080 Bilbao, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Physiology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, 48080 Bilbao, Spain
| |
Collapse
|
38
|
Santos F, Teixeira L, Lúcio M, Ferreira H, Gaspar D, Lima JLFC, Reis S. Interactions of sulindac and its metabolites with phospholipid membranes: An explanation for the peroxidation protective effect of the bioactive metabolite. Free Radic Res 2009; 42:639-50. [DOI: 10.1080/10715760802270326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Nowicka B, Strzalka W, Strzalka K. New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1045-56. [PMID: 19278749 DOI: 10.1016/j.jplph.2008.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 12/05/2008] [Accepted: 12/19/2008] [Indexed: 05/03/2023]
Abstract
Zeaxanthin epoxidase (ZE, E.C. 1.14.13.90), an enzyme belonging to the lipocalin superfamily, catalyses the conversion of zeaxanthin to antheraxanthin and violaxanthin. These reactions are part of the xanthophyll biosynthetic pathway and the xanthophyll cycle. The role of carotenoids in the dissipation of excessive light energy has been widely studied using mutants with a disabled carotenoid biosynthetic pathway. In this paper, the transgenic line MaZEP7 with partially disabled ZE activity is described and compared with wild-type plants and npq2 mutant lacking active ZE. We examined the presence and the abundance of aba1 transcripts, measured pigment composition, xanthophyll cycle functioning and chlorophyll fluorescence in all three lines. The MaZEP7 line contains additional copies of the aba1 gene introduced by agroinfiltration, but no enhanced aba1 transcript level was observed. In addition, ZE activity in MaZEP7 was impaired, resulting in an altered xanthophyll profile. In dark-adapted plants, violaxanthin and neoxanthin levels were lower than in wild-type plants, whereas antheraxanthin and zeaxanthin levels were considerably higher. The presence of lutein epoxide was also observed. Violaxanthin levels changed only minimally during light exposition, whereas antheraxanthin was converted to zeaxanthin and there was no epoxidation during the course of the experiment indicating disturbed xanthophyll cycle functioning. The amounts of carotenoids and chlorophylls on a dry weight basis and chl a/chl b ratio were similar in all lines. The presence of epoxidated pigments in MaZEP7 plants indicates that epoxidation occurs, but it is likely very slow. Chlorophyll fluorescence measurements showed that the dependence of electron transport rates on light intensity for the MaZEP7 line resembled the npq2 mutant. Kinetic measurements showed that the MaZEP7 line exhibited very rapid induction and a high steady-state value of non-photochemical quenching.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | | | | |
Collapse
|
40
|
Effect of anti-inflammatory drugs in phosphatidylcholine membranes: A fluorescence and calorimetric study. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.02.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Interactions between canthaxanthin and lipid membranes--possible mechanisms of canthaxanthin toxicity. Cell Mol Biol Lett 2009; 14:395-410. [PMID: 19214394 PMCID: PMC6275664 DOI: 10.2478/s11658-009-0010-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 02/05/2009] [Indexed: 11/20/2022] Open
Abstract
Canthaxanthin (beta, beta-carotene 4, 4' dione) is used widely as a drug or as a food and cosmetic colorant, but it may have some undesirable effects on human health, mainly caused by the formation of crystals in the macula lutea membranes of the retina. This condition is called canthaxanthin retinopathy. It has been shown that this type of dysfunction of the eye is strongly connected with damage to the blood vessels around the place of crystal deposition. This paper is a review of the experimental data supporting the hypothesis that the interactions of canthaxanthin with the lipid membranes and the aggregation of this pigment may be the factors enhancing canthaxanthin toxicity towards the macula vascular system. All the results of the experiments that have been done on model systems such as monolayers of pure canthaxanthin and mixtures of canthaxanthin and lipids, oriented bilayers or liposomes indicate a very strong effect of canthaxanthin on the physical properties of lipid membranes, which may explain its toxic action, which leads to the further development of canthaxanthin retinopathy.
