1
|
Luo M, Liu Y, Nikolovska K, Riederer B, Patrucco E, Hofmann F, Seidler U. cGMP-dependent kinase 2, Na +/H + exchanger NHE3, and PDZ-adaptor NHERF2 co-assemble in apical membrane microdomains. Acta Physiol (Oxf) 2024; 240:e14125. [PMID: 38533975 DOI: 10.1111/apha.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/28/2024]
Abstract
AIM Trafficking, membrane retention, and signal-specific regulation of the Na+/H+ exchanger 3 (NHE3) are modulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adapter proteins. This study explored the assembly of NHE3 and NHERF2 with the cGMP-dependent kinase II (cGKII) within detergent-resistant membrane microdomains (DRMs, "lipid rafts") during in vivo guanylate cycle C receptor (Gucy2c) activation in murine small intestine. METHODS Small intestinal brush border membranes (siBBMs) were isolated from wild type, NHE3-deficient, cGMP-kinase II-deficient, and NHERF2-deficient mice, after oral application of the heat-stable Escherichia coli toxin (STa) analog linaclotide. Lipid raft and non-raft fractions were separated by Optiprep density gradient centrifugation of Triton X-solubilized siBBMs. Confocal microscopy was performed to study NHE3 redistribution after linaclotide application in vivo. RESULTS In the WT siBBM, NHE3, NHERF2, and cGKII were strongly raft associated. The raft association of NHE3, but not of cGKII, was NHERF2 dependent. After linaclotide application to WT mice, lipid raft association of NHE3 decreased, that of cGKII increased, while that of NHERF2 did not change. NHE3 expression in the BBM shifted from a microvillar to a terminal web region. The linaclotide-induced decrease in NHE3 raft association and in microvillar abundance was abolished in cGKII-deficient mice, and strongly reduced in NHERF2-deficient mice. CONCLUSION NHE3, cGKII, and NHERF2 form a lipid raft-associated signal complex in the siBBM, which mediates the inhibition of salt and water absorption by Gucy2c activation. NHERF2 enhances the raft association of NHE3, which is essential for its close interaction with the exclusively raft-associated activated cGKII.
Collapse
Affiliation(s)
- Min Luo
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjian Liu
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Enrico Patrucco
- Institut für Pharmakologie und Toxikologie, TU München, München, Germany
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Franz Hofmann
- Institut für Pharmakologie und Toxikologie, TU München, München, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Wu Y, Yuan M, Su W, Zhu M, Yao X, Wang Y, Qian H, Jiang L, Tao Y, Wu M, Pang J, Chen Y. The constitutively active PKG II mutant effectively inhibits gastric cancer development via a blockade of EGF/EGFR-associated signalling cascades. Ther Adv Med Oncol 2018; 10:1758834017751635. [PMID: 29434677 PMCID: PMC5802699 DOI: 10.1177/1758834017751635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022] Open
Abstract
Type II cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG II) is a membrane-anchored enzyme expressed mainly in the intestinal mucosa and the brain, and is associated with various physiological or pathological processes. Upregulation of PKG II is known to induce apoptosis and inhibit proliferation and metastasis of cancer cells. The inhibitory effect of PKG II has been shown to be dependent on the inhibition of the activation of epidermal growth factor receptor (EGFR) and blockade of EGFR downstream signal transduction in vitro. However, it remains unclear whether similar phenomena/mechanisms exist in vivo and whether these effects are independent of cGMP or cGMP analogues. In the present work, nude mice with transplanted orthotopic tumours were infected with adenovirus encoding cDNA of constitutively active PKG II mutant (Ad-a-PKG II) and the effect of constitutively active PKG II (a-PKG II) on tumour development was detected. The results showed that a-PKG II effectively ameliorated gastric tumour development through delaying the growth, inducing the apoptosis, and inhibiting the metastasis and angiogenesis. The effect was related to blockade of EGFR activation and abrogation of the downstream signalling cascades. These findings provide novel insight which will benefit the development of new cancer therapies.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University. 301 Xuefu Road; and The Central Laboratory, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Miaomiao Yuan
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Wenbin Su
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Miaolin Zhu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Xiaoyuan Yao
- Department of Basic Medicine, Changchun Medical College, Changchun, China
| | - Ying Wang
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Hai Qian
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Lu Jiang
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Yan Tao
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Min Wu
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Ji Pang
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University. 301 Xuefu Road; Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
3
|
Polymorphism of rs7688672 and rs10033237 in cGKII/PRKG2 and gout susceptibility of Han population in northern China. Gene 2015; 562:50-4. [PMID: 25688884 DOI: 10.1016/j.gene.2015.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/29/2015] [Accepted: 02/13/2015] [Indexed: 11/22/2022]
Abstract
Gout is a genetic or acquired metabolic disease caused by increase of uric acid synthesis resulted from purine metabolic abnormalities. Whether cGMP-dependent protein kinase 2 (cGKII/PRKG2) is correlated with gout remains controversial. The objective of the present study was to investigate whether there is a correlation between polymorphism of cGKII/PRKG2 and gout susceptibility of Han population in northern China. Four hundred and five male patients with gout in the case group and 429 controls in the control group were collected from the Department of Endocrinology and Metabolic Disease, the Fourth Affiliated Hospital of Harbin Medical University. A case-control study method was used to study the correlation between cGKII/PRKG2 polymorphism rs7688672 and rs10033237 and gout susceptibility. The genotype frequencies of rs7688672 and rs10033237 polymorphisms of cGKII/PRKG2 in the case group and the control group both were in accordance with Hardy-Weinberg equilibrium. There were significant differences of rs10033237 in the allele frequencies and genotype distributions (P<0.05) between the two groups, while no association was found between rs7688672 and gout. Combined mutation sites AA(*) from rs7688672 and rs10033237 were negatively correlated with gout susceptibility, whereas haplotype GG(*) was positively correlated with gout susceptibility. In conclusion, patients with rs10033237 polymorphism of cGKII/PRKG2 gene are more likely to suffer from gout. With regard to haplotypes of rs10033237 and rs7688672, both AA(*) and GG(*) are related to gout. AA(*) is a gout susceptible gene, whereas GG(*) is a protective gene.
