1
|
Kung CC, Lo JM, Liao KS, Wu CY, Cheng LC, Chung C, Hsu TL, Ma C, Wong CH. Expression of Human β3GalT5-1 in Insect Cells as Active Glycoforms for the Efficient Synthesis of Cancer-Associated Globo-Series Glycans. J Am Chem Soc 2025; 147:10864-10874. [PMID: 40130300 PMCID: PMC11969553 DOI: 10.1021/jacs.4c11723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 03/26/2025]
Abstract
The globo-series glycosphingolipids (GSLs) are unique glycolipids exclusively expressed on the cell surface of various types of cancer and have been used as targets for the development of cancer vaccines and therapeutics. A practical enzymatic method has been developed for the synthesis of globo-series glycans, where the conversion of Gb4 to Gb5 (SSEA-3) glycan based on the microbial galactosyltransferase LgtD is relatively inefficient compared to other steps. To improve the efficiency, we explored the two human galactosyltransferase (β3GalT5) isozymes in cancer cells for this reaction and found that isozyme 1 (β3GalT5-1) is more active than isozyme 2 (β3GalT5-2). We then identified a common soluble domain of the two β3GalT5 isozymes as a candidate and evaluated the activity and substrate specificity of the glycosylated and nonglycosylated glycoforms. The glycoforms expressed in Sf9 cells were selected, and a site-specific alanine scan was performed to identify S66A β3GalT5 variant with 10-fold more efficiency than LgtD for the synthesis of globo-series glycans. The X-ray structure of β3GalT5-1 was determined for molecular modeling, and the result together with kinetic data were used to rationalize the improvement in catalysis.
Collapse
Affiliation(s)
- Chih-Chuan Kung
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jennifer M. Lo
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Yi Wu
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Li-Chun Cheng
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Cinya Chung
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tsui-Ling Hsu
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Che Ma
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Ma Y, Liu Y, Cao C, Peng J, Jiang Y, Li T. Host-Guest Chemistry-Mediated Biomimetic Chemoenzymatic Synthesis of Complex Glycosphingolipids. J Am Chem Soc 2025; 147:6974-6982. [PMID: 39933159 DOI: 10.1021/jacs.4c17725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Glycosphingolipids (GSLs) are amphipathic complex biomolecules constituted of hydrophilic glycans covalently linked to hydrophobic lipids via glycosidic bonds. GSLs are widely distributed in cells and tissues, where they play crucial roles in various biological functions and disease processes. However, the heterogeneity and complexity of GSLs make it difficult to explore their precise biofunctions due to obstacles in obtaining well-defined structures. Herein, we report a host-guest-chemistry-mediated biomimetic chemoenzymatic approach for the efficient synthesis of diverse complex GSLs. A key feature of this approach is that the use of methyl-β-cyclodextrin enables amphipathic glycolipids forming water-soluble inclusion complexes to improve their solubility in aqueous media, thereby facilitating enzyme-catalyzed reactions. The power and applicability of our approach are demonstrated by the streamlined synthesis of biologically important globo-, ganglio-, neolacto-, and lacto-series GSLs library containing 20 neutral and acidic glycolipids with different fucosylation and sialylation patterns. The developed method will open new avenues to easily access a wide range of complex GSLs for biomedical applications.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiarong Peng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinyu Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Falconer D, Melamed J, Kocev A, Bossert M, Jakeman DL, Brockhausen I. Synthesis of the O antigen repeating units of Escherichia coli serotypes O117 and O107. Glycobiology 2024; 34:cwae074. [PMID: 39303140 DOI: 10.1093/glycob/cwae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024] Open
Abstract
Escherichia coli serotype O117 (ECO117) are pathogenic bacteria that produce Shiga toxin. Repeating units of the O antigen of ECO117 have the pentasaccharide structure [4-D-GalNAcβ1-3-L-Rhaα1-4-D-Glcα1-4-D-Galβ1-3-D-GalNAcα1-]n. The related non-pathogenic serotype (ECO107) contains a GlcNAc residue instead of Glc in the repeating unit, and the biosynthetic enzymes involved are almost identical. We assembled these repeating units based on GalNAcα-diphosphate-phenylundecyl (GalNAcα-PP-PhU), an analog of the natural intermediate GalNAc-diphosphate-undecaprenyl. We previously characterized α1,4-Glc-transferase WclY from ECO117 that transfers the Glc residue to Galβ1-3GalNAcα-PP-PhU and showed that Arg194Cys mutants of WclY are active α1,4-GlcNAc-transferases. In this work, the reaction products of WclY were used as acceptor substrates for the final enzymes in pathway, L-Rha-transferase WclX, and GalNAc-transferase WclW, demonstrating a complete synthesis of the ECO117 and O107 repeating units. WclX transfers L-Rha with high specificity for the WclY enzyme product as the acceptor and for TDP-L-Rha as the donor substrate. A number of highly conserved sequence motifs were identified (DDGSxD, DxDD, and YR). Mutational analysis revealed several Asp residues are essential for the catalysis of L-Rha transfer, while mutations of Asp44 and Arg212 substantially reduced the activity of WclX. WclW is a GT2 enzyme specific for UDP-GalNAc but with broad specificity for the acceptor substrate. Using L-Rhaα-p-nitrophenyl as an acceptor for WclW, the reaction product was analyzed by NMR demonstrating that GalNAc was transferred in a β1-3 linkage to L-Rha. The in vitro synthesis of the repeating units allows the production of vaccine candidates and identifies potential targets for inhibition of O antigen biosynthesis.
