1
|
Holcomb J, Spellmon N, Zhang Y, Doughan M, Li C, Yang Z. Protein crystallization: Eluding the bottleneck of X-ray crystallography. AIMS BIOPHYSICS 2017; 4:557-575. [PMID: 29051919 PMCID: PMC5645037 DOI: 10.3934/biophy.2017.4.557] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To date, X-ray crystallography remains the gold standard for the determination of macromolecular structure and protein substrate interactions. However, the unpredictability of obtaining a protein crystal remains the limiting factor and continues to be the bottleneck in determining protein structures. A vast amount of research has been conducted in order to circumvent this issue with limited success. No single method has proven to guarantee the crystallization of all proteins. However, techniques using antibody fragments, lipids, carrier proteins, and even mutagenesis of crystal contacts have been implemented to increase the odds of obtaining a crystal with adequate diffraction. In addition, we review a new technique using the scaffolding ability of PDZ domains to facilitate nucleation and crystal lattice formation. Although in its infancy, such technology may be a valuable asset and another method in the crystallography toolbox to further the chances of crystallizing problematic proteins.
Collapse
Affiliation(s)
- Joshua Holcomb
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nicholas Spellmon
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yingxue Zhang
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maysaa Doughan
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Zhe Yang
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
2
|
Zheng X, Dong S, Zheng J, Li D, Li F, Luo Z. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants. Biotechnol Adv 2014; 32:564-74. [PMID: 24566241 DOI: 10.1016/j.biotechadv.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/13/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022]
Abstract
G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration.
Collapse
Affiliation(s)
- Xuan Zheng
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Shuangshuang Dong
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jie Zheng
- College of laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Duanhua Li
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Feng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Kandiah E, Watts NR, Cheng N, Cardone G, Stahl SJ, Heller T, Liang TJ, Wingfield PT, Steven AC. Cryo-EM study of Hepatitis B virus core antigen capsids decorated with antibodies from a human patient. J Struct Biol 2011; 177:145-51. [PMID: 22056468 DOI: 10.1016/j.jsb.2011.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/15/2011] [Accepted: 10/18/2011] [Indexed: 01/23/2023]
Abstract
The capsid (core antigen, HBcAg) is one of three major antigens present in patients infected with Hepatitis B virus. The capsids are icosahedral particles, whose most prominent features are spikes that extend 25 Å out from the contiguous "floor". At the spike tip are two copies of the "immunodominant loop". Previously, the epitopes of seven murine monoclonal antibodies have been identified by cryo-EM analysis of Fab-labeled capsids. All but one are conformational and all but one map around the spike tip. The exception, which is also the tightest-binder, straddles an inter-molecular interface on the floor. Seeking to relate these observations to the immunological response of infected humans, we isolated anti-cAg antibodies from a patient, prepared Fabs, and analyzed their binding to capsids. A priori, one possibility was that many different Fabs would give an undifferentiated continuum of Fab-related density. In fact, the density observed was highly differentiated and could be reproduced by modeling with just five Fabs, three binding to the spike and two to the floor. These results show that epitopes on the floor, far (~30 Å) from the immunodominant loop, are clinically relevant and that murine anti-cAg antibodies afford a good model for the human system.
Collapse
Affiliation(s)
- Eaazhisai Kandiah
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Moon AF, Mueller GA, Zhong X, Pedersen LC. A synergistic approach to protein crystallization: combination of a fixed-arm carrier with surface entropy reduction. Protein Sci 2010; 19:901-13. [PMID: 20196072 DOI: 10.1002/pro.368] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier-driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail.
