1
|
Electroacupuncture Enhances Cognitive Deficits in a Rat Model of Rapid Eye Movement Sleep Deprivation via Targeting MiR-132. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7044208. [PMID: 36159559 PMCID: PMC9507748 DOI: 10.1155/2022/7044208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Deprivation of rapid eye movement sleep (REMSD) reduces the potential for learning and memory. The neuronal foundation of cognitive performance is synapse plasticity. MicroRNA-132 (MiR-132) is an important microRNA related to cognitive and synapse plasticity. Acupuncture is effective at improving cognitive impairment caused by sleep deprivation. Furthermore, its underlying principle is still unclear. Herein, whether electroacupuncture (EA) helps alleviate cognitive impairment in REMSD by targeting miR-132 was assessed. A rat model of REMSD was constructed using the developing multiplatform water environment technique, as well as EA therapy in Baihui (GV20) and Dazhui (GV14) was performed for 15 minutes, once daily for 7 days. Agomir or antagomir of MiR-132 was injected into the hippocampal CA1 areas to assess the EA mechanism in rats with REMSD. Then, the learning and memory abilities were detected by behavioral tests; synapse structure was assessed by transmission electron microscope (TCM); and dendrites branches and length were examined by Golgi staining. MiR-132-3p was assessed by real-time quantitative polymerase chain reaction (qRT-PCR). P250GAP, ras-related C3 botulinum toxin substrate 1 (Rac1), and cell division cycle 42 (Cdc42) expression levels in hippocampal tissues were evaluated by immunohistochemistry and Western blot. According to the research, EA therapy enhanced cognitive in REMSD rats, as evidenced by reduced escape latency; upregulated the performance of platform crossings and prolonged duration in the goal region; and improved spontaneous alternation. EA administration restored synaptic and dendritic structural damage in hippocampal neurons, enhanced miR-132 expression, and reduced p250GAP mRNA and protein levels. Additionally, EA boosted the protein level of Rac1 and Cdc42 associated with synaptic plasticity. MiR-132 agomir enhanced this effect, whereas miR-13 antagomir reversed this action. The current data demonstrate that EA at GV20 and GV14 attenuates cognitive impairment and modulates synaptic plasticity in hippocampal neurons via miR-132 in a sleep-deprived rat model.
Collapse
|
2
|
Cytoskeletal Signal-Regulated Oligodendrocyte Myelination and Remyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:33-42. [DOI: 10.1007/978-981-32-9636-7_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Han KA, Um JW, Ko J. Intracellular protein complexes involved in synapse assembly in presynaptic neurons. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:347-373. [PMID: 31036296 DOI: 10.1016/bs.apcsb.2018.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The presynaptic active zone, composed of evolutionarily conserved protein complexes, is a specialized area that serves to orchestrate precise and efficient neurotransmitter release by organizing various presynaptic proteins involved in mediating docking and priming of synaptic vesicles, recruiting voltage-gated calcium channels, and modulating presynaptic nerve terminals with aligned postsynaptic structures. Among membrane proteins localized to active zone, presynaptic neurexins and LAR-RPTPs (leukocyte common antigen-related receptor tyrosine phosphatase) have emerged as hubs that orchestrate both shared and distinct extracellular synaptic adhesion pathways. In this chapter, we discuss intracellular signaling cascades involved in recruiting various intracellular proteins at both excitatory and inhibitory synaptic sites. In particular, we highlight recent studies on key active zone proteins that physically and functionally link these cascades with neurexins and LAR-RPTPs in both vertebrate and invertebrate model systems. These studies allow us to build a general, universal view of how presynaptic active zones operate together with postsynaptic structures in neural circuits.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea.
| |
Collapse
|
4
|
Huang GH, Sun ZL, Li HJ, Feng DF. Rho GTPase-activating proteins: Regulators of Rho GTPase activity in neuronal development and CNS diseases. Mol Cell Neurosci 2017; 80:18-31. [PMID: 28163190 DOI: 10.1016/j.mcn.2017.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/06/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022] Open
Abstract
The Rho family of small GTPases was considered as molecular switches in regulating multiple cellular events, including cytoskeleton reorganization. The Rho GTPase-activating proteins (RhoGAPs) are one of the major families of Rho GTPase regulators. RhoGAPs were initially considered negative mediators of Rho signaling pathways via their GAP domain. Recent studies have demonstrated that RhoGAPs also regulate numerous aspects of neuronal development and are related to various neurodegenerative diseases in GAP-dependent and GAP-independent manners. Moreover, RhoGAPs are regulated through various mechanisms, such as phosphorylation. To date, approximately 70 RhoGAPs have been identified; however, only a small portion has been thoroughly investigated. Thus, the characterization of important RhoGAPs in the central nervous system is crucial to understand their spatiotemporal role during different stages of neuronal development. In this review, we summarize the current knowledge of RhoGAPs in the brain with an emphasis on their molecular function, regulation mechanism and disease implications in the central nervous system.