Collapse
|
4
|
Cyclic GMP-dependent protein kinase II inhibits cell proliferation, Sox9 expression and Akt phosphorylation in human glioma cell lines. Oncogene 2009; 28:3121-31. [PMID: 19543319 DOI: 10.1038/onc.2009.168] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Earlier we used a glioma model to identify loci in the mouse genome, which were repeatedly targeted by platelet-derived growth factor (PDGF)-containing Moloney murine leukemia viruses. The gene Prkg2, encoding cyclic guanosine monophosphate (cGMP)-dependent protein kinase II, cGKII, was tagged by retroviral insertions in two brain tumors. The insertions were both situated upstream of the kinase domain and suggested creating a truncated form of the cGKII protein. We transfected different human glioma cell lines with Prkg2 and found an overall reduction in colony formation and cell proliferation compared with controls transfected with truncated Prkg2 (lacking the kinase domain) or empty vector. All glioma cells transfected with the cGKII phosphorylate vasodilator-stimulated phosphoprotein, VASP, after cGMP analog treatment. Glioma cell lines positive for the Sox9 transcription factor showed reduced Sox9 expression when Prkg2 was stably transfected. When cGKII was activated by cGMP analog treatment, Sox9 was phosphorylated, Sox9 protein expression was suppressed and the glioma cell lines displayed loss of cell adhesion, inhibition of Akt phosphorylation and G1 arrest. Sox9 repression by siRNA was similarly shown to reduce glioma cell proliferation. Expression analysis of stem and glial lineage cell markers also suggests that cGKII induces differentiation of glioma cell lines. These findings describe an anti-proliferative role of cGKII in human glioma biology and would further explain the retroviral tagging of the cGKII gene during brain tumor formation in PDGF-induced tumors.
Collapse
|
5
|
Pejchalova K, Krejci P, Wilcox WR. C-natriuretic peptide: an important regulator of cartilage. Mol Genet Metab 2007; 92:210-5. [PMID: 17681481 DOI: 10.1016/j.ymgme.2007.06.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/22/2007] [Accepted: 06/22/2007] [Indexed: 11/26/2022]
Abstract
Over the past several years, the C-natriuretic peptide (CNP) has emerged as an important regulator of cartilage homeostasis and endochondral bone growth. In mice, genetic ablation of CNP or its cognate receptor NPRB results in marked dwarfism. When a downstream component of CNP signaling, protein kinase-G II (PKGII), is removed from cartilage, the mice have disturbed chondrocyte proliferation and cartilage matrix production. In contrast, activating mutations in PKGII as well as overexpression of CNP result in significant skeletal overgrowth in mice, demonstrating the positive role of CNP signaling in regulation of mammalian chondrocyte proliferation and cartilage matrix production. This is further supported by the existence of a human dwarfism, acromesomelic dysplasia Maroteaux-type (MIM #602875) that is caused by loss-of-function of NPRB. In comparison with other signaling systems, the molecular basis of CNP signaling in cartilage remains largely unknown, thus leaving many important questions open for future investigation. This review summarizes our current knowledge about the mechanism of CNP signaling in cartilage, areas for future investigation and its potential therapeutic uses.