Collapse
Affiliation(s)
- Andrea F Moon
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
5
|
Tereshko V, Uysal S, Koide A, Margalef K, Koide S, Kossiakoff AA. Toward chaperone-assisted crystallography: protein engineering enhancement of crystal packing and X-ray phasing capabilities of a camelid single-domain antibody (VHH) scaffold. Protein Sci 2008; 17:1175-87. [PMID: 18445622 DOI: 10.1110/ps.034892.108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A crystallization chaperone is an auxiliary protein that binds to a target of interest, enhances and modulates crystal packing, and provides high-quality phasing information. We critically evaluated the effectiveness of a camelid single-domain antibody (V(H)H) as a crystallization chaperone. By using a yeast surface display system for V(H)H, we successfully introduced additional Met residues in the core of the V(H)H scaffold. We identified a set of SeMet-labeled V(H)H variants that collectively produced six new crystal forms as the complex with the model antigen, RNase A. The crystals exhibited monoclinic, orthorhombic, triclinic, and tetragonal symmetry and have one or two complexes in the asymmetric unit, some of which diffracted to an atomic resolution. The phasing power of the Met-enriched V(H)H chaperone allowed for auto-building the entire complex using single-anomalous dispersion technique (SAD) without the need for introducing SeMet into the target protein. We show that phases produced by combining SAD and V(H)H model-based phases are accurate enough to easily solve structures of the size reported here, eliminating the need to collect multiple wavelength multiple-anomalous dispersion (MAD) data. Together with the presence of high-throughput selection systems (e.g., phage display libraries) for V(H)H, the enhanced V(H)H domain described here will be an excellent scaffold for producing effective crystallization chaperones.
Collapse
Affiliation(s)
- Valentina Tereshko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
6
|
Zuber D, Krause R, Venturi M, Padan E, Bamberg E, Fendler K. Kinetics of charge translocation in the passive downhill uptake mode of the Na+/H+ antiporter NhaA of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:240-50. [PMID: 16139785 DOI: 10.1016/j.bbabio.2005.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/26/2005] [Accepted: 07/27/2005] [Indexed: 11/24/2022]
Abstract
The Na+/H+ antiporter NhaA is the main Na+ extrusion system in E. coli. Using direct current measurements combined with a solid supported membrane (SSM), we obtained electrical data of the function of NhaA purified and reconstituted in liposomes. These measurements demonstrate NhaA's electrogenicity, its specificity for Li+ and Na+ and its pronounced pH dependence in the range pH 6.5-8.5. The mutant G338S, in contrast, presents a pH independent profile, as reported previously. A complete right-side-out orientation of the NhaA antiporter within the proteoliposomal membrane was determined using a NhaA-specific antibody based ELISA assay. This allowed for the first time the investigation of NhaA in the passive downhill uptake mode corresponding to the transport of Na+ from the periplasmic to the cytoplasmic side of the membrane. In this mode, the transporter has kinetic properties differing significantly from those of the previously investigated efflux mode. The apparent Km values were 11 mM for Na+ and 7.3 mM for Li+ at basic pH and 180 mM for Na+ and 50 mM for Li+ at neutral pH. The data demonstrate that in the passive downhill uptake mode pH regulation of the carrier affects both apparent Km as well as turnover (Vmax).
Collapse
Affiliation(s)
- D Zuber
- Max Planck Institut für Biophysik, Max von Laue Strasse 3, D-60438 Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Dumoulin M, Dobson CM. Probing the origins, diagnosis and treatment of amyloid diseases using antibodies. Biochimie 2005; 86:589-600. [PMID: 15556268 DOI: 10.1016/j.biochi.2004.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 07/12/2004] [Accepted: 09/16/2004] [Indexed: 01/21/2023]
Abstract
The deposition of proteins in the form of amyloid fibrils is the characteristic feature of more than 20 medical conditions affecting the central nervous system or a variety of peripheral tissues. These disorders, which include Alzheimer's disease, the prion diseases and type II diabetes, are of enormous importance in the context of present-day human health and welfare. Extensive research is therefore being carried out to define the molecular details of the mechanism of the pathological conversion of amyloidogenic proteins from their soluble forms into fibrillar structures. This review focuses on recent studies that demonstrate the power of using antibodies or antibody fragments to probe the process of fibril formation, and discusses the emerging potential of these species as diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Mireille Dumoulin
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | |
Collapse
|
8
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
9
|
Mohanty AK, Wiener MC. Membrane protein expression and production: effects of polyhistidine tag length and position. Protein Expr Purif 2004; 33:311-25. [PMID: 14711520 DOI: 10.1016/j.pep.2003.10.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyhistidine tags enable the facile purification of proteins by immobilized metal affinity chromatography (IMAC). Both the type and position of purification tags can affect significantly properties of a protein such as its expression level, behavior in solution, and its ability to form suitable samples (esp. suitable crystals for X-ray crystallography). We investigated systematically the effects of polyhistidine tag length and position on many properties related to expression and purification of recombinant integral membrane proteins. Specifically, modified Escherichia coli pET expression vectors were built that placed 6- or 10-histidine tags at the N- or C-termini of the subcloned gene. The E. coli water channel AqpZ was subcloned into this suite of vectors and its expression, purification, solution properties, and yield were characterized. These studies show that: (1) all vectors yield similar expression levels, (2) tag length has a greater effect than tag position upon yield, (3) neither tag length nor position affects significantly detergent solubilization of the protein, (4) the length of the tag affects the oligomerization state of the purified protein, and (5) the tag length and position change chromatographic behavior of the detergent-solubilized protein. In addition, substitution of the lysine codon AAA at the second position, previously shown to have some effect upon soluble protein expression levels, did not have a large effect on AqpZ production. We are currently producing approximately 12 mg of purified AqpZ per liter of shake-flask culture, and preliminary crystals that diffract to approximately 5A resolution have been obtained.