Collapse
|
42
|
Efrat R, Kesselman E, Aserin A, Garti N, Danino D. Solubilization of hydrophobic guest molecules in the monoolein discontinuous QL cubic mesophase and its soft nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1316-1326. [PMID: 18781793 DOI: 10.1021/la8016084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hydrophobic bioactive guest molecules were solubilized in the discontinuous cubic mesophase (QL) of monoolein. Their effects on the mesophase structure and thermal behavior, and on the formation of soft nanoparticles upon dispersion of the bulk mesophase were studied. Four additives were analyzed. They were classified into two types based on their presumed location within the lipid bilayer and their influence on the phase behavior and structure. Differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), polarized light microscopy, cryogenic-transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS) were used for the analysis. We found that carbamazepine and cholesterol (type I molecules) likely localize in the hydrophobic domains, but close to the hydrophobic-hydrophilic region. They induce strong perturbation to the mesophase packing by influencing both the order of the lipid acyl chains and interactions between lipid headgroups. This results in significant reduction of the phase transition enthalpy, and phase separation into lamellar and cubic mesophases above the maximum loading capacity. The inclusion of type I molecules in the mesophase also prevents the formation of soft nanoparticles with long-range internal order upon dispersion. In their presence, only vesicles or sponge-like nanoparticles form. Phytosterols and coenzyme Q10 (type II molecules) present only moderate effects. These molecules reside in the hydrophobic domains, where they cannot alter the lipid curvature or transform the QL mesophase into another phase. Therefore, above maximum loading, excess solubilizate precipitates in crystal forms. Moreover, when type II-loaded QL is dispersed, nanoparticles with long-range order and cubic symmetry (i.e., cubosomes) do form. A model for the growth of the ordered nanoparticles was developed from a series of intermediate structures identified by cryo-TEM. It proposes the development of the internal structure by fusion events between bilayer segments.
Collapse
Affiliation(s)
- Rivka Efrat
- Casali Institute of Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
43
|
Calorimetric studies of the effect of cis-carotenoids on the thermotropic phase behavior of phosphatidylcholine bilayers. Biophys Chem 2008; 140:108-14. [PMID: 19126445 DOI: 10.1016/j.bpc.2008.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/11/2008] [Accepted: 12/11/2008] [Indexed: 11/20/2022]
Abstract
Carotenoid geometry is a factor that determines their solubility and orientation in the lipid membrane as well as antioxidant capacities and bioavailability. The effects of the cis-isomers of carotenoids (zeaxanthin and beta-carotene) on the thermotropic properties of lipid membranes formed with dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) were investigated by means of differential scanning calorimetry. The results were compared with the effects caused by the all-trans-isomer. Both the trans and cis isomers of zeaxanthin shifted the main phase transition temperature to lower values and decreased the cooperativity of the phase transition. The effect of all-trans zeaxanthin on the physical properties of the lipid bilayers has been shown to strongly depend on the hydrocarbon chain length of the membrane. In the case of cis-zeaxanthin this relationship is weaker.
Collapse
|
44
|
Jahns P, Latowski D, Strzalka K. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:3-14. [PMID: 18976630 DOI: 10.1016/j.bbabio.2008.09.013] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/23/2008] [Accepted: 09/23/2008] [Indexed: 11/28/2022]
Abstract
The violaxanthin cycle describes the reversible conversion of violaxanthin to zeaxanthin via the intermediate antheraxanthin. This light-dependent xanthophyll conversion is essential for the adaptation of plants and algae to different light conditions and allows a reversible switch of photosynthetic light-harvesting complexes between a light-harvesting state under low light and a dissipative state under high light. The photoprotective functions of zeaxanthin have been intensively studied during the last decade, but much less attention has been directed to the mechanism and regulation of xanthophyll conversion. In this review, an overview is given on recent progress in the understanding of the role of (i) xanthophyll binding by antenna proteins and of (ii) the lipid properties of the thylakoid membrane in the regulation of xanthophyll conversion. The consequences of these findings for the mechanism and regulation of xanthophyll conversion in the thylakoid membrane will be discussed.
Collapse
Affiliation(s)
- Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr.1, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
45
|
Okulski W, Sujak A, Gruszecki WI. Dipalmitoylphosphatidylcholine membranes modified with carotenoid pigment lutein: Experiment versus Monte Carlo simulation study of the membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2105-18. [DOI: 10.1016/j.bbamem.2008.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 11/28/2022]
|
46
|
McNulty H, Jacob RF, Mason RP. Biologic activity of carotenoids related to distinct membrane physicochemical interactions. Am J Cardiol 2008; 101:20D-29D. [PMID: 18474269 DOI: 10.1016/j.amjcard.2008.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carotenoids are naturally occurring organic pigments that are believed to have therapeutic benefit in treating cardiovascular disease (CVD) because of their antioxidant properties. However, prospective randomized trials have failed to demonstrate a consistent benefit for the carotenoid beta-carotene in patients at risk for CVD. The basis for this apparent paradox is not well understood but may be attributed to the distinct antioxidant properties of various carotenoids resulting from their structure-dependent physicochemical interactions with biologic membranes. To test this hypothesis, we measured the effects of astaxanthin, zeaxanthin, lutein, beta-carotene, and lycopene on lipid peroxidation using model membranes enriched with polyunsaturated fatty acids. The correlative effects of these compounds on membrane structure were determined using small-angle x-ray diffraction approaches. The nonpolar carotenoids, lycopene and beta-carotene, disordered the membrane bilayer and stimulated membrane lipid peroxidation (>85% increase in lipid hydroperoxide levels), whereas astaxanthin (a polar carotenoid) preserved membrane structure and exhibited significant antioxidant activity (>40% decrease in lipid hydroperoxide levels). These results suggest that the antioxidant potential of carotenoids is dependent on their distinct membrane lipid interactions. This relation of structure and function may explain the differences in biologic activity reported for various carotenoids, with important therapeutic implications.
Collapse
|
47
|
Sujak A, Strzałka K, Gruszecki WI. Thermotropic phase behaviour of lipid bilayers containing carotenoid pigment canthaxanthin: a differential scanning calorimetry study. Chem Phys Lipids 2007; 145:1-12. [PMID: 17078939 DOI: 10.1016/j.chemphyslip.2006.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 09/27/2006] [Accepted: 09/29/2006] [Indexed: 10/24/2022]
Abstract
In this study we address the problem of the effect of canthaxanthin on the thermotropic properties of lipid membranes formed with lipids which differ in the thickness of their hydrophobic core, size of polar heads or presence of the ester carbonyl group. For all the lipids a decrease in main transition enthalpy has been observed, indicating that canthaxanthin alters the membrane properties in its gel phase. The strongest influence of canthaxanthin on main phase transition and pretransition has been observed for the lipid having the thinnest hydrophobic region. Component analysis indicates a distinct cooperativity change, which most probably colligates with the formation of new thermotropic phases. The effect of canthaxanthin has been almost negligible in the case of phosphatidylethanolamines. The absence of the ester carbonyl group results in different thermotropic behavior, especially for low canthaxanthin concentrations. The effect of canthaxanthin is explained in terms of its organization within the membrane.
Collapse
Affiliation(s)
- Agnieszka Sujak
- Department of Physics, Agricultural University, 20-033 Lublin, Poland.
| | | | | |
Collapse
|
48
|
McNulty HP, Byun J, Lockwood SF, Jacob RF, Mason RP. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:167-74. [PMID: 17070769 DOI: 10.1016/j.bbamem.2006.09.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 11/26/2022]
Abstract
The biological benefits of certain carotenoids may be due to their potent antioxidant properties attributed to specific physico-chemical interactions with membranes. To test this hypothesis, we measured the effects of various carotenoids on rates of lipid peroxidation and correlated these findings with their membrane interactions, as determined by small angle X-ray diffraction approaches. The effects of the homochiral carotenoids (astaxanthin, zeaxanthin, lutein, beta-carotene, lycopene) on lipid hydroperoxide (LOOH) generation were evaluated in membranes enriched with polyunsaturated fatty acids. Apolar carotenoids, such as lycopene and beta-carotene, disordered the membrane bilayer and showed a potent pro-oxidant effect (>85% increase in LOOH levels) while astaxanthin preserved membrane structure and exhibited significant antioxidant activity (40% decrease in LOOH levels). These findings indicate distinct effects of carotenoids on lipid peroxidation due to membrane structure changes. These contrasting effects of carotenoids on lipid peroxidation may explain differences in their biological activity.