Collapse
Affiliation(s)
- Guo-Hui Huang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China; Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
5
|
Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, Ito A, Ogata T, Terada N, Tanoue A, Yamauchi J. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell 2015. [PMID: 26224309 PMCID: PMC4591693 DOI: 10.1091/mbc.e14-05-1020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During early development of the peripheral nervous system, Schwann cell precursors proliferate, migrate, and differentiate into premyelinating Schwann cells. After birth, Schwann cells envelop neuronal axons with myelin sheaths. Although some molecular mechanisms underlying myelination by Schwann cells have been identified, the whole picture remains unclear. Here we show that signaling through Tyro3 receptor tyrosine kinase and its binding partner, Fyn nonreceptor cytoplasmic tyrosine kinase, is involved in myelination by Schwann cells. Impaired formation of myelin segments is observed in Schwann cell neuronal cultures established from Tyro3-knockout mouse dorsal root ganglia (DRG). Indeed, Tyro3-knockout mice exhibit reduced myelin thickness. By affinity chromatography, Fyn was identified as the binding partner of the Tyro3 intracellular domain, and activity of Fyn is down-regulated in Tyro3-knockout mice, suggesting that Tyro3, acting through Fyn, regulates myelination. Ablating Fyn in mice results in reduced myelin thickness. Decreased myelin formation is observed in cultures established from Fyn-knockout mouse DRG. Furthermore, decreased kinase activity levels and altered expression of myelination-associated transcription factors are observed in these knockout mice. These results suggest the involvement of Tyro3 receptor and its binding partner Fyn in Schwann cell myelination. This constitutes a newly recognized receptor-linked signaling mechanism that can control Schwann cell myelination.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Tomohiro Torii
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Nobuhiko Ohno
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yurika Saitoh
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Akihito Ito
- Research Center, Nissei Bilis, Koga, Shiga 528-0052, Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, National Rehabilitation Center for Persons with Disabilities Research Institute, Tokorozawa, Saitama 359-8555, Japan
| | - Nobuo Terada
- Graduate School of Medicine, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan )
| |
Collapse
|
6
|
Zhang J, Banerjee B. Role of MicroRNA in Visceral Pain. J Neurogastroenterol Motil 2015; 21:159-71. [PMID: 25843071 PMCID: PMC4398244 DOI: 10.5056/jnm15027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 12/30/2022] Open
Abstract
The long-lasting nociceptive transmission under various visceral pain conditions involves transcriptional and/or translational alteration in neurotransmitter and receptor expression as well as modification of neuronal function, morphology and synaptic connections. Although it is largely unknown how such changes in posttranscriptional expression induce visceral pain, recent evidence strongly suggests an important role for microRNAs (miRNAs, small non-coding RNAs) in the cellular plasticity underlying chronic visceral pain. MicroRNAs are small noncoding RNA endogenously produced in our body and act as a major regulator of gene expression by either through cleavage or translational repression of the target gene. This regulation is essential for the normal physiological function but when disturbed can result in pathological conditions. Usually one miRNA has multiple targets and target mRNAs are regulated in a combinatorial fashion by multiple miRNAs. In recent years, many studies have been performed to delineate the posttranscriptional regulatory role of miRNAs in different tissues under various nociceptive stimuli. In this review, we intend to discuss the recent development in miRNA research with special emphases on miRNAs and their targets responsible for long term sensitization in chronic pain conditions. In addition, we review miRNAs expression and function data for different animal pain models and also the recent progress in research on miRNA-based therapeutic targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jian Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin Milwaukee, WI , USA
| | - Banani Banerjee
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin Milwaukee, WI , USA
| |
Collapse
|
7
|
Knox R, Jiang X. Fyn in Neurodevelopment and Ischemic Brain Injury. Dev Neurosci 2015; 37:311-20. [PMID: 25720756 DOI: 10.1159/000369995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Src family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn, and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents and, with our work, in neonatal animals. An understanding of Fyn's role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones.
Collapse
Affiliation(s)
- Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
8
|
Mitew S, Hay C, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 2014; 276:29-47. [DOI: 10.1016/j.neuroscience.2013.11.029] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
|
9
|
The environmental neurotoxicant PCB 95 promotes synaptogenesis via ryanodine receptor-dependent miR132 upregulation. J Neurosci 2014; 34:717-25. [PMID: 24431430 DOI: 10.1523/jneurosci.2884-13.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca(2+) oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders.
Collapse
|
10
|
Elramah S, Landry M, Favereaux A. MicroRNAs regulate neuronal plasticity and are involved in pain mechanisms. Front Cell Neurosci 2014; 8:31. [PMID: 24574967 PMCID: PMC3920573 DOI: 10.3389/fncel.2014.00031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/22/2014] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are emerging as master regulators of gene expression in the nervous system where they contribute not only to brain development but also to neuronal network homeostasis and plasticity. Their function is the result of a cascade of events including miRNA biogenesis, target recognition, and translation inhibition. It has been suggested that miRNAs are major switches of the genome owing to their ability to regulate multiple genes at the same time. This regulation is essential for normal neuronal activity and, when affected, can lead to drastic pathological conditions. As an example, we illustrate how deregulation of miRNAs can affect neuronal plasticity leading to chronic pain. The origin of pain and its dual role as a key physiological function and a debilitating disease has been highly debated until now. The incidence of chronic pain is estimated to be 20-25% worldwide, thus making it a public health problem. Chronic pain can be considered as a form of maladaptive plasticity. Long-lasting modifications develop as a result of global changes in gene expression, and are thus likely to be controlled by miRNAs. Here, we review the literature on miRNAs and their targets responsible for maladaptive plasticity in chronic pain conditions. In addition, we conduct a retrospective analysis of miRNA expression data published for different pain models, taking into account recent progress in our understanding of the role of miRNAs in neuronal plasticity.
Collapse
Affiliation(s)
- Sara Elramah
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux Bordeaux, France ; Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique Bordeaux, France
| | - Marc Landry
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux Bordeaux, France ; Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique Bordeaux, France
| | - Alexandre Favereaux
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux Bordeaux, France ; Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique Bordeaux, France
| |
Collapse
|
11
|
Kim Y, Ha CM, Chang S. SNX26, a GTPase-activating protein for Cdc42, interacts with PSD-95 protein and is involved in activity-dependent dendritic spine formation in mature neurons. J Biol Chem 2013; 288:29453-66. [PMID: 24003235 DOI: 10.1074/jbc.m113.468801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SNX26, a brain-enriched RhoGAP, plays a key role in dendritic arborization during early neuronal development in the neocortex. In mature neurons, it is localized to dendritic spines, but little is known about its role in later stages of development. Our results show that SNX26 interacts with PSD-95 in dendritic spines of cultured hippocampal neurons, and as a GTPase-activating protein for Cdc42, it decreased the F-actin content in COS-7 cells and in dendritic spines of neurons. Overexpression of SNX26 resulted in a GTPase-activating protein activity-dependent decrease in total protrusions and spine density together with dramatic inhibition of filopodia-to-spine transformations. Such effects of SNX26 were largely rescued by a constitutively active mutant of Cdc42. Consistently, an shRNA-mediated knockdown of SNX26 significantly increased total protrusions and spine density, resulting in an increase in thin or stubby type spines at the expense of the mushroom spine type. Moreover, endogenous expression of SNX26 was shown to be bi-directionally modulated by neuronal activity. Therefore, we propose that in addition to its key role in neuronal development, SNX26 also has a role in the activity-dependent structural change of dendritic spines in mature neurons.
Collapse
Affiliation(s)
- Yoonju Kim
- From the Department of Physiology and Biomedical Sciences
| | | | | |
Collapse
|
12
|
D'Antonio M, Ciccarelli FD. Integrated analysis of recurrent properties of cancer genes to identify novel drivers. Genome Biol 2013; 14:R52. [PMID: 23718799 PMCID: PMC4054099 DOI: 10.1186/gb-2013-14-5-r52] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/29/2013] [Indexed: 11/10/2022] Open
Abstract
The heterogeneity of cancer genomes in terms of acquired mutations complicates the identification of genes whose modification may exert a driver role in tumorigenesis. In this study, we present a novel method that integrates expression profiles, mutation effects, and systemic properties of mutated genes to identify novel cancer drivers. We applied our method to ovarian cancer samples and were able to identify putative drivers in the majority of carcinomas without mutations in known cancer genes, thus suggesting that it can be used as a complementary approach to find rare driver mutations that cannot be detected using frequency-based approaches.
Collapse
|
13
|
Csépányi-Kömi R, Sáfár D, Grósz V, Tarján ZL, Ligeti E. In silico tissue-distribution of human Rho family GTPase activating proteins. Small GTPases 2013; 4:90-101. [PMID: 23518456 PMCID: PMC3747261 DOI: 10.4161/sgtp.23708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rho family small GTPases are involved in the spatio-temporal regulation of several physiological processes. They operate as molecular switches based on their GTP- or GDP-bound state. Their GTPase activator proteins (Rho/Rac GAPs) are able to increase the GTP hydrolysis of small GTPases, which turns them to an inactive state. This regulatory step is a key element of signal termination. According to the human genome project the potential number of Rho family GAPs is approximately 70. Despite their significant role in cellular signaling our knowledge on their expression pattern is quite incomplete. In this study we tried to reveal the tissue-distribution of Rho/Rac GAPs based on expressed sequence tag (EST) database from healthy and tumor tissues and microarray experiments. Our accumulated data sets can provide important starting information for future research. However, the nomenclature of Rho family GAPs is quite heterogeneous. Therefore we collected the available names, abbreviations and aliases of human Rho/Rac GAPs in a useful nomenclature table. A phylogenetic tree and domain structure of 65 human RhoGAPs are also presented.
Collapse
|
14
|
Regulation of adherens junction dynamics by phosphorylation switches. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:125295. [PMID: 22848810 PMCID: PMC3403498 DOI: 10.1155/2012/125295] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 12/15/2022]
Abstract
Adherens junctions connect the actin cytoskeleton of neighboring cells through transmembrane cadherin receptors and a network of adaptor proteins. The interactions between these adaptors and cadherin as well as the activity of actin regulators localized to adherens junctions are tightly controlled to facilitate cell junction assembly or disassembly in response to changes in external or internal forces and/or signaling. Phosphorylation of tyrosine, serine, or threonine residues acts as a switch on the majority of adherens junction proteins, turning "on" or "off" their interactions with other proteins and/or their enzymatic activity. Here, we provide an overview of the kinases and phosphatases regulating phosphorylation of adherens junction proteins and bring examples of phosphorylation events leading to the assembly or disassembly of adherens junctions, highlighting the important role of phosphorylation switches in regulating their dynamics.
Collapse
|
15
|
Wang PS, Wang J, Zheng Y, Pallen CJ. Loss of protein-tyrosine phosphatase α (PTPα) increases proliferation and delays maturation of oligodendrocyte progenitor cells. J Biol Chem 2012; 287:12529-40. [PMID: 22354965 DOI: 10.1074/jbc.m111.312769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tightly controlled termination of proliferation determines when oligodendrocyte progenitor cells (OPCs) can initiate differentiation and mature into myelin-forming cells. Protein-tyrosine phosphatase α (PTPα) promotes OPC differentiation, but its role in proliferation is unknown. Here we report that loss of PTPα enhanced in vitro proliferation and survival and decreased cell cycle exit and growth factor dependence of OPCs but not neural stem/progenitor cells. PTPα(-/-) mice have more oligodendrocyte lineage cells in embryonic forebrain and delayed OPC maturation. On the molecular level, PTPα-deficient mouse OPCs and rat CG4 cells have decreased Fyn and increased Ras, Cdc42, Rac1, and Rho activities, and reduced expression of the Cdk inhibitor p27Kip1. Moreover, Fyn was required to suppress Ras and Rho and for p27Kip1 accumulation, and Rho inhibition in PTPα-deficient cells restored expression of p27Kip1. We propose that PTPα-Fyn signaling negatively regulates OPC proliferation by down-regulating Ras and Rho, leading to p27Kip1 accumulation and cell cycle exit. Thus, PTPα acts in OPCs to limit self-renewal and facilitate differentiation.