Collapse
Affiliation(s)
- Katerina Pejchalova
- Medical Genetics Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., SSB-3, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
6
|
Kissmehl R, Krüger TP, Treptau T, Froissard M, Plattner H. Multigene family encoding 3',5'-cyclic-GMP-dependent protein kinases in Paramecium tetraurelia cells. EUKARYOTIC CELL 2006; 5:77-91. [PMID: 16400170 PMCID: PMC1360248 DOI: 10.1128/ec.5.1.77-91.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 11/01/2005] [Indexed: 01/28/2023]
Abstract
In the ciliate Paramecium tetraurelia, 3',5'-cyclic GMP (cGMP) is one of the second messengers involved in several signal transduction pathways. The enzymes for its production and degradation are well established for these cells, whereas less is known about the potential effector proteins. On the basis of a current Paramecium genome project, we have identified a multigene family with at least 35 members, all of which encode cGMP-dependent protein kinases (PKGs). They can be classified into 16 subfamilies with several members each. Two of the genes, PKG1-1 and PKG2-1, were analyzed in more detail after molecular cloning. They encode monomeric enzymes of 770 and 819 amino acids, respectively, whose overall domain organization resembles that in higher eukaryotes. The enzymes contain a regulatory domain of two tandem cyclic nucleotide-binding sites flanked by an amino-terminal region for intracellular localization and a catalytic domain with highly conserved regions for ATP binding and catalysis. However, some Paramecium PKGs show a different structure. In Western blots, PKGs are detected both as cytosolic and as structure-bound forms. Immunofluorescence labeling shows enrichment in the cell cortex, notably around the dense-core secretory vesicles (trichocysts), as well as in cilia. Immunogold electron microscopy analysis reveals consistent labeling of ciliary membranes, of the membrane complex composed of cell membrane and cortical Ca2+ stores, and of regions adjacent to ciliary basal bodies, trichocysts, and trafficking vesicles. Since PKGs (re)phosphorylate the exocytosis-sensitive phosphoprotein pp63/pf upon stimulation, the role of PKGs during stimulated exocytosis is discussed, in addition to a role in ciliary beat regulation.
Collapse
Affiliation(s)
- Roland Kissmehl
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
7
|
Gambaryan S, Butt E, Marcus K, Glazova M, Palmetshofer A, Guillon G, Smolenski A. cGMP-dependent protein kinase type II regulates basal level of aldosterone production by zona glomerulosa cells without increasing expression of the steroidogenic acute regulatory protein gene. J Biol Chem 2003; 278:29640-8. [PMID: 12775716 DOI: 10.1074/jbc.m302143200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays a pivotal role in the regulation of salt and water homeostasis. Here, we demonstrate the expression and functional role of cGMP-dependent protein kinases (PKGs) in rat adrenal cortex. Expression of PKG II is restricted to adrenal zona glomerulosa (ZG) cells, whereas PKG I is localized to the adrenal capsule and blood vessels. Activation of the aldosterone system by a low sodium diet up-regulated the expression of PKG II, however, it did not change PKG I expression in adrenal cortex. Both, activation of PKG II in isolated ZG cell and adenoviral gene transfer of wild type PKG II into ZG cells enhanced aldosterone production. In contrast, inhibition of PKG II as well as infection with a PKG II catalytically inactive mutant had an inhibitory effect on aldosterone production. Steroidogenic acute regulatory (StAR) protein that regulates the rate-limiting step in steroidogenesis is a new substrate for PKG II and can be phosphorylated by PKG II in vitro at serine 55/56 and serine 99. Stimulation of aldosterone production by PKG II in contrast to stimulation by PKA did not activate StAR gene expression in ZG cells. The results presented indicate that PKG II activity in ZG cells is important for maintaining basal aldosterone production.
Collapse
Affiliation(s)
- Stepan Gambaryan
- Institute of Clinical Biochemistry and Pathobiochemistry Medical University Clinic Wuerzburg, Josef Schneider Strasse 2, 97080 Wuerzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Vaandrager AB, Hogema BM, Edixhoven M, van den Burg CMM, Bot AGM, Klatt P, Ruth P, Hofmann F, Van Damme J, Vandekerckhove J, de Jonge HR. Autophosphorylation of cGMP-dependent protein kinase type II. J Biol Chem 2003; 278:28651-8. [PMID: 12764134 DOI: 10.1074/jbc.m303699200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotides are shown to stimulate the autophosphorylation of type II cGMP-dependent protein kinase (cGK) on multiple sites. Mass spectrometric based analyses, using a quadrupole time-of-flight-mass spectrometry instrument revealed that cGMP stimulated the in vitro phosphorylation of residues Ser110 and Ser114, and, at a slow rate, of Ser126 and Thr109 or Ser117, all located in the autoinhibitory region. In addition Ser445 was found to be phosphorylated in a cGMP-dependent manner, whereas Ser110 and Ser97 were already prephosphorylated to a large extent in Sf9 cells. cGMP-dependent phosphorylation of cGK II was also demonstrated in intact COS-1 cells and intestinal epithelium. Substitution of most of the potentially autophosphorylated residues for alanines largely abolished the cGMP stimulation of the autophosphorylation. Prolonged autophosphorylation of purified recombinant cGK II in vitro resulted in a 40-50% increase in basal kinase activity, but its maximal cGMP-stimulated activity and the EC50 for cGMP remained unaltered. Mutation of the major phosphorylatable serines 110, 114, and 445 into "phosphorylation-mimicking" glutamates had no effect on the kinetic parameters of cGK II. However, replacing the slowly autophosphorylated residue Ser126 by Glu rendered cGK II constitutively active. These results show that the fast phase of cyclic nucleotide-stimulated autophosphorylation of cGK II has a relatively small feed forward effect on its activity, whereas the secondary phase, presumably involving Ser126 phosphorylation, may generate a constitutively active form of the enzyme.
Collapse
Affiliation(s)
- Arie B Vaandrager
- Department of Biochemistry, Erasmus University Medical Center Rotterdam 3000 DR, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|