Collapse
Affiliation(s)
- Hyesun P McNulty
- Elucida Research, 100 Cummings Center, Suite 135L, P.O. Box 7100, Beverly, MA 01915-0091, USA.
| | | | | | | | | |
Collapse
|
49
|
Voszka I, Budai M, Szabó Z, Maillard P, Csík G, Gróf P. Interaction of photosensitizers with liposomes containing unsaturated lipid. Chem Phys Lipids 2006; 145:63-71. [PMID: 17118350 DOI: 10.1016/j.chemphyslip.2006.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 10/25/2006] [Accepted: 10/25/2006] [Indexed: 01/22/2023]
Abstract
Small unilamellar liposomes were made of dipalmitoyl-phosphatidylcholine and dioleoyl-phosphatidylcholine, and photosensitized by a symmetrically or an asymmetrically substituted glycosilated tetraphenyl-porphyrin derivative. As differential scanning calorimetry and electron paramagnetic resonance spectroscopy (EPR) revealed these porphyrin derivatives were localized in different depth within the lipid bilayer. Both porphyrin derivatives were able to induce photoreaction and consequent structural changes in the membrane. 5-, 12-, or 16-doxyl stearic acid labeled lipid bilayers were applied and the efficiency of photoinduced reaction was followed by the decay of their EPR signal amplitude. Light dose-dependent destruction of nitroxide radical proved to be dependent on the position of spin label. In this process the porphyrin localized in closer connection with the double bond of unsaturated fatty acid was more effective. EPR signal decay was also dependent on the unsaturated fatty acid content of the liposome and the oxygen saturation of the solvent.
Collapse
Affiliation(s)
- István Voszka
- Institute of Biophysics and Radiation Biology, Semmelweis University, Puskin Street 9, POB 263, Budapest H-1444, Hungary.
| | | | | | | | | | | |
Collapse
|
50
|
Fa N, Ronkart S, Schanck A, Deleu M, Gaigneaux A, Goormaghtigh E, Mingeot-Leclercq MP. Effect of the antibiotic azithromycin on thermotropic behavior of DOPC or DPPC bilayers. Chem Phys Lipids 2006; 144:108-16. [PMID: 17007828 DOI: 10.1016/j.chemphyslip.2006.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 08/08/2006] [Indexed: 11/18/2022]
Abstract
Azithromycin is a macrolide antibiotic known to bind to lipids and to affect endocytosis probably by interacting with lipid membranes [Tyteca, D., Schanck, A., Dufrene, Y.F., Deleu, M., Courtoy, P.J., Tulkens, P.M., Mingeot-Leclercq, M.P., 2003. The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fluidity: studies on Langmuir-Blodgett monolayers, liposomes and J774 macrophages. J. Membr. Biol. 192, 203-215]. In this work, we investigate the effect of azithromycin on lipid model membranes made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Thermal transitions of both lipids in contact with azithromycin are studied by (31)P NMR and DSC on multilamellar vesicles. Concerning the DPPC, azithromycin induces a suppression of the pretransition whereas a phase separation between the DOPC and the antibiotic is observed. For both lipids, the enthalpy associated with the phase transition is strongly decreased with azithromycin. Such effects may be due to an increase of the available space between hydrophobic chains after insertion of azithromycin in lipids. The findings provide a molecular insight of the phase merging of DPPC gel in DOPC fluid matrix induced by azithromycin [Berquand, A., Mingeot-Leclercq, M.P., Dufrene, Y.F., 2004. Real-time imaging of drug-membrane interactions by atomic force microscopy. Biochim. Biophys. Acta 1664, 198-205] and could help to a better understanding of azithromycin-cell interaction.
Collapse
Affiliation(s)
- N Fa
- Unité de Pharmacologie Cellulaire et Moléculaire, Université Catholique de Louvain, 73.70 Avenue E. Mounier 73, B-1200 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|