1
|
Yang Y, Zhou T, Zhao X, Cai Y, Xu Y, Gang X, Wang G. Main mechanisms and clinical implications of alterations in energy expenditure state among patients with pheochromocytoma and paraganglioma: A review. Medicine (Baltimore) 2024; 103:e37916. [PMID: 38669419 PMCID: PMC11049756 DOI: 10.1097/md.0000000000037916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumors with diverse clinical presentations. Alterations in energy expenditure state are commonly observed in patients with PPGL. However, the reported prevalence of hypermetabolism varies significantly and the underlying mechanisms and implications of this presentation have not been well elucidated. This review discusses and analyzes the factors that contribute to energy consumption. Elevated catecholamine levels in patients can significantly affect substance and energy metabolism. Additionally, changes in the activation of brown adipose tissue (BAT), inflammation, and the inherent energy demands of the tumor can contribute to increased resting energy expenditure (REE) and other energy metabolism indicators. The PPGL biomarker, chromogranin A (CgA), and its fragments also influence energy metabolism. Chronic hypermetabolic states may be detrimental to these patients, with surgical tumor removal remaining the primary therapeutic intervention. The high energy expenditure of PPGL has not received the attention it deserves, and an accurate assessment of energy metabolism is the cornerstone for an adequate understanding and treatment of the disease.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Xu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Allu PKR, Chirasani VR, Ghosh D, Mani A, Bera AK, Maji SK, Senapati S, Mullasari AS, Mahapatra NR. Naturally occurring variants of the dysglycemic peptide pancreastatin: differential potencies for multiple cellular functions and structure-function correlation. J Biol Chem 2014; 289:4455-69. [PMID: 24338022 PMCID: PMC3924307 DOI: 10.1074/jbc.m113.520916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/08/2013] [Indexed: 12/16/2022] Open
Abstract
Pancreastatin (PST), a chromogranin A-derived peptide, is a potent physiological inhibitor of glucose-induced insulin secretion. PST also triggers glycogenolysis in liver and reduces glucose uptake in adipocytes and hepatocytes. Here, we probed for genetic variations in PST sequence and identified two variants within its functionally important carboxyl terminus domain: E287K and G297S. To understand functional implications of these amino acid substitutions, we tested the effects of wild-type (PST-WT), PST-287K, and PST-297S peptides on various cellular processes/events. The rank order of efficacy to inhibit insulin-stimulated glucose uptake was: PST-297S > PST-287K > PST-WT. The PST peptides also displayed the same order of efficacy for enhancing intracellular nitric oxide and Ca(2+) levels in various cell types. In addition, PST peptides activated gluconeogenic genes in the following order: PST-297S ≈ PST-287K > PST-WT. Consistent with these in vitro results, the common PST variant allele Ser-297 was associated with significantly higher (by ∼17 mg/dl, as compared with the wild-type Gly-297 allele) plasma glucose level in our study population (n = 410). Molecular modeling and molecular dynamics simulations predicted the following rank order of α-helical content: PST-297S > PST-287K > PST-WT. Corroboratively, circular dichroism analysis of PST peptides revealed significant differences in global structures (e.g. the order of propensity to form α-helix was: PST-297S ≈ PST-287K > PST-WT). This study provides a molecular basis for enhanced potencies/efficacies of human PST variants (likely to occur in ∼300 million people worldwide) and has quantitative implications for inter-individual variations in glucose/insulin homeostasis.