Collapse
Affiliation(s)
- Pei-Shan Wang
- Department of Pathology, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | |
Collapse
|
16
|
Schouten M, Buijink MR, Lucassen PJ, Fitzsimons CP. New Neurons in Aging Brains: Molecular Control by Small Non-Coding RNAs. Front Neurosci 2012; 6:25. [PMID: 22363255 PMCID: PMC3281214 DOI: 10.3389/fnins.2012.00025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/30/2012] [Indexed: 12/12/2022] Open
Abstract
Adult neurogenesis generates functional neurons from neural stem cells present in specific brain regions. It is largely confined to two main regions: the subventricular zone of the lateral ventricle, and the subgranular zone of the dentate gyrus (DG), in the hippocampus. With age, the function of the hippocampus and particularly the DG is impaired. For instance, adult neurogenesis is decreased with aging, in both proliferating and differentiation of newborn cells, while in parallel an age-associated decline in cognitive performance is often seen. Surprisingly, the synaptogenic potential of adult-born neurons is only marginally influenced by aging. Therefore, although proliferation, differentiation, and synaptogenesis of adult-born new neurons in the DG are closely related to each other, they are differentially affected by aging. In this review we discuss the crucial roles of a novel class of recently discovered modulators of gene expression, the small non-coding RNAs, in the regulation of adult neurogenesis. Multiple small non-coding RNAs are differentially expressed in the hippocampus. In particular a subgroup of the small non-coding RNAs, the microRNAs, fine-tune the progression of adult neurogenesis. This makes small non-coding RNAs appealing candidates to orchestrate the functional alterations in adult neurogenesis and cognition associated with aging. Finally, we summarize observations that link changes in circulating levels of steroid hormones with alterations in adult neurogenesis, cognitive decline, and vulnerability to psychopathology in advanced age, and discuss a potential interplay between steroid hormone receptors and microRNAs in cognitive decline in aging individuals.
Collapse
Affiliation(s)
- Marijn Schouten
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | | | | | | |
Collapse
|
17
|
TC10β/CDC42 GTPase activating protein is required for the growth of cortical neuron dendrites. Neuroscience 2011; 199:589-97. [DOI: 10.1016/j.neuroscience.2011.08.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/01/2011] [Accepted: 08/23/2011] [Indexed: 01/10/2023]
|
18
|
Krämer-Albers EM, White R. From axon-glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase. Cell Mol Life Sci 2011; 68:2003-12. [PMID: 21207100 PMCID: PMC11114493 DOI: 10.1007/s00018-010-0616-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 01/06/2023]
Abstract
Central nervous system myelination requires recognition and signalling processes between neuronal axons and oligodendrocytes. Complex cellular rearrangements occur in myelination-competent oligodendrocytes requiring spatio-temporal control mechanisms. Although the molecular repertoire is becoming increasingly transparent, the signalling mechanisms governing myelination initiation are only poorly understood. The non-receptor tyrosine kinase Fyn has been implicated in axon-glial signal transduction and in several cellular processes required for oligodendrocyte maturation and myelination. Here, we review oligodendroglial Fyn signalling and discuss the role of Fyn in axon-glia interaction mediating myelination.
Collapse
Affiliation(s)
- Eva-Maria Krämer-Albers
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University of Mainz, Bentzelweg 3, 55128 Mainz, Germany
| | - Robin White
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
19
|
Godoy J, Nishimura M, Webster NJG. Gonadotropin-releasing hormone induces miR-132 and miR-212 to regulate cellular morphology and migration in immortalized LbetaT2 pituitary gonadotrope cells. Mol Endocrinol 2011; 25:810-20. [PMID: 21372146 DOI: 10.1210/me.2010-0352] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
GnRH is central to the regulation of reproductive function. It acts on pituitary gonadotropes to stimulate LH and FSH synthesis and secretion. We had previously presented evidence for translational control of LHβ synthesis; therefore we investigated whether micro-RNAs might play a role in GnRH regulation in LβT2 cells. We show here that GnRH strongly induces the AK006051 gene transcript that encodes two micro-RNAs, miR-132 and miR-212, within the first intron. We show furthermore that the AK006051 promoter region is highly GnRH responsive. We verify that the p250Rho GTPase activating protein (GAP) is a target of miR-132/212 and show that GnRH treatment leads to a decrease in mRNA and protein expression. This reduction is blocked by an anti-miR to miR-132/212 and mimicked by a pre-miR-132. GnRH inhibits p250RhoGAP expression through a miR-132/212 response element within the 3'-untranslated region. The loss of p250RhoGAP expression leads to activation of Rac and marked increases in both the number and length of neurite-like processes extending from the cell. Knockdown of p250RhoGAP by small interfering RNA induces the same morphological changes observed with GnRH treatment. In addition, loss of p250RhoGAP causes an increase in cellular motility. Our findings suggest a novel pathway regulating long-term changes in cellular motility and process formation via the GnRH induction of miR-132/212 with the subsequent down-regulation of p250RhoGAP.
