1
|
Kudo TA, Tominami K, Izumi S, Hayashi Y, Noguchi T, Matsuzawa A, Hong G, Nakai J. Characterization of PC12 Cell Subclones with Different Sensitivities to Programmed Thermal Stimulation. Int J Mol Sci 2020; 21:ijms21218356. [PMID: 33171774 PMCID: PMC7664380 DOI: 10.3390/ijms21218356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Neuritogenesis is the process underling nervous system regeneration; however, optimal extracellular signals that can promote neuronal regenerative activities require further investigation. Previously, we developed a novel method for inducing neuronal differentiation in rat PC12 cells using temperature-controlled repeated thermal stimulation (TRTS) with a heating plate. Based on neurogenic sensitivity to TRTS, PC12 cells were classified as either hyper- or hyposensitive. In this study, we aimed to investigate the mechanism of hyposensitivity by establishing two PC12-derived subclones according to TRTS sensitivity during differentiation: PC12-P1F1, a hypersensitive subclone, and PC12-P1D10, a hyposensitive subclone. To characterize these subclones, cell size and neuritogenesis were evaluated in subclones treated with nerve growth factor (NGF), bone morphogenetic protein (BMP), or various TRTS. No significant differences in cell size were observed among the parental cells and subclones. BMP4- or TRTS-induced neuritogenesis was increased in PC12-P1F1 cells compared to that in the parental cells, while no neuritogenesis was observed in PC12-P1D10 cells. In contrast, NGF-induced neuritogenesis was observed in all three cell lines. Furthermore, a BMP inhibitor, LDN-193189, considerably inhibited TRTS-induced neuritogenesis. These results suggest that the BMP pathway might be required for TRTS-induced neuritogenesis, demonstrating the useful aspects of these novel subclones for TRTS research.
Collapse
Affiliation(s)
- Tada-aki Kudo
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.T.); (S.I.); (J.N.)
- Correspondence: ; Tel./Fax: +81-22-717-8293
| | - Kanako Tominami
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.T.); (S.I.); (J.N.)
| | - Satoshi Izumi
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.T.); (S.I.); (J.N.)
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan;
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (T.N.); (A.M.)
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (T.N.); (A.M.)
| | - Guang Hong
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan;
| | - Junichi Nakai
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.T.); (S.I.); (J.N.)
| |
Collapse
|
2
|
Teuber J, Mueller B, Fukabori R, Lang D, Albrecht A, Stork O. The ubiquitin ligase Praja1 reduces NRAGE expression and inhibits neuronal differentiation of PC12 cells. PLoS One 2013; 8:e63067. [PMID: 23717400 PMCID: PMC3661586 DOI: 10.1371/journal.pone.0063067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/27/2013] [Indexed: 02/05/2023] Open
Abstract
Evidence suggests that regulated ubiquitination of proteins plays a critical role in the development and plasticity of the central nervous system. We have previously identified the ubiquitin ligase Praja1 as a gene product induced during fear memory consolidation. However, the neuronal function of this enzyme still needs to be clarified. Here, we investigate its involvement in the nerve growth factor (NGF)-induced differentiation of rat pheochromocytoma (PC12) cells. Praja1 co-localizes with cytoskeleton components and the neurotrophin receptor interacting MAGE homologue (NRAGE). We observed an enhanced expression of Praja1 after 3 days of NGF treatment and a suppression of neurite formation upon Praja1 overexpression in stably transfected PC12 cell lines, which was associated with a proteasome-dependent reduction of NRAGE levels. Our data suggest that Praja1, through ubiquitination and degradation of NRAGE, inhibits neuronal differentiation. The two murine isoforms, Praja1.1 and Praja1.2, appear to be functionally homologous in this respect.
Collapse
Affiliation(s)
- Jan Teuber
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Bettina Mueller
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ryoji Fukabori
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Daniel Lang
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anne Albrecht
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioural Brain Sciences, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
3
|
Tsujii M, Akeda K, Iino T, Uchida A. Are BMPs involved in normal nerve and following transection?: a pilot study. Clin Orthop Relat Res 2009; 467:3183-9. [PMID: 19669850 PMCID: PMC2772907 DOI: 10.1007/s11999-009-1009-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 07/21/2009] [Indexed: 01/31/2023]
Abstract
Bone morphogenic proteins (BMPs) may have neurotrophic functions but there is limited evidence of these functions in the peripheral nervous system. We therefore investigated the expression of BMPs and BMP receptors (BMPRs) in normal and injured peripheral nerves. In 10 of 15 Sprague-Dawley rats, a 3-mm segment of sciatic nerve was resected at the trifurcation in the thigh. One day (n = 5) and 7 days (n = 5) after transection, proximal and distal stumps were removed and immunohistochemically analyzed for BMP-2, -7, BMPR-1A, -1B, and -2. The other five animals served as normal controls. In normal nerves, BMP-2 expression was localized at Ranvier's node, and BMP-7 and BMPR-1B were expressed in several axon-Schwann cell units, whereas other receptors were not expressed. After nerve transection, BMP-7 expression was upregulated at both proximal and distal stumps along with Schwann cell columns during Wallerian degeneration. BMPRs were also upregulated compared with the normal nerve. The upregulation in BMP expression after nerve transection suggests that BMPs may play a role in the healing response of the peripheral nerve.
Collapse
Affiliation(s)
- Masaya Tsujii
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Koji Akeda
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Atsumasa Uchida
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| |
Collapse
|
4
|
Fiori JL, Billings PC, de la Peña LS, Kaplan FS, Shore EM. Dysregulation of the BMP-p38 MAPK signaling pathway in cells from patients with fibrodysplasia ossificans progressiva (FOP). J Bone Miner Res 2006; 21:902-9. [PMID: 16753021 DOI: 10.1359/jbmr.060215] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED FOP is a disabling disorder in which skeletal muscle is progressively replaced with bone. Lymphocytes, our model system for examining BMP signaling, cannot signal through the canonical Smad pathway unless exogenous Smad1 is supplied, providing a unique cell type in which the BMP-p38 MAPK pathway can be examined. FOP lymphocytes exhibit defects in the BMP-p38 MAPK pathway, suggesting that altered BMP signaling underlies ectopic bone formation in this disease. INTRODUCTION Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder characterized by progressive heterotopic ossification of connective tissues. Whereas the primary genetic defect in this condition is unknown, BMP4 mRNA and protein and BMP receptor type IA (BMPRIA) protein are overexpressed in cultured lymphocytes from FOP patients, supporting that altered BMP signaling is involved in this disease. In this study, we examined downstream signaling targets to study the BMP-Smad and BMP-p38 mitogen-activated protein kinase (MAPK) pathways in FOP. MATERIALS AND METHODS Protein phosphorylation was assayed by immunoblots, and p38 MAPK activity was measured by kinase assays. To examine BMP target genes, the mRNA expression of ID1, ID3, and MSX2 was determined by quantitative real-time PCR. Statistical analysis was performed using Student's t-test or ANOVA. RESULTS FOP lymphocytes exhibited increased levels of p38 phosphorylation and p38 MAPK activity in response to BMP4 stimulation. Furthermore, in response to BMP4, FOP cells overexpressed the downstream signaling targets ID1 by 5-fold and ID3 by 3-fold compared with controls. ID1 and ID3 mRNA induction was specifically blocked with a p38 MAPK inhibitor, but not extracellular signal-related kinase (ERK) or c-Jun N-terminal kinase (JNK) inhibitors. MSX2, a known Smad pathway target gene, is not upregulated in control or FOP cells in response to BMP, suggesting that lymphocytes do not use this limb of the BMP pathway. However, introduction of Smad1 into lymphocytes made the cells competent to regulate MSX2 mRNA after BMP4 treatment. CONCLUSIONS Lymphocytes are a cell system that signals primarily through the BMP-p38 MAPK pathway rather than the BMP-Smad pathway in response to BMP4. The p38 MAPK pathway is dysregulated in FOP lymphocytes, which may play a role in the pathogenesis of FOP.