Collapse
Affiliation(s)
- Prasanna K. R. Allu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Venkat R. Chirasani
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Dhiman Ghosh
- the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, and
| | - Anitha Mani
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Amal K. Bera
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Samir K. Maji
- the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, and
| | - Sanjib Senapati
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| | - Ajit S. Mullasari
- the Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai 600037, India
| | - Nitish R. Mahapatra
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036
| |
Collapse
|
3
|
Valicherla GR, Hossain Z, Mahata SK, Gayen JR. Pancreastatin is an endogenous peptide that regulates glucose homeostasis. Physiol Genomics 2013; 45:1060-71. [PMID: 24064537 DOI: 10.1152/physiolgenomics.00131.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pancreastatin (PST) is a regulatory peptide containing 49 amino acids, first isolated from porcine pancreas. Intracellular and extracellular processing of the prohormone Chromogranin A (Chga) results various bioactive peptides of which PST has dysglycemic activity. PST regulates glucose, lipid, and protein metabolism in liver and adipose tissues. It also regulates the secretion of leptin and expression of leptin and uncoupling protein 2 in adipose tissue. In Chga knockout mice, PST induces gluconeogenesis in the liver. PST reduces glucose uptake in mice hepatocytes and adipocytes. In rat hepatocytes, PST induces glycogenolysis and glycolysis and inhibits glycogen synthesis. In rat adipocytes, PST inhibits lactate production and lipogenesis. These metabolic effects are confirmed in humans. In the dual signaling mechanism of PST receptor, mostly PST activates Gαq/11 protein leads to the activation of phospholipase C β3-isoform, therefore increasing cytoplasmic free calcium and stimulating protein kinase C. PST inhibits the cell growth in rat HTC hepatoma cells, mediated by nitric oxide and cyclic GMP production. Elevated levels of PST correlating with catecholamines have been found in gestational diabetes and essential hypertension. Rise in the blood PST level in Type 2 diabetes suggests that PST is a negative regulator of insulin sensitivity and glucose homeostasis.
Collapse
Affiliation(s)
- Guru Raghavendra Valicherla
- Pharmacokinetics and Metabolism Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | | | | | | |
Collapse
|
4
|
Sánchez-Margalet V, González-Yanes C, Najib S, Santos-Álvarez J. Reprint of: Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. ACTA ACUST UNITED AC 2010; 165:71-7. [PMID: 20934461 DOI: 10.1016/j.regpep.2010.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 01/12/2023]
Abstract
Pancreastatin is one of the regulatory peptides derived from intracellular and/or extracellular processing of chromogranin A, the soluble acidic protein present in the secretory granules of the neuroendocrine system. While the intracellular functions of chromogranin A include formation and maturation of the secretory granule, the major extracellular functions are generation of biologically active peptides with demonstrated autocrine, paracrine or endocrine activities. In this review, we will focus on the metabolic function of one of these peptides, pancreastatin, and the mechanisms underlying its effects. Many different reported effects have implicated PST in the modulation of energy metabolism, with a general counterregulatory effect to that of insulin. Pancreastatin induces glycogenolysis in liver and lipolysis in adipocytes. Metabolic effects have been confirmed in humans. Moreover, naturally occurring human variants have been found, one of which (Gly297Ser) occurs in the functionally important carboxy-terminus of the peptide, and substantially increases the peptide's potency to inhibit cellular glucose uptake. Thus, qualitative hereditary alterations in pancreastatin's primary structure may give rise to interindividual differences in glucose and lipid metabolism. Pancreastatin activates a receptor signaling system that belongs to the seven-spanning transmembrane receptor coupled to a Gq-PLCβ-calcium-PKC signaling pathway. Increased pancreastatin plasma levels, correlating with catecholamines levels, have been found in insulin resistance states, such as gestational diabetes or essential hypertension. Pancreastatin plays important physiological role in potentiating the metabolic effects of catecholamines, and may also play a pathophysiological role in insulin resistance states with increased sympathetic activity.
Collapse
Affiliation(s)
- Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Spain.