Collapse
Affiliation(s)
- Dylan Falconer
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L3N6, Canada
| | - Jacob Melamed
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L3N6, Canada
| | - Alexander Kocev
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L3N6, Canada
| | - Maike Bossert
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L3N6, Canada
| | - David L Jakeman
- College of Pharmacy, Dalhousie University, 5968 College Street, Halifax, NS, Canada
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L3N6, Canada
| |
Collapse
|
4
|
Novak J, King RG, Yother J, Renfrow MB, Green TJ. O-glycosylation of IgA1 and the pathogenesis of an autoimmune disease IgA nephropathy. Glycobiology 2024; 34:cwae060. [PMID: 39095059 PMCID: PMC11442006 DOI: 10.1093/glycob/cwae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024] Open
Abstract
IgA nephropathy is a kidney disease characterized by deposition of immune complexes containing abnormally O-glycosylated IgA1 in the glomeruli. Specifically, some O-glycans are missing galactose that is normally β1,3-linked to N-acetylgalactosamine of the core 1 glycans. These galactose-deficient IgA1 glycoforms are produced by IgA1-secreting cells due to a dysregulated expression and activity of several glycosyltransferases. Galactose-deficient IgA1 in the circulation of patients with IgA nephropathy is bound by IgG autoantibodies and the resultant immune complexes can contain additional proteins, such as complement C3. These complexes, if not removed from the circulation, can enter the glomerular mesangium, activate the resident mesangial cells, and induce glomerular injury. In this review, we briefly summarize clinical and pathological features of IgA nephropathy, review normal and aberrant IgA1 O-glycosylation pathways, and discuss the origins and potential significance of natural anti-glycan antibodies, namely those recognizing N-acetylgalactosamine. We also discuss the features of autoantibodies specific for galactose-deficient IgA1 and the characteristics of pathogenic immune complexes containing IgA1 and IgG. In IgA nephropathy, kidneys are injured by IgA1-containing immune complexes as innocent bystanders. Most patients with IgA nephropathy progress to kidney failure and require dialysis or transplantation. Moreover, most patients after transplantation experience a recurrent disease. Thus, a better understanding of the pathogenetic mechanisms is needed to develop new disease-specific treatments.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Janet Yother
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, United States
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| |
Collapse
|
5
|
Yang X, Mishra B, Yu H, Wei Y, Chen X. A bifunctional Pasteurella multocida β1-3-galactosyl/ N-acetylgalactosaminyltransferase (PmNatB) for the highly efficient chemoenzymatic synthesis of disaccharides. Org Biomol Chem 2024; 22:6004-6015. [PMID: 38993172 PMCID: PMC11290465 DOI: 10.1039/d4ob00889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Glycosyltransferases are nature's key biocatalysts for the formation of glycosidic bonds. Discovery and characterization of new synthetically useful glycosyltransferases are critical for the development of efficient enzymatic and chemoenzymatic strategies for producing complex carbohydrates and glycoconjugates. Herein we report the identification of Pasteurella multocida PmNatB as a bifunctional single-catalytic-domain glycosyltransferase with both β1-3-galactosyltransferase and β1-3-N-acetylgalactosaminyltransferase activities. It is a novel glycosyltransferase for constructing structurally diverse GalNAcβ3Galα/βOR and Galβ3GalNAcα/βOR disaccharides in one-pot multienzyme systems with in situ generation of UDP-sugars.
Collapse
Affiliation(s)
- Xiaohong Yang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Bijoyananda Mishra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Yijun Wei
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California 95616, USA
- Department of Statistics, University of California, Davis, California 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| |
Collapse
|
6
|
Wu SC, Kamili NA, Dias-Baruffi M, Josephson CD, Rathgeber MF, Yeung MY, Lane WJ, Wang J, Jan HM, Rakoff-Nahoum S, Cummings RD, Stowell SR, Arthur CM. Innate immune Galectin-7 specifically targets microbes that decorate themselves in blood group-like antigens. iScience 2022; 25:104482. [PMID: 35754739 PMCID: PMC9218387 DOI: 10.1016/j.isci.2022.104482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/14/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Adaptive immunity can target a nearly infinite range of antigens, yet it is tempered by tolerogenic mechanisms that limit autoimmunity. Such immunological tolerance, however, creates a gap in adaptive immunity against microbes decorated with self-like antigens as a form of molecular mimicry. Our results demonstrate that the innate immune lectin galectin-7 (Gal-7) binds a variety of distinct microbes, all of which share features of blood group-like antigens. Gal-7 binding to each blood group expressing microbe, including strains of Escherichia coli, Klebsiella pneumoniae, Providencia alcalifaciens, and Streptococcus pneumoniae, results in loss of microbial viability. Although Gal-7 also binds red blood cells (RBCs), this interaction does not alter RBC membrane integrity. These results demonstrate that Gal-7 recognizes a diverse range of microbes, each of which use molecular mimicry while failing to induce host cell injury, and thus may provide an innate form of immunity against molecular mimicry.
Collapse
Affiliation(s)
- Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Nourine A. Kamili
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicology, and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Cassandra D. Josephson
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Matthew F. Rathgeber
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Melissa Y. Yeung
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - William J. Lane
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jianmei Wang
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hau-Ming Jan
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Seth Rakoff-Nahoum
- Division of Infectious Disease, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard D. Cummings
- Harvard Glycomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
7
|
Chiang PY, Adak AK, Liang WL, Tsai CY, Tseng HK, Cheng JY, Hwu JR, Yu AL, Hung JT, Lin CC. Chemoenzymatic Synthesis of Globo-series Glycosphingolipids and Evaluation of Their Immunosuppressive Activities. Chem Asian J 2022; 17:e202200403. [PMID: 35616406 DOI: 10.1002/asia.202200403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Indexed: 11/11/2022]
Abstract
Glycosphingolipids (GSLs) play essential roles in many important biological processes, making them attractive synthetic targets. In this paper, a viable chemoenzymatic method is described for the synthesis of globo-series GSLs, namely, Gb4, Gb5, SSEA-4, and Globo H. The strategy uses a chemically synthesized lactoside acceptor equipped with a partial ceramide structure that is uniquely extended by glycosyltransferases in a highly efficient one-pot multiple engyme (OPME) procedure. A direct and quantitative conversion of Gb4 sphingosine to Globo H sphingosine is achieved by performing two-sequential OPME glycosylations. A reduction and N -acylation protocol allows facile incorporation of various fatty acids into the lipid portions of the GSLs. The chemically well-defined lipid-modified Globo H-GSLs displayed some differences in their immunosuprressive activities, which may benefit the structural modifications of Globo h ceramides in finding new types of immunosuppressive agents. The strategy outlined in this work should be applicable to rapid access to other complex GSLs.
Collapse
Affiliation(s)
- Pei-Yun Chiang
- National Tsing Hua University, Department of Chemistry, TAIWAN
| | - Avijit K Adak
- National Tsing Hua University, Department of Chemistry, TAIWAN
| | - Wei-Lun Liang
- National Tsing Hua University, Department of Chemistry, TAIWAN
| | - Chen-Yen Tsai
- National Tsing Hua University, Department of Chemistry, TAIWAN
| | - Hsin-Kai Tseng
- National Tsing Hua University, Departemnt of Chemistry, TAIWAN
| | - Jing-Yan Cheng
- Chang Gung University, Institute of Stem Cell and Translational Cancer Research, TAIWAN
| | - Jih Ru Hwu
- National Tsing Hua University, Department of Chemistry, TAIWAN
| | - Alice L Yu
- Chang Gung University, Institute of Stem Cell and Translational Cancer Research, TAIWAN
| | - Jung-Tung Hung
- Chang Gung University, Institute of Stem Cell and Translational Cancer Research, TAIWAN
| | - Chun-Cheng Lin
- National Tsing Hua University, Department of chemistry, 101 Sec. 2, Kuang Fu Rd, 30013, Hsinchu, TAIWAN
| |
Collapse
|
8
|
Yu H, Li Y, Zeng J, Thon V, Nguyen DM, Ly T, Kuang HY, Ngo A, Chen X. Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. J Org Chem 2016; 81:10809-10824. [PMID: 27736072 DOI: 10.1021/acs.joc.6b01905] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosphingolipids are a diverse family of biologically important glycolipids. In addition to variations on the lipid component, more than 300 glycosphingolipid glycans have been characterized. These glycans are directly involved in various molecular recognition events. Several naturally occurring sialic acid forms have been found in sialic acid-containing glycosphingolipids, namely gangliosides. However, ganglioside glycans containing less common sialic acid forms are currently not available. Herein, highly effective one-pot multienzyme (OPME) systems are used in sequential for high-yield and cost-effective production of glycosphingolipid glycans, including those containing different sialic acid forms such as N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid (Kdn), and 8-O-methyl-N-acetylneuraminic acid (Neu5Ac8OMe). A library of 64 structurally distinct glycosphingolipid glycans belonging to ganglio-series, lacto-/neolacto-series, and globo-/isoglobo-series glycosphingolipid glycans is constructed. These glycans are essential standards and invaluable probes for bioassays and biomedical studies.
Collapse
Affiliation(s)
- Hai Yu
- Glycohub, Inc. , 4070 Truxel Road, Sacramento, California 95834, United States.,Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Yanhong Li
- Glycohub, Inc. , 4070 Truxel Road, Sacramento, California 95834, United States.,Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Jie Zeng
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States.,School of Food Science, Henan Institute of Science and Technology , Xinxiang, Henan 453003, China
| | - Vireak Thon
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Dung M Nguyen
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Thao Ly
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Hui Yu Kuang
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Alice Ngo
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
9
|
Lee HY, Chen CY, Tsai TI, Li ST, Lin KH, Cheng YY, Ren CT, Cheng TJR, Wu CY, Wong CH. Immunogenicity Study of Globo H Analogues with Modification at the Reducing or Nonreducing End of the Tumor Antigen. J Am Chem Soc 2014; 136:16844-53. [DOI: 10.1021/ja508040d] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hsin-Yu Lee
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
- Department
of Chemistry, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 106, Taiwan
| | - Chien-Yu Chen
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Tsung-I Tsai
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Shiou-Ting Li
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Kun-Hsien Lin
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Yang-Yu Cheng
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chien-Tai Ren
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Ting-Jen R. Cheng
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
- Department
of Chemistry, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 106, Taiwan
| |
Collapse
|
10
|
Tsai TI, Lee HY, Chang SH, Wang CH, Tu YC, Lin YC, Hwang DR, Wu CY, Wong CH. Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. J Am Chem Soc 2013; 135:14831-9. [PMID: 24044869 DOI: 10.1021/ja4075584] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report here the development of chemoenzymatic methods for the large-scale synthesis of cancer-associated antigens globopentaose (Gb5), fucosyl-Gb5 (Globo H), and sialyl-Gb5 (SSEA4) by using overexpressed glycosyltransferases coupled with effective regeneration of sugar nucleotides, including UDP-Gal, UDP-GalNAc, GDP-Fuc, and CMP-Neu5Ac. The enzymes used in the synthesis were first identified from different species through comparative studies and then overexpressed in E. coli and isolated for synthesis. These methods provide multigram quantities of products in high yield with only two or three purification steps and are suitable for the evaluation and development of cancer vaccines and therapeutics.
Collapse
Affiliation(s)
- Tsung-I Tsai
- Genomics Research Center, Academia Sinica , No. 128, Section 2, Academia Road, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Feng J, Hevey R, Ling CC. Synthesis of a Forssman antigen derivative for use in a conjugate vaccine. Carbohydr Res 2011; 346:2650-62. [DOI: 10.1016/j.carres.2011.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/15/2011] [Accepted: 09/17/2011] [Indexed: 11/26/2022]
|
12
|
Affiliation(s)
- Ryan M Schmaltz
- The Department of Chemistry and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
13
|
The gene, expression pattern and subcellular localization of chitin synthase B from the insect Ostrinia furnacalis. Biochem Biophys Res Commun 2010; 404:302-7. [PMID: 21145310 DOI: 10.1016/j.bbrc.2010.11.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/24/2010] [Indexed: 11/23/2022]
Abstract
Insect midgut peritrophic membrane (PM) is a functional structure that protects insects against chemical damage and microorganism infection. The essential component in PM is chitin and its synthesis is catalyzed by Class B chitin synthase (CHSB), which plays a unique role in chitin-containing organisms and thus represents a potential target for eco-friendly pesticides. cDNA and gDNA of CHSB from a widely spread pest Ostrinia furnacalis (OfCHSB) were obtained and their sequences and transcription patterns were characterized. Results indicated that OfCHSB may be indirectly stimulated by ecdysone because the binding sites of only early ecdysone-inducible elements (BR-C and E74A) rather than ecdysone response elements (EcR and USP) were found within the core promoter of OfCHSB. In addition, the transcripts of OfCHSB increased in vivo at the feeding stage of the 4th and 5th instar larvae. The subcellular localization of OfCHSB was studied using an insect midgut cell line. Puncta structures of the recombinant OfCHSB were observed co-localized with Golgi marker Man II-GFP, suggesting a possible localization of chitin synthases under physiological conditions.
Collapse
|
14
|
Zarschler K, Janesch B, Pabst M, Altmann F, Messner P, Schäffer C. Protein tyrosine O-glycosylation--a rather unexplored prokaryotic glycosylation system. Glycobiology 2010; 20:787-98. [PMID: 20200052 PMCID: PMC4397588 DOI: 10.1093/glycob/cwq035] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycosylation is a frequent and heterogeneous posttranslational protein modification occurring in all domains of life. While protein N-glycosylation at asparagine and O-glycosylation at serine, threonine or hydroxyproline residues have been studied in great detail, only few data are available on O-glycosidic attachment of glycans to the amino acid tyrosine. In this study, we describe the identification and characterization of a bacterial protein tyrosine O-glycosylation system. In the Gram-positive, mesophilic bacterium Paenibacillus alvei CCM 2051(T), a polysaccharide consisting of [-->3)-beta-d-Galp-(1[alpha-d-Glcp-(1-->6)] -->4)-beta-d-ManpNAc-(1-->] repeating units is O-glycosidically linked via an adaptor with the structure -[GroA-2-->OPO(2)-->4-beta-d-ManpNAc-(1-->4)] -->3)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1-->3)-beta-d-Galp-(1--> to specific tyrosine residues of the S-layer protein SpaA. A +AH4-24.3-kb S-layer glycosylation (slg) gene cluster encodes the information necessary for the biosynthesis of this glycan chain within 18 open reading frames (ORF). The corresponding translation products are involved in the biosynthesis of nucleotide-activated monosaccharides, assembly and export as well as in the transfer of the completed polysaccharide chain to the S-layer target protein. All ORFs of the cluster, except those encoding the nucleotide sugar biosynthesis enzymes and the ATP binding cassette (ABC) transporter integral transmembrane proteins, were disrupted by the insertion of the mobile group II intron Ll.LtrB, and S-layer glycoproteins produced in mutant backgrounds were analyzed by mass spectrometry. There is evidence that the glycan chain is synthesized in a process comparable to the ABC-transporter-dependent pathway of the lipopolysaccharide O-polysaccharide biosynthesis. Furthermore, with the protein WsfB, we have identified an O-oligosaccharyl:protein transferase required for the formation of the covalent beta-d-Gal-->Tyr linkage between the glycan chain and the S-layer protein.
Collapse
Affiliation(s)
- Kristof Zarschler
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, A-1190 Vienna, Austria
| | - Bettina Janesch
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, A-1190 Vienna, Austria
| | - Martin Pabst
- Department of Chemistry, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, A-1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, A-1190 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, A-1190 Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, A-1190 Vienna, Austria
| |
Collapse
|
15
|
Houliston RS, Bernatchez S, Karwaski MF, Mandrell RE, Jarrell HC, Wakarchuk WW, Gilbert M. Complete chemoenzymatic synthesis of the Forssman antigen using novel glycosyltransferases identified in Campylobacter jejuni and Pasteurella multocida. Glycobiology 2008; 19:153-9. [PMID: 18955372 DOI: 10.1093/glycob/cwn117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have identified an alpha1,4-galactosyltransferase (CgtD) and a beta1,3-N-acetylgalactosaminyltransferase (CgtE) in the lipooligosaccharide (LOS) locus of Campylobacter jejuni LIO87. Strains that carry these genes may have the capability of synthesizing mimics of the P blood group antigens of the globoseries glycolipids. We have also identified an alpha1,3-N-acetylgalactosaminyltransferase (Pm1138) from Pasteurella multocida Pm70, which is involved in the synthesis of an LOS-bound Forssman antigen mimic and represents the only known bacterial glycosyltransferase with this specificity. The genes encoding the three enzymes were cloned and expressed in Escherichia coli as soluble recombinant proteins that can be used to chemoenzymatically synthesize the Forssman antigen, and its biosynthetic precursors, in high yields.
Collapse
Affiliation(s)
- R Scott Houliston
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol Adv 2008; 26:436-56. [PMID: 18565714 DOI: 10.1016/j.biotechadv.2008.05.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/14/2008] [Accepted: 05/09/2008] [Indexed: 02/07/2023]
Abstract
Mammalian cell surfaces are all covered with bioactive oligosaccharides which play an important role in molecular recognition events such as immune recognition, cell-cell communication and initiation of microbial pathogenesis. Consequently, bioactive oligosaccharides have been recognized as a medicinally relevant class of biomolecules for which the interest is growing. For the preparation of complex and highly pure oligosaccharides, methods based on the application of glycosyltransferases are currently recognized as being the most effective. The present paper reviews the potential of glycosyltransferases as synthetic tools in oligosaccharide synthesis. Reaction mechanisms and selected characteristics of these enzymes are described in relation to the stereochemistry of the transfer reaction and the requirements of sugar nucleotide donors. For the application of glycosyltransferases, accepted substrate profiles are summarized and the whole-cell approach versus isolated enzyme methodology is compared. Sialyltransferase-catalyzed syntheses of gangliosides and other sialylated oligosaccharides are described in more detail in view of the prominent role of these compounds in biological recognition.
Collapse
|
17
|
Su DM, Eguchi H, Yi W, Li L, Wang PG, Xia C. Enzymatic synthesis of tumor-associated carbohydrate antigen Globo-H hexasaccharide. Org Lett 2008; 10:1009-12. [PMID: 18254640 DOI: 10.1021/ol703121h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the enzymatic synthesis of an important tumor-associated carbohydrate antigen, Globo-H hexasaccharide. Starting with Lac-OBn as the initial acceptor, this approach employs three glycosyltransferases: LgtC, an alpha1,4-galactosyltransferase; LgtD, a bifunctional beta1,3-galactosyl/beta1,3-N-acetylgalactosaminyltransferase; and WbsJ, an alpha1,2-fucosyltransferase. In addition, two epimerases, GalE and WbgU, were also employed for the generation of more expensive sugar nucleotides, UDP-Gal and UDP-GalNAc, from their corresponding inexpensive C4 epimers. This study represents a facile enzymatic synthesis of the Globo-H antigen.
Collapse
Affiliation(s)
- Doris M Su
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
18
|
Yi W, Perali RS, Eguchi H, Motari E, Woodward R, Wang PG. Characterization of a Bacterial β-1,3-Galactosyltransferase with Application in the Synthesis of Tumor-Associated T-Antigen Mimics. Biochemistry 2008; 47:1241-8. [DOI: 10.1021/bi7020712] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wen Yi
- Department of Biochemistry, Department of Chemistry, and The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | - Ramu Sridhar Perali
- Department of Biochemistry, Department of Chemistry, and The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | - Hironobu Eguchi
- Department of Biochemistry, Department of Chemistry, and The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | - Edwin Motari
- Department of Biochemistry, Department of Chemistry, and The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | - Robert Woodward
- Department of Biochemistry, Department of Chemistry, and The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | - Peng George Wang
- Department of Biochemistry, Department of Chemistry, and The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
19
|
Randriantsoa M, Drouillard S, Breton C, Samain E. Synthesis of globopentaose using a novel β1,3-galactosyltransferase activity of theHaemophilus influenzaeβ1,3-N-acetylgalactosaminyltransferase LgtD. FEBS Lett 2007; 581:2652-6. [PMID: 17517393 DOI: 10.1016/j.febslet.2007.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 04/26/2007] [Accepted: 05/02/2007] [Indexed: 11/30/2022]
Abstract
We have previously described a bacterial system for the conversion of globotriaose (Gb3) into globotetraose (Gb4) by a metabolically engineered Escherichia coli strain expressing the Haemophilus influenzae lgtD gene encoding beta1,3-N-acetylgalactosaminyltransferase [Antoine, T., Bosso, C., Heyraud, A. Samain, E. (2005) Large scale in vivo synthesis of globotriose and globotetraose by high cell density culture of metabolically engineered Escherichia coli. Biochimie 87, 197-203]. Here, we found that LgtD has an additional beta1,3-galactosyltransferase activity which allows our bacterial system to be extended to the synthesis of the carbohydrate portion of globopentaosylceramide (Galbeta-3GalNAcbeta-3Galalpha-4Galbeta-4Glc) which reacts with the monoclonal antibody defining the stage-specific embryonic antigen-3. In vitro assays confirmed that LgtD had both beta1,3-GalT and beta1,3-GalNAcT activities and showed that differences in the affinity for Gb3 and Gb4 explain the specific and exclusive formation of globopentaose.
Collapse
Affiliation(s)
- Mialy Randriantsoa
- Centre de Recherches sur les Macromolécules Végétales, BP 53, 38041 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
20
|
Ryu K, Lin S, Shao J, Song J, Chen M, Wang W, Li H, Yi W, Wang PG. Synthesis of complex carbohydrates and glyconjugates: enzymatic synthesis of globotetraose using alpha-1,3-N-acetylgalactosaminyltransferase LgtD from Haemophilus infuenzae strain Rd. Methods Mol Biol 2006; 310:93-105. [PMID: 16350948 DOI: 10.1007/978-1-59259-948-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The lipopolysaccharide of capsule-deficient Haemophilus infuenzae strain Rd contains an N-acetylgalactosamine residue attached to the terminal globotriose moiety in the Hex5 glycoform. Genome analysis identified an open reading frame, HI1578, referred to as LgtD, whose amino acid sequence shows a significant level of similarity to those of a number of bacterial glycosyltransferases involved in lipopolysaccharide biosynthesis. To investigate its function, overexpression and biochemical characterization were performed. Most of the protein was obtained in a highly soluble and active form. Standard glycosyltransferase assay, high-performance liquid chromatography (HPLC), and liquid chromatography (LC)/mass spectrometry (MS) show that LgtD is an N-acetylgalactosaminyltransferase with high donor substrate specificity, and globotriose is a highly preferred acceptor substrate for the enzyme.