Collapse
Affiliation(s)
- Joseph Godoy
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0673, USA
| | | | | |
Collapse
|
20
|
Chagnon MJ, Wu CL, Nakazawa T, Yamamoto T, Noda M, Blanchetot C, Tremblay ML. Receptor tyrosine phosphatase sigma (RPTPσ) regulates, p250GAP, a novel substrate that attenuates Rac signaling. Cell Signal 2010; 22:1626-33. [DOI: 10.1016/j.cellsig.2010.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 06/04/2010] [Accepted: 06/04/2010] [Indexed: 01/29/2023]
|
21
|
Impey S, Davare M, Lesiak A, Lasiek A, Fortin D, Ando H, Varlamova O, Obrietan K, Soderling TR, Goodman RH, Wayman GA. An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 2009; 43:146-56. [PMID: 19850129 DOI: 10.1016/j.mcn.2009.10.005] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/06/2009] [Accepted: 10/12/2009] [Indexed: 01/22/2023] Open
Abstract
Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synaptic plasticity remain largely uncharacterized. We show here that the CREB- and activity-regulated microRNA, miR132, is induced during periods of active synaptogenesis. Moreover, miR132 is necessary and sufficient for hippocampal spine formation. Expression of the miR132 target, p250GAP, is inversely correlated with miR132 levels and spinogenesis. Furthermore, knockdown of p250GAP increases spine formation while introduction of a p250GAP mutant unresponsive to miR132 attenuates this activity. Inhibition of miR132 decreases both mEPSC frequency and the number of GluR1-positive spines, while knockdown of p250GAP has the opposite effect. Additionally, we show that the miR132/p250GAP circuit regulates Rac1 activity and spine formation by modulating synapse-specific Kalirin7-Rac1 signaling. These data suggest that neuronal activity regulates spine formation, in part, by increasing miR132 transcription, which in turn activates a Rac1-Pak actin remodeling pathway.
Collapse
Affiliation(s)
- Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang PS, Wang J, Xiao ZC, Pallen CJ. Protein-tyrosine phosphatase alpha acts as an upstream regulator of Fyn signaling to promote oligodendrocyte differentiation and myelination. J Biol Chem 2009; 284:33692-702. [PMID: 19812040 DOI: 10.1074/jbc.m109.061770] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tyrosine kinase Fyn plays a key role in oligodendrocyte differentiation and myelination in the central nervous system, but the molecules responsible for regulating Fyn activation in these processes remain poorly defined. Here we show that receptor-like protein-tyrosine phosphatase alpha (PTPalpha) is an important positive regulator of Fyn activation and signaling that is required for the differentiation of oligodendrocyte progenitor cells (OPCs). PTPalpha is expressed in OPCs and is up-regulated during differentiation. We used two model systems to investigate the role of PTPalpha in OPC differentiation: the rat CG4 cell line where PTPalpha expression was silenced by small interfering RNA, and oligosphere-derived primary OPCs isolated from wild-type and PTPalpha-null mouse embryos. In both cell systems, the ablation of PTPalpha inhibited differentiation and morphological changes that accompany this process. Although Fyn was activated upon induction of differentiation, the level of activation was severely reduced in cells lacking PTPalpha, as was the activation of Fyn effector molecules focal adhesion kinase, Rac1, and Cdc42, and inactivation of Rho. Interestingly, another downstream effector of Fyn, p190RhoGAP, which is responsible for Rho inactivation during differentiation, was not affected by PTPalpha ablation. In vivo studies revealed defective myelination in the PTPalpha(-/-) mouse brain. Together, our findings demonstrate that PTPalpha is a critical regulator of Fyn activation and of specific Fyn signaling events during differentiation, and is essential for promoting OPC differentiation and central nervous system myelination.
Collapse
Affiliation(s)
- Pei-Shan Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | |
Collapse
|
23
|
Huveneers S, Danen EHJ. Adhesion signaling - crosstalk between integrins, Src and Rho. J Cell Sci 2009; 122:1059-69. [PMID: 19339545 DOI: 10.1242/jcs.039446] [Citation(s) in RCA: 660] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Interactions between cells and the extracellular matrix coordinate signaling pathways that control various aspects of cellular behavior. Integrins sense the physical properties of the extracellular matrix and organize the cytoskeleton accordingly. In turn, this modulates signaling pathways that are triggered by various other transmembrane receptors and augments the cellular response to growth factors. Over the past years, it has become clear that there is extensive crosstalk between integrins, Src-family kinases and Rho-family GTPases at the heart of such adhesion signaling. In this Commentary, we discuss recent advances in our understanding of the dynamic regulation of the molecular connections between these three protein families. We also discuss how this signaling network can regulate a range of cellular processes that are important for normal tissue function and disease, including cell adhesion, spreading, migration and mechanotransduction.
Collapse
Affiliation(s)
- Stephan Huveneers
- Division of Toxicology, Leiden Amsterdam Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands.
| | | |
Collapse
|
24
|
Feltri ML, Suter U, Relvas JB. The function of RhoGTPases in axon ensheathment and myelination. Glia 2009; 56:1508-1517. [PMID: 18803320 DOI: 10.1002/glia.20752] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RhoGTPases are molecular switches that integrate extracellular signals to perform diverse cellular responses. This ability relies on the network of proteins regulating RhoGTPases activity and localization, and on the interaction of RhoGTPases with many different cellular effectors. Myelination is an ideal place for RhoGTPases regulation, as it is the result of fine orchestration of many stimuli from at least two cell types. Recent work has revealed that RhoGTPases are required for Schwann cells to sort, ensheath, and myelinate axons. Here, we will review these recent advances showing the critical roles for RhoGTPases in various aspects of Schwann development and myelination, including the recent discovery of their involvement in Charcot-Marie-Tooth disease. Comparison with potential roles of RhoGTPases in central nervous system myelination will be drawn.