| | | | | | | |
Collapse
|
5
|
Pérez-Pérez A, Gambino Y, Maymó J, Goberna R, Fabiani F, Varone C, Sánchez-Margalet V. MAPK and PI3K activities are required for leptin stimulation of protein synthesis in human trophoblastic cells. Biochem Biophys Res Commun 2010; 396:956-60. [DOI: 10.1016/j.bbrc.2010.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/06/2010] [Indexed: 11/28/2022]
|
6
|
Sánchez-Margalet V, González-Yanes C, Najib S, Santos-Alvarez J. Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. REGULATORY PEPTIDES 2010; 161:8-14. [PMID: 20184923 DOI: 10.1016/j.regpep.2010.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 12/20/2022]
Abstract
Pancreastatin is one of the regulatory peptides derived from intracellular and/or extracellular processing of chromogranin A, the soluble acidic protein present in the secretory granules of the neuroendocrine system. While the intracellular functions of chromogranin A include formation and maturation of the secretory granule, the major extracellular functions are generation of biologically active peptides with demonstrated autocrine, paracrine or endocrine activities. In this review, we will focus on the metabolic function of one of these peptides, pancreastatin, and the mechanisms underlying its effects. Many different reported effects have implicated PST in the modulation of energy metabolism, with a general counterregulatory effect to that of insulin. Pancreastatin induces glycogenolysis in liver and lipolysis in adipocytes. Metabolic effects have been confirmed in humans. Moreover, naturally occurring human variants have been found, one of which (Gly297Ser) occurs in the functionally important carboxy-terminus of the peptide, and substantially increases the peptide's potency to inhibit cellular glucose uptake. Thus, qualitative hereditary alterations in pancreastatin's primary structure may give rise to interindividual differences in glucose and lipid metabolism. Pancreastatin activates a receptor signaling system that belongs to the seven-spanning transmembrane receptor coupled to a Gq-PLCbeta-calcium-PKC signaling pathway. Increased pancreastatin plasma levels, correlating with catecholamines levels, have been found in insulin resistance states, such as gestational diabetes or essential hypertension. Pancreastatin plays important physiological role in potentiating the metabolic effects of catecholamines, and may also play a pathophysiological role in insulin resistance states with increased sympathetic activity.
Collapse
Affiliation(s)
- Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Spain.
| | | | | | | |
Collapse
|
7
|
Helle KB. Chromogranins A and B and secretogranin II as prohormones for regulatory peptides from the diffuse neuroendocrine system. Results Probl Cell Differ 2010; 50:21-44. [PMID: 20217490 DOI: 10.1007/400_2009_26] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chromogranin A (CgA), chromogranin B (CgB), and secretogranin II (SgII) belong to a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These "granins" are characterized by numerous pairs of basic amino acids as potential sites for intra- and extragranular processing. In response to adequate stimuli, the granins are coreleased with neurotransmitters and hormones and appear in the circulation as potential modulators of homeostatic processes. This review is directed towards functional aspects of the secreted CgA, CgB, and SgII and their biologically active sequences. Widely different effects and targets have been reported for granin-derived peptides. So far, the CgA peptides vasostatin-I, pancreastatin, and catestatin, the CgB peptides CgB(1-41) and secretolytin, and the SgII peptide secretoneurin are the most likely candidates for granin-derived regulatory peptides. Most of their effects fit into patterns of direct or indirect modulations of major functions, in particular associated with inflammatory conditions.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, Division of Physiology, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
8
|
Pérez-Pérez A, Maymó J, Gambino Y, Dueñas JL, Goberna R, Varone C, Sánchez-Margalet V. Leptin stimulates protein synthesis-activating translation machinery in human trophoblastic cells. Biol Reprod 2009; 81:826-32. [PMID: 19553602 DOI: 10.1095/biolreprod.109.076513] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Leptin was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it may work as an autocrine hormone, mediating angiogenesis, growth, and immunomodulation. Leptin receptor (LEPR, also known as Ob-R) shows sequence homology to members of the class I cytokine receptor (gp130) superfamily. In fact, leptin may function as a proinflammatory cytokine. We have previously found that leptin is a trophic and mitogenic factor for trophoblastic cells. In order to further investigate the mechanism by which leptin stimulates cell growth in JEG-3 cells and trophoblastic cells, we studied the phosphorylation state of different proteins of the initiation stage of translation and the total protein synthesis by [(3)H]leucine incorporation in JEG-3 cells. We have found that leptin dose-dependently stimulates the phosphorylation and activation of the translation initiation factor EIF4E as well as the phosphorylation of the EIF4E binding protein EIF4EBP1 (PHAS-I), which releases EIF4E to form active complexes. Moreover, leptin dose-dependently stimulates protein synthesis, and this effect can be partially prevented by blocking mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PIK3) pathways. In conclusion, leptin stimulates protein synthesis, at least in part activating the translation machinery, via the activation of MAPK and PIK3 pathways.