Collapse
Affiliation(s)
- Arun K Mohanty
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908-0736, USA
| | | |
Collapse
|
10
|
Padan E, Tzubery T, Herz K, Kozachkov L, Rimon A, Galili L. NhaA of Escherichia coli, as a model of a pH-regulated Na+/H+antiporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:2-13. [PMID: 15282168 DOI: 10.1016/j.bbabio.2004.04.018] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 03/17/2004] [Accepted: 04/20/2004] [Indexed: 11/18/2022]
Abstract
Na(+)/H(+) antiporters are ubiquitous membrane proteins that are involved in homeostasis of H(+) and Na(+) throughout the biological kingdom. Corroborating their role in pH homeostasis, many of the Na(+)/H(+) antiporter proteins are regulated directly by pH. The pH regulation of NhaA, the Escherichia coli Na(+)/H(+) antiporter (EcNhaA), as of other, both eukaryotic and prokaryotic Na(+)/H(+) antiporters, involves a pH sensor and conformational changes in different parts of the protein that transduce the pH signal into a change in activity. Thus, residues that affect the pH response, the translocation or both activities cluster in separate domains along the antiporter molecules. Importantly, in the NhaA family, these domains are conserved. Helix-packing model of EcNhaA based on cross-linking data suggests, that in the three dimensional structure of NhaA, residues that affect the pH response may be in close proximity, forming a single pH sensitive domain. Therefore, it is suggested that, despite considerable differences in the primary structure of the antiporters from the bacterial NhaA to the mammalian NHEs, their three-dimensional architectures are conserved. Test of this possibility awaits the atomic resolution of the 3D structure of the antiporters.
Collapse
Affiliation(s)
- E Padan
- Division of Microbial and Molecular Ecology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
11
|
Röthlisberger D, Pos KM, Plückthun A. An antibody library for stabilizing and crystallizing membrane proteins - selecting binders to the citrate carrier CitS. FEBS Lett 2004; 564:340-8. [PMID: 15111119 DOI: 10.1016/s0014-5793(04)00359-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 02/23/2004] [Indexed: 11/24/2022]
Abstract
Co-crystallization of membrane proteins with antibody fragments may emerge as a general tool to facilitate crystal growth and improve crystal quality. The bound antibody fragment enlarges the hydrophilic part of the mostly hydrophobic membrane protein, thereby increasing the interaction area for possible protein-protein contacts in the crystal. Additionally, it may restrain flexible parts or lock the membrane protein in a defined conformational state. For successful co-crystallization trials, the antibody fragments must be stable in detergents during the extended period of crystal growth and must be easily produced in amounts necessary for crystallography. Therefore, we constructed a library of antibody Fab fragments from a framework subset of the HuCAL GOLD library (Morphosys, Munich, Germany). By combining the most stable and well expressed frameworks, V(H)3 and V(kappa)3, with the further stabilizing constant domains, a Fab library with the desired properties was obtained in a standard phage display format. As a proof of principle, we selected binders with phage display against the detergent-solubilized citrate transporter CitS of Klebsiella pneumoniae. We describe efficient methods for the immobilization of the membrane protein during selection, for ELISA screening, and for BIAcore evaluation. We demonstrate that the selected Fab fragments form stable complexes with native CitS and recognize conformational epitopes with affinities in the low nanomolar range.
Collapse
Affiliation(s)
- Daniela Röthlisberger
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|