Collapse
Affiliation(s)
- Kang Ryu
- Department of Biochemistry, The Ohio State University, Columbus, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wong SM, Akerley BJ. Environmental and genetic regulation of the phosphorylcholine epitope of Haemophilus influenzae lipooligosaccharide. Mol Microbiol 2005; 55:724-38. [PMID: 15660999 DOI: 10.1111/j.1365-2958.2004.04439.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In response to environmental signals in the host, bacterial pathogens express factors required during infection and repress those that interfere with specific stages of this process. Signalling pathways controlling virulence factors of the human respiratory pathogen, Haemophilus influenzae, are predominantly unknown. The lipooligosaccharide (LOS) outer core represents a prototypical virulence trait of H. influenzae that enhances virulence but also provides targets for innate and adaptive immunity. We report regulation of the display of the virulence-associated phosphorylcholine (PC) epitope on the LOS in response to environmental conditions. PC display is optimal under microaerobic conditions and markedly decreased under conditions of high culture aeration. Gene expression analysis using a DNA microarray was performed to begin to define the metabolic state of the cell under these conditions and to identify genes potentially involved in PC epitope modulation. Global gene expression profiling detected changes in redox responsive genes and in genes of carbohydrate metabolism. The effects on carbohydrate metabolism led us to examine the role of the putative H. influenzae homologue of csrA, a regulator of glycolysis and gluconeogenesis in Escherichia coli. A mutant containing an in-frame deletion of the H. influenzae csrA gene showed increased PC epitope levels under aerobic conditions. Furthermore, deletion of csrA elevated mRNA expression of galU, an essential virulence gene that is critical in generating sugar precursors needed for polysaccharide formation and LOS outer core synthesis. Growth conditions predicted to alter the redox state of the culture modulated the PC epitope and galU expression as well. The results are consistent with a multifactorial mechanism of control of LOS-PC epitope display involving csrA and environmental signals that coordinately regulate biosynthetic and metabolic genes controlling the LOS structure.
Collapse
Affiliation(s)
- Sandy M Wong
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
22
|
Yi W, Shao J, Zhu L, Li M, Singh M, Lu Y, Lin S, Li H, Ryu K, Shen J, Guo H, Yao Q, Bush CA, Wang PG. Escherichia coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J Am Chem Soc 2005; 127:2040-1. [PMID: 15713070 DOI: 10.1021/ja045021y] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous study showed that some Gram-negative bacteria possess human blood group activity. Among them, Escherichia coli O86 has high blood group B activity and weak blood group A activity. This is due to the cell surface O-antigen structure, which resembles that of human blood group B antigen. In this study, we sequenced the entire E. coli O86 antigen gene cluster and identified all the genes responsible for O-antigen biosynthesis by sequence comparative analysis. The blood group B-like antigen in E. coli O86 O-polysaccharide was synthesized by sequentially employing three glycosyltransferases identified in the gene cluster. More importantly, we identified a new bacterial glycosyltransferase (WbnI) equivalent to human blood group transferase B (GTB). The enzyme substrate specificity and stepwise enzymatic synthesis of blood group B-like antigen revealed that the biosynthetic pathway of B antigen is essentially the same in E. coli O86 as in humans. This new finding provides a model to study the specificity and structure relationship of blood group transferases and supports the hypothesis of anti-blood group antibody production by bacterial stimulation.
Collapse
Affiliation(s)
- Wen Yi
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shao J, Li M, Jia Q, Lu Y, Wang PG. Sequence of Escherichia coli O128 antigen biosynthesis cluster and functional identification of an alpha-1,2-fucosyltransferase. FEBS Lett 2003; 553:99-103. [PMID: 14550554 DOI: 10.1016/s0014-5793(03)00980-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
O128 is one of the most common atypical enteropathogenic Escherichia coli isolated from diarrhea patients worldwide. The primary structure of E. coli O128 repeat units has previously been determined as -->3)-beta-D-GalNAc-(1-->4)-alpha-D-Gal-(1-->3)-beta-D-GalNAc-(1-->6)-[alpha-L-Fuc-(1-->2)]-beta-D-Gal-(1--> pentasaccharide. Here we report the complete sequencing of E. coli O128 antigen biosynthesis gene cluster and its flanking regions. Comparative sequence analysis revealed the expected O128 antigen process genes, GDP-fucose biosynthesis genes and four potential glycosyltransferase genes responsible for the assembly of E. coli O128 antigen repeats. WbsJ was shown to encode an alpha-1,2-fucosyltransferase by enzymatic assays and nuclear magnetic resonance spectroscopy analysis.