Collapse
Affiliation(s)
- Jennifer L Fiori
- Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6081, USA
| | | | | | | | | |
Collapse
|
5
|
Lönn P, Zaia K, Israelsson C, Althini S, Usoskin D, Kylberg A, Ebendal T. BMP enhances transcriptional responses to NGF during PC12 cell differentiation. Neurochem Res 2006; 30:753-65. [PMID: 16187211 DOI: 10.1007/s11064-005-6868-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2005] [Indexed: 12/13/2022]
Abstract
Bone morphogenetic proteins (BMPs) enhance neurite outgrowth in nerve growth factor (NGF)-stimulated PC12 cells. To investigate the mechanism of this potentiating effect, real-time PCR was used to analyze the expression of 45 selected genes. A robust increase in expression of 10 immediate early genes including Egr1-4, Hes1, Junb, Jun and Fos was observed already after 1 h treatment with NGF alone. NGF plus BMP4 further increased these transcripts at 1 h and activated 18 additional genes. BMP4 alone induced Smad6, Mtap1b and Hes1. Egr3 was the gene most strongly upregulated by NGF and BMP4. However, luciferase assays showed that the cloned Egr3 proximal promoter was not involved in the BMP4 potentiation. Blocking Egr3 and Junb function by dominant-negative constructs reduced neurite outgrowth under stimulating conditions, proving that activation of members of both the Egr and Jun families is necessary for maximal PC12 cell response to NGF and BMP4.
Collapse
Affiliation(s)
- P Lönn
- Department of Neuroscience, Uppsala University, Biomedical Center, Box 587, SE 751 23, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
6
|
Del Signore A, De Sanctis V, Di Mauro E, Negri R, Perrone-Capano C, Paggi P. Gene expression pathways induced by axotomy and decentralization of rat superior cervical ganglion neurons. Eur J Neurosci 2006; 23:65-74. [PMID: 16420416 DOI: 10.1111/j.1460-9568.2005.04520.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To identify genes potentially involved in remodelling synaptic connections, we induced the temporary detachment of pre- and post-synaptic elements by axotomy or denervation of rat superior cervical ganglion neurons. cDNA microarray analysis followed by stringent selection criteria allowed the identification of a panel of genes whose expression was modulated by axotomy at various time points after injury. Among these genes, 11 were validated by real-time reverse transcriptase-polymerase chain reaction on independently prepared samples after superior cervical ganglion neuron axotomy (1, 3 and 6 days) and compared with the effect of decentralization (8 h, 1 and 3 days). These genes code for extracellular matrix/space [apolipoprotein D (apoD), decorin, collagen alpha1 type I, collagen alpha1 type III] and intermediate filament (vimentin) proteins, for modulators of neurite outgrowth (thrombin receptor, plasminogen activator inhibitor-1, bone morphogenetic protein 4, annexin II and S-100-related protein, clone 42C) and for a nerve cell transcription factor (brain finger protein). Eight of these 11 genes showed significant and persistent modulations after both types of injury. Finally, protein levels of apoD were shown to increase in superior cervical ganglion after axotomy. Our results identify hitherto unrecorded genes responsive to axotomy and decentralization of superior cervical ganglion neurons, and probably involved in synapse formation, remodelling and elimination.
Collapse
Affiliation(s)
- Arianna Del Signore
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Piazzale A. Moro, 5, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Kano Y, Otsuka F, Takeda M, Suzuki J, Inagaki K, Miyoshi T, Miyamoto M, Otani H, Ogura T, Makino H. Regulatory roles of bone morphogenetic proteins and glucocorticoids in catecholamine production by rat pheochromocytoma cells. Endocrinology 2005; 146:5332-40. [PMID: 16150914 DOI: 10.1210/en.2005-0474] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We here report a new physiological system that governs catecholamine synthesis involving bone morphogenetic proteins (BMPs) and activin in the rat pheochromocytoma cell line, PC12. BMP type I receptors, including activin receptor-like kinase-2 (ALK-2) (also referred to as ActRIA) and ALK-3 (BMPRIA), both type II receptors, ActRII and BMPRII, as well as the ligands BMP-2, -4, and -7 and inhibin/activin subunits were expressed in PC12 cells. PC12 cells predominantly secrete dopamine, whereas noradrenaline and adrenaline production is negligible. BMP-2, -4, -6, and -7 and activin A each suppressed dopamine and cAMP synthesis in a dose-dependent fashion. The BMP ligands also decreased 3,4-dihydroxyphenylalanine decarboxylase mRNA expression, whereas activin suppressed tyrosine hydroxylase expression. BMPs induced both Smad1/5/8 phosphorylation and Tlx2-Luc activation, whereas activin stimulated 3TP-Luc activity and p38 MAPK phosphorylation. ERK signaling was not affected by BMPs or activin. Dexamethasone enhanced catecholamine synthesis, accompanying increases in tyrosine hydroxylase and 3,4-dihydroxyphenylalanine decarboxylase transcription without cAMP accumulation. In the presence of dexamethasone, BMPs and activin failed to reduce dopamine as well as cAMP production. In addition, dexamethasone modulated mitotic suppression of PC12 induced by BMPs in a ligand-dependent manner. Furthermore, intracellular BMP signaling was markedly suppressed by dexamethasone treatment and the expression of ALK-2, ALK-3, and BMPRII was significantly inhibited by dexamethasone. Collectively, the endogenous BMP/activin system plays a key role in the regulation of catecholamine production. Controlling activity of the BMP system may be critical for glucocorticoid-induced catecholamine synthesis by adrenomedullar cells.