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Giordano T, Brigatti C, Podini P, Bonifacio E, Meldolesi J, Malosio ML. Beta cell chromogranin B is partially segregated in distinct granules and can be released separately from insulin in response to stimulation. Diabetologia 2008; 51:997-1007. [PMID: 18437352 DOI: 10.1007/s00125-008-0980-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 02/08/2008] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS We investigated, in three beta cell lines (INS-1E, RIN-5AH, betaTC3) and in human and rodent primary beta cells, the storage and release of chromogranin B, a secretory protein expressed in beta cells and postulated to play an autocrine role. We asked whether chromogranin B is stored together with and discharged in constant ratio to insulin upon various stimuli. METHODS The intracellular distribution of insulin and chromogranin B was revealed by immunofluorescence followed by three-dimensional image reconstruction and by immunoelectron microscopy; their stimulated discharge was measured by ELISA and immunoblot analysis of homogenates and incubation media. RESULTS Insulin and chromogranin B, co-localised in the Golgi complex/trans-Golgi network, appeared largely segregated from each other in the secretory granule compartment. In INS-1E cells, the percentage of granules positive only for insulin or chromogranin B and of those positive for both was 66, 7 and 27%, respectively. In resting cells, both insulin and chromogranin B were concentrated in the granule cores; upon stimulation, chromogranin B (but not insulin) was largely redistributed to the core periphery and the surrounding halo. Strong stimulation with a secretagogue mixture induced parallel release of insulin and chromogranin B, whereas with 3-isobutyl-1-methylxantine and forskolin +/- high glucose release of chromogranin B predominated. Weak, Ca(2+)-dependent stimulation with ionomycin or carbachol induced exclusive release of chromogranin B, suggesting a higher Ca(2+) sensitivity of the specific granules. CONCLUSIONS/INTERPRETATION The unexpected complexity of the beta cell granule population in terms of heterogeneity, molecular plasticity and the differential discharge, could play an important role in physiological control of insulin release and possibly also in beta cell pathology.
Collapse
Affiliation(s)
- T Giordano
- Immunology of Diabetes Research Unit, San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Zhang K, Rao F, Wen G, Salem RM, Vaingankar S, Mahata M, Mahapatra NR, Lillie EO, Cadman PE, Friese RS, Hamilton BA, Hook VY, Mahata SK, Taupenot L, O'Connor DT. Catecholamine storage vesicles and the metabolic syndrome: The role of the chromogranin A fragment pancreastatin. Diabetes Obes Metab 2006; 8:621-33. [PMID: 17026486 PMCID: PMC10843892 DOI: 10.1111/j.1463-1326.2006.00575.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromogranins or secretogranins (granins), present in secretory granules of virtually all neuroendocrine cells and neurones, are structurally related proteins encoded by different genetic loci: chromogranins A and B, and secretogranins II through VI. Compelling evidence supports both intracellular and extracellular functions for this protein family. Within the cells of origin, a granulogenic or sorting role in the regulated pathway of hormone or neurotransmitter secretion has been documented, especially for chromogranin A (CHGA). Granins also function as pro-hormones, giving rise by proteolytic processing to an array of peptide fragments for which diverse autocrine, paracrine, and endocrine activities have been demonstrated. CHGA measurements yield insight into the pathogenesis of such human diseases as essential hypertension, in which deficiency of the catecholamine release-inhibitory CHGA fragment catestatin may trigger sympathoadrenal overactivity as an aetiologic culprit in the syndrome. The CHGA dysglycaemic fragment pancreastatin is functional in humans in vivo, affecting both carbohydrate (glucose) and lipid (fatty acid) metabolism. Pancreastatin is cleaved from CHGA in hormone storage granules in vivo, and its plasma concentration varies in human disease. The pancreastatin region of CHGA gives rise to three naturally occurring human variants, one of which (Gly297Ser) occurs in the functionally important carboxy-terminus of the peptide, and substantially increases the peptide's potency to inhibit cellular glucose uptake. These observations establish a role for pancreastatin in human intermediary metabolism and disease, and suggest that qualitative hereditary alterations in pancreastatin's primary structure may give rise to interindividual differences in glucose disposition.
Collapse
Affiliation(s)
- Kuixing Zhang
- Department of Medicine, University of California at San Diego, San Diego, California 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Helle KB. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc 2005; 79:769-94. [PMID: 15682870 DOI: 10.1017/s146479310400644x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chromogranins A (CgA) and B (CgB) and secretogranin II (SgII) constitute the main members of a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These genetically distinct proteins, CgA, CgB, SgII and the less well known secretogranins III-VII are collectively referred to as 'granins' and characterised by numerous pairs of basic amino acids as potential cleavage sites for processing by the co-stored prohormone converting enzymes PC 1/3 and PC2. This review is directed towards comparative and functional aspects of the granins with emphasis on their phylogenetically conserved sequences. Recent developments provide ample evidence of widely different effects and targets for the intact granins and their derived peptides, intracellularly in the directed trafficking of storage components during granule maturation and extracellularly in autocrine, paracrine and endocrine interactions. Most of the effects assigned to the granin derived peptides fit into patterns of direct or indirect inhibitory modulations of major functions. So far, peptides derived from CgA (vasostatins, chromacin, pancreastatin, WE-14, catestatin and parastatin), CgB (secretolytin) and SgII (secretoneurin) are the most likely candidates for granin-derived regulatory peptides, of postulated relevance not only for homeostatic processes, but also for tissue assembly and repair, inflammatory responses and the first line of defence against invading microorganisms.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, Division of Physiology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
12
|
Stilling GA, Bayliss JM, Jin L, Zhang H, Lloyd RV. Chromogranin A transcription and gene expression in Folliculostellate (TtT/GF) cells inhibit cell growth. Endocr Pathol 2005; 16:173-86. [PMID: 16299400 DOI: 10.1385/ep:16:3:173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Folliculostellate (FS) cells are present in the anterior pituitary and have important regulatory functions including controlling hormone release from other anterior pituitary cells. FS cells do not usually express neuroendocrine genes such as chromogranin A (CgA). We analyzed transcriptional regulation and gene expression in the TtT/GF FS cell line to better understand the role of FS cells in anterior pituitary function. After transient transfection with a human (h) CgA promoter sequence linked to a luciferase reporter, there was basal level of transcriptional activity, which was two- to fourfold less than that observed in the anterior pituitary neuroendocrine cell lines HP75 and GH3. The transcriptional activity was decreased in all cell lines when a mutant hCgA promoter cyclic AMP response element (CRE) was used for transfection. Sodium butyrate treatment increased the transcriptional activity in all cell lines, but remained two- to fourfold higher in the HP75 and GH3 cell lines than in the TtT/GF cells. Stable transfection of a plasmid expressing bovine (b) CgA in the TtT/GF cells led to inhibition of cell growth as measured by 3H-thymidine incorporation, Ki-67 labeling index, and growth curve analysis. CgA protein and mRNA could be readily demonstrated in the cloned cells but not in the parental cell line or vector control cells. When the CgA expressing cloned cells were injected into SCID mice, there was a decrease in the rate of tumor growth compared to the vector control in vivo. These results indicate that the TtT/GF FS cells are fibroblast-like compared to the neuroendocrine anterior pituitary secretory cells when analyzed by transcriptional activity with a transiently transfected CgA promoter. In TtT/GF cells with a stably transfected bCgA plasmid, CgA has a direct regulatory effect on tumor cell proliferation.
Collapse
Affiliation(s)
- Gail A Stilling
- Mayo Clinic College of Medicine, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|