Collapse
Affiliation(s)
- Jun Shao
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
24
|
Zhang J, Wu B, Zhang Y, Kowal P, Wang PG. Creatine phosphate--creatine kinase in enzymatic synthesis of glycoconjugates. Org Lett 2003; 5:2583-6. [PMID: 12868864 DOI: 10.1021/ol034319a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
[reaction: see text] Enzymatic production of glycoconjugates is hampered by expensive phosphagens such as acetyl phosphate (AcP) and phosphoenolpyruvate (PEP). Here, we introduce creatine phosphate--creatine kinase system as a novel and practical energy source in carbohydrate synthesis. This system was successfully demonstrated in the production of bioactive oligosaccharides with different sugar nucleotide regeneration systems.
Collapse
Affiliation(s)
- Jianbo Zhang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
25
|
Shao J, Zhang J, Kowal P, Lu Y, Wang PG. Efficient synthesis of globoside and isogloboside tetrasaccharides by using beta(1-->3) N-acetylgalactosaminyltransferase/UDP-N-acetylglucosamine C4 epimerase fusion protein. Chem Commun (Camb) 2003:1422-3. [PMID: 12841272 DOI: 10.1039/b300831b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The beta(1-->3) N-acetylgalactosaminyltransferase/UDP-N-acetylglucosamine C4 epimerase fusion protein was constructed and used in coupled enzymatic reactions to synthesize a variety of globotetraose and isoglobotetraose derivatives from the corresponding lactoside acceptors.
Collapse
Affiliation(s)
- Jun Shao
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW This review will consider recent developments in the clinical aspects of infections due to non-typeable Haemophilus influenzae. In addition, newer developments in the areas of mechanisms of pathogenesis, host pathogen interaction, immune responses and efforts toward vaccine development will be reviewed briefly. RECENT FINDINGS Non-typeable H. influenzae continues to be a common cause of otitis media in infants and children, sinusitis in children and adults, pneumonia in adults, and lower respiratory tract infection in adults with chronic obstructive pulmonary disease. While the rate of beta-lactamase production by isolates of H. influenzae varies geographically, most regions show a rate of 20-35% of isolates producing beta-lactamase. Recent studies have highlighted the possible role of bacterial biofilms formed by H. influenzae as a cause of otitis media. Several lines of evidence indicate that H. influenzae causes intracellular infection in the lower respiratory tract in chronic obstructive pulmonary disease and this observation has important implications in understanding the human immune response to the bacterium. Lipooligosaccharide is an important virulence factor for H. influenzae and research is generating new information on the complex role of this molecule in colonization and infection of the respiratory tract. Several surface molecules are under active evaluation as vaccine antigens. SUMMARY Non-typeable H. influenzae is an important cause of respiratory tract infections in children and adults. Most strains are susceptible to amoxicillin/clavulanate, fluoroquinolones and the newer macrolides. Research in the next decade promises substantial progress in the challenge of developing vaccines for nontypeable H. influenzae.
Collapse
Affiliation(s)
- Timothy F Murphy
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA.
| |
Collapse
|
27
|
Shao J, Zhang J, Kowal P, Wang PG. Donor substrate regeneration for efficient synthesis of globotetraose and isoglobotetraose. Appl Environ Microbiol 2002; 68:5634-40. [PMID: 12406759 PMCID: PMC129914 DOI: 10.1128/aem.68.11.5634-5640.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we describe the efficient synthesis of two oligosaccharide moieties of human glycosphingolipids, globotetraose (GalNAcbeta1-->3Galalpha1-->4Galbeta1-->4Glc) and isoglobotetraose (GalNAcbeta1-->3Galalpha1-->3Galbeta1-->4Glc), with in situ enzymatic regeneration of UDP-N-acetylgalactosamine (UDP-GalNAc). We demonstrate that the recombinant beta-1,3-N-acetylgalactosaminyltransferase from Haemophilus influenzae strain Rd can transfer N-acetylgalactosamine to a wide range of acceptor substrates with a terminal galactose residue. The donor substrate UDP-GalNAc can be regenerated by a six-enzyme reaction cycle consisting of phosphoglucosamine mutase, UDP-N-acetylglucosamine pyrophosphorylase, phosphate acetyltransferase, pyruvate kinase, and inorganic pyrophosphatase from Escherichia coli, as well as UDP-N-acetylglucosamine C4 epimerase from Plesiomonas shigelloides. All these enzymes were overexpressed in E. coli with six-histidine tags and were purified by one-step nickel-nitrilotriacetic acid affinity chromatography. Multiple-enzyme synthesis of globotetraose or isoglobotetraose with the purified enzymes was achieved with relatively high yields.
Collapse
Affiliation(s)
- Jun Shao
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|