Collapse
Affiliation(s)
- Yoshihiro Kano
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Peterson RS, Andhare RA, Rousche KT, Knudson W, Wang W, Grossfield JB, Thomas RO, Hollingsworth RE, Knudson CB. CD44 modulates Smad1 activation in the BMP-7 signaling pathway. ACTA ACUST UNITED AC 2004; 166:1081-91. [PMID: 15452148 PMCID: PMC2172010 DOI: 10.1083/jcb.200402138] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bone morphogenetic protein 7 (BMP-7) regulates cellular metabolism in embryonic and adult tissues. Signal transduction occurs through the activation of intracellular Smad proteins. In this paper, using a yeast two-hybrid screen, Smad1 was found to interact with the cytoplasmic domain of CD44, a receptor for the extracellular matrix macromolecule hyaluronan. Coimmunoprecipitation experiments confirmed the interaction of Smad1 with full-length CD44—interactions that did not occur when CD44 receptors truncated within the cytoplasmic domain were tested. Chondrocytes overexpressing a truncated CD44 on a background of endogenous full-length CD44 no longer exhibited Smad1 nuclear translocation upon BMP-7 stimulation. Further, pretreatment of chondrocytes with Streptomyces hyaluronidase to disrupt extracellular hyaluronan–cell interactions inhibited BMP-7–mediated Smad1 phosphorylation, nuclear translocation of Smad1 or Smad4, and SBE4–luciferase reporter activation. These results support a functional link between the BMP signaling cascade and CD44. Thus, changes in hyaluronan–cell interactions may serve as a means to modulate cellular responsiveness to BMP.
Collapse
Affiliation(s)
- Richard S Peterson
- Dept. of Biochemistry, Rush Medical College, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Althini S, Usoskin D, Kylberg A, Kaplan PL, Ebendal T. Blocked MAP kinase activity selectively enhances neurotrophic growth responses. Mol Cell Neurosci 2004; 25:345-54. [PMID: 15019950 DOI: 10.1016/j.mcn.2003.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 10/03/2003] [Accepted: 10/21/2003] [Indexed: 01/19/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) 4 and 6 as well as MEK inhibitors PD98059 and U0126 potentiate neurotrophin 3 (NT3)- and neurturin (NTN)-induced neurite outgrowth and survival of peripheral neurons from the E9 chicken embryo. Preexposure to BMP4 or PD98059 was sufficient to prime the potentiation of subsequently added NT3. Phosphorylation of Erk2, induced by NT3, was reduced by MEK inhibition but unaffected by BMP signaling. Real-time PCR showed that neither BMP stimulation nor MEK inhibition increased Trk receptor expression and that the BMP-induced genes Smad6 and Id1 were not upregulated by PD98059. In contrast, both MEK inhibition and BMP signaling suppressed transcription of the serum-response element (SRE)-driven Egr1 gene. A reporter assay using NGF-stimulated PC12 cells demonstrated that MEK/Erk/Elk-driven transcriptional activity was inhibited by Smad1/5 and by PD98059. Thus, suppression of SRE-controlled transcription represents a likely convergence point for pathways regulating neurotrophic responses.
Collapse
Affiliation(s)
- Susanna Althini
- Department of Neuroscience, Unit for Developmental Neuroscience, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|