Collapse
Affiliation(s)
- M Laura Feltri
- DIBIT, San Raffaele Scientific Institute, Milano, Italy.
| | | | | |
Collapse
|
25
|
Cdk5 phosphorylation of WAVE2 regulates oligodendrocyte precursor cell migration through nonreceptor tyrosine kinase Fyn. J Neurosci 2008; 28:8326-37. [PMID: 18701695 DOI: 10.1523/jneurosci.1482-08.2008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Myelin formation of the CNS is a complex and dynamic process. Before the onset of myelination, oligodendrocytes (OLs), the myelin-forming glia of the CNS, proliferate and migrate along axons. Little is known about the molecular mechanisms underlying the early myelination processes. Here, we show that platelet-derived growth factor (PDGF), the crucial physiological ligand in early OL development, controls the migration of oligodendrocyte precursor cells (OPCs) through cyclin-dependent kinase 5 (Cdk5). PDGF stimulates Cdk5 activity in a time-dependent manner, whereas suppression of Cdk5 by the specific inhibitor roscovitine or by the retrovirus encoding short-hairpin RNA for Cdk5 impairs PDGF-dependent OPC migration. The activation of Cdk5 by PDGF is mediated by the phosphorylation of the nonreceptor tyrosine kinase, Fyn, whose inhibition reduces PDGF-dependent OPC migration. Furthermore, Cdk5 regulates PDGF-dependent OPC migration through the direct phosphorylation of WASP (Wiskott-Aldrich syndrome protein)-family verprolin-homologous protein 2 (WAVE2). Cdk5 phosphorylates WAVE2 at Ser-137 in vitro. Infection of the WAVE2 construct harboring the Ser-137-to-Ala reduces PDGF-dependent migration. Together, PDGF regulates OPC migration through an as-yet-unidentified signaling cascade coupling Fyn kinase to Cdk5 phosphorylation of WAVE2. These results provide new insights into both the role of Cdk5 in glial cells and the molecular mechanisms controlling the early developmental stage of OLs.
Collapse
|
26
|
An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A 2008; 105:9093-8. [PMID: 18577589 DOI: 10.1073/pnas.0803072105] [Citation(s) in RCA: 453] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synapse growth and plasticity remain largely uncharacterized. Here, we show that microRNA 132 (miR132) is an activity-dependent rapid response gene regulated by the cAMP response element-binding (CREB) protein pathway. Introduction of miR132 into hippocampal neurons enhanced dendrite morphogenesis whereas inhibition of miR132 by 2'O-methyl RNA antagonists blocked these effects. Furthermore, neuronal activity inhibited translation of p250GAP, a miR132 target, and siRNA-mediated knockdown of p250GAP mimicked miR132-induced dendrite growth. Experiments using dominant-interfering mutants suggested that Rac signaling is downstream of miR132 and p250GAP. We propose that the miR132-p250GAP pathway plays a key role in activity-dependent structural and functional plasticity.
Collapse
|
27
|
Nakazawa T, Kuriu T, Tezuka T, Umemori H, Okabe S, Yamamoto T. Regulation of dendritic spine morphology by an NMDA receptor-associated Rho GTPase-activating protein, p250GAP. J Neurochem 2008; 105:1384-93. [PMID: 18331582 DOI: 10.1111/j.1471-4159.2008.05335.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The NMDA receptor regulates spine morphological plasticity by modulating Rho GTPases. However, the molecular mechanisms for NMDA receptor-mediated regulation of Rho GTPases remain elusive. In this study, we show that p250GAP, an NMDA receptor-associated RhoGAP, regulates spine morphogenesis by modulating RhoA activity. Knock-down of p250GAP increased spine width and elevated the endogenous RhoA activity in primary hippocampal neurons. The increased spine width by p250GAP knock-down was suppressed by the expression of a dominant-negative form of RhoA. Furthermore, p250GAP is involved in NMDA receptor-mediated RhoA activation. In response to NMDA receptor activation, exogenously expressed green fluorescent protein (GFP)-tagged p250GAP was redistributed. Thus, these data suggest that p250GAP plays an important role in NMDA receptor-mediated regulation of RhoA activity leading to spine morphological plasticity.
Collapse
Affiliation(s)
- Takanobu Nakazawa
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Hoshina N, Tezuka T, Yokoyama K, Kozuka-Hata H, Oyama M, Yamamoto T. Focal adhesion kinase regulates laminin-induced oligodendroglial process outgrowth. Genes Cells 2008; 12:1245-54. [PMID: 17986008 DOI: 10.1111/j.1365-2443.2007.01130.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the central nervous system (CNS), myelination of axons occurs when oligodendrocyte progenitor cells undergo terminal differentiation, and initiate process formation and axonal ensheathment. Although Fyn, a member of the Src-family kinases (SFKs), plays an important role in this differentiation process, the substrates of Fyn in oligodendrocytes are largely unknown. Using mass spectrometric analysis, we identified focal adhesion kinase (FAK) as a tyrosine-phosphorylated protein in the rat-derived CG4 oligodendrocyte cell line. Tyrosine phosphorylation of FAK was enhanced during differentiation of CG4 cells in a Fyn-dependent manner. In addition, phosphorylation of FAK was stimulated by laminin, one of the ligands for integrin. Knockdown of FAK expression in CG4 cells suppressed process outgrowth on laminin. Rac1 and Cdc42 activities, which are required for oligodendrocyte process formation, were down-regulated in FAK-knockdown cells. Expression of wild-type (WT) FAK in FAK-knockdown CG4 cells restored outgrowth of processes, but the Y397F mutant lacking the autophosphorylation site did not. These results suggest that FAK/Fyn-mediated activation of Rac1 and Cdc42 is critical for laminin-induced outgrowth of oligodendrocyte processes.
Collapse
Affiliation(s)
- Naosuke Hoshina
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The Rho GTPases are implicated in almost every fundamental cellular process. They act as molecular switches that cycle between an active GTP-bound and an inactive GDP-bound state. Their slow intrinsic GTPase activity is greatly enhanced by RhoGAPs (Rho GTPase-activating proteins), thus causing their inactivation. To date, more than 70 RhoGAPs have been identified in eukaryotes, ranging from yeast to human, and based on sequence homology of their RhoGAP domain, we have grouped them into subfamilies. In the present Review, we discuss their regulation, biological functions and implication in human diseases.
Collapse
Affiliation(s)
- Joseph Tcherkezian
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | |
Collapse
|
30
|
Tcherkezian J, Triki I, Stenne R, Danek EI, Lamarche-Vane N. The human orthologue of CdGAP is a phosphoprotein and a GTPase-activating protein for Cdc42 and Rac1 but not RhoA. Biol Cell 2006; 98:445-56. [PMID: 16519628 DOI: 10.1042/bc20050101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Rho GTPases regulate a wide range of cellular functions affecting both cell proliferation and cytoskeletal dynamics. They cycle between inactive GDP- and active GTP-bound states. This cycle is tightly regulated by GEFs (guanine nucleotide-exchange factors) and GAPs (GTPase-activating proteins). Mouse CdGAP (mCdc42 GTPase-activating protein) has been previously identified and characterized as a specific GAP for Rac1 and Cdc42, but not for RhoA. It consists of an N-terminal RhoGAP domain and a C-terminal proline-rich region. In addition, CdGAP-related genes are present in both vertebrates and invertebrates. We have recently reported that two predominant isoforms of CdGAP (250 and 90 kDa) exist in specific mouse tissues. RESULTS In the present study, we have identified and characterized human CdGAP (KIAA1204) which shares 76% sequence identity to the long isoform of mCdGAP (mCdGAP-l). Similar to mCdGAP, it is active in vitro and in vivo on both Cdc42 and Rac1, but not RhoA, and is phosphorylated in vivo on serine and threonine residues. In contrast with mCdGAP-l, human CdGAP interacts with ERK1/2 (extracellular-signal-regulated kinase 1/2) through a region that does not involve a DEF (docking site for ERK Phe-Xaa-Phe-Pro) domain. Also, the tissue distribution of CdGAP proteins appears to be different between human and mouse species. Interestingly, we found that CdGAP proteins cause membrane blebbing in COS-7 cells. CONCLUSIONS Our results suggest that CdGAP properties are well conserved between human and mouse species, and that CdGAP may play an unexpected role in apoptosis.
Collapse
Affiliation(s)
- Joseph Tcherkezian
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | | | | | | | |
Collapse
|
31
|
Yokoyama K, Tezuka T, Hoshina N, Nakazawa T, Yamamoto T. Phosphorylation at Tyr-694 of Nogo-A by Src-family kinases. Biochem Biophys Res Commun 2006; 349:1401-5. [PMID: 16979591 DOI: 10.1016/j.bbrc.2006.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 09/04/2006] [Indexed: 01/06/2023]
Abstract
Nogo-A is a neurite outgrowth inhibitor protein associated with myelin in the central nervous system. Unexpectedly, targeted disruption of Nogo-A in mice results in little or no improvement of axonal regeneration, suggesting that Nogo-A has other functions and/or receives complex regulations to exert its inhibitory functions. Here, we have found that Nogo-A becomes phosphorylated at Tyr-694 in the N-terminal region. The phosphorylation is mediated co-operatively by Src-family tyrosine kinases, which play many important roles in the nervous system. Levels of tyrosine phosphorylation of Nogo-A seem to be irrelevant to developmental stages of oligodendrocytes, and might be regulated by specific extracellular stimuli. Identification of tyrosine phosphorylation of Nogo-A will introduce an additional level of complexity into Nogo-A functions.
Collapse
Affiliation(s)
- Kazumasa Yokoyama
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
32
|
Liu H, Nakazawa T, Tezuka T, Yamamoto T. Physical and functional interaction of Fyn tyrosine kinase with a brain-enriched Rho GTPase-activating protein TCGAP. J Biol Chem 2006; 281:23611-9. [PMID: 16777849 DOI: 10.1074/jbc.m511205200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fyn, a member of the Src family of tyrosine kinases, is implicated in both brain development and adult brain function. In the present study, we identified a Rho GTPase-activating protein (GAP), TCGAP (Tc10/Cdc42 GTPase-activating protein), as a novel Fyn substrate. TCGAP interacted with Fyn and was phosphorylated by Fyn, with Tyr-406 in the GAP domain as a major Fyn-mediated phosphorylation site. Fyn suppressed the GAP activity of wild-type TCGAP but not the Y406F mutant of TCGAP in a phosphorylation-dependent manner, suggesting that Fyn-mediated Tyr-406 phosphorylation negatively regulated the TCGAP activity. In situ hybridization analyses showed that TCGAP mRNA was expressed prominently in both immature and adult mouse brain, with high levels in cortex, corpus striatum, hippocampus, and olfactory bulb. Overexpression of wild-type TCGAP in PC12 cells suppressed nerve growth factor-induced neurite outgrowth, whereas a GAP-defective mutant of TCGAP enhanced the neurite outgrowth. Nerve growth factor enhanced tyrosine phosphorylation of TCGAP through activation of Src family kinases. These results suggest that TCGAP is involved in Fyn-mediated regulation of axon and dendrite outgrowth.
Collapse
Affiliation(s)
- Hui Liu
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
33
|
Tcherkezian J, Danek EI, Jenna S, Triki I, Lamarche-Vane N. Extracellular signal-regulated kinase 1 interacts with and phosphorylates CdGAP at an important regulatory site. Mol Cell Biol 2005; 25:6314-29. [PMID: 16024771 PMCID: PMC1190322 DOI: 10.1128/mcb.25.15.6314-6329.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rho GTPases regulate multiple cellular processes affecting both cell proliferation and cytoskeletal dynamics. Their cycling between inactive GDP- and active GTP-bound states is tightly regulated by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We have previously identified CdGAP (for Cdc42 GTPase-activating protein) as a specific GAP for Rac1 and Cdc42. CdGAP consists of an N-terminal RhoGAP domain and a C-terminal proline-rich region. In addition, CdGAP is a member of the impressively large number of mammalian RhoGAP proteins that is well conserved among both vertebrates and invertebrates. In mice, we find two predominant isoforms of CdGAP differentially expressed in specific tissues. We report here that CdGAP is highly phosphorylated in vivo on serine and threonine residues. We find that CdGAP is phosphorylated downstream of the MEK-extracellular signal-regulated kinase (ERK) pathway in response to serum or platelet-derived growth factor stimulation. Furthermore, CdGAP interacts with and is phosphorylated by ERK-1 and RSK-1 in vitro. A putative DEF (docking for ERK FXFP) domain located in the proline-rich region of CdGAP is required for efficient binding and phosphorylation by ERK1/2. We identify Thr776 as an in vivo target site of ERK1/2 and as an important regulatory site of CdGAP activity. Together, these data suggest that CdGAP is a novel substrate of ERK1/2 and mediates cross talk between the Ras/mitogen-activated protein kinase pathway and regulation of Rac1 activity.
Collapse
Affiliation(s)
- Joseph Tcherkezian
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
34
|
Labrosse C, Stasiak K, Lesobre J, Grangeia A, Huguet E, Drezen JM, Poirie M. A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae)-Drosophila melanogaster interaction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:93-103. [PMID: 15681220 DOI: 10.1016/j.ibmb.2004.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 10/18/2004] [Indexed: 05/24/2023]
Abstract
To protect its eggs, the endoparasitoid wasp Leptopilina boulardi injects immune suppressive factors into Drosophila melanogaster host larvae. These factors are localized in the female long gland and reservoir. We analyzed the protein content of these tissues and found that it strongly differed between virulent and avirulent parasitoid strains. Four protein bands present in virulent long glands were eluted and their immune suppressive effect was assessed in vivo, allowing demonstrating a major effect of one of these proteins. The corresponding cDNA encodes a predicted 30 kDa subunit containing a Ras homologous GTPase Activating Protein (RhoGAP) domain, suggesting a possible involvement in the regulation of actin cytoskeleton changes. Using Western-blot experiments, we showed that this protein is abundant in virulent female long glands but is undetectable in virulent females deprived of long glands or in long glands from avirulent wasps. Its potential role in modifying the morphology and the adhesive properties of the host lamellocytes, involved in Drosophila cellular immune responses, is discussed.
Collapse
Affiliation(s)
- C Labrosse
- Institut de Recherche sur la Biologie de l'Insecte UPRESA CNRS 6035, IFR Agents transmissibles et Infectiologie, Université F. Rabelais, Parc Grandmont, 37200 Tours France
| | | | | | | | | | | | | |
Collapse
|
35
|
Liang X, Draghi NA, Resh MD. Signaling from integrins to Fyn to Rho family GTPases regulates morphologic differentiation of oligodendrocytes. J Neurosci 2005; 24:7140-9. [PMID: 15306647 PMCID: PMC6729178 DOI: 10.1523/jneurosci.5319-03.2004] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Differentiation of oligodendrocyte progenitor cells requires activation of the Src family kinase Fyn. The signals that are upstream and downstream of Fyn in oligodendrocytes remain essentially unknown. Here we show that extracellular matrix engagement regulates the morphology of oligodendrocytes and activates Fyn. Infection of primary oligodendrocyte cultures with recombinant adenovirus revealed that expression of Fyn or its downstream target p190RhoGAP induced process extension. This phenotypic change was not observed when kinase-inactive Fyn or GAP-defective p190 mutants were expressed. Because Rho family proteins are regulated by p190, we monitored the effects of introducing dominant-negative (DN) or constitutively activated (CA) versions of Rho, Rac1, or Cdc42 into primary oligodendrocyte cultures. Expression of DN Rho, CA Rac1, or CA Cdc42 induced outgrowth of oligodendrocyte processes, whereas introduction of CA Rho, DN Rac1, or DN cdc42 inhibited oligodendrocyte differentiation, indicating that Rho and Cdc42-Rac1 exert opposing effects on oligodendrocyte differentiation. Direct measurement of Rho family activity revealed that RhoA was downregulated, and Cdc42 and Rac1 were upregulated during differentiation of primary oligodendrocytes. Moreover, inhibition of integrin engagement or of Fyn activation blocked activation of Rac1 and cdc42 as well as myelin basic protein expression. Taken together, these results suggest a linear signal transduction pathway of integrin-Fyn-Rho family GTPases that controls morphologic differentiation of oligodendrocytes.
Collapse
Affiliation(s)
- Xiquan Liang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|