1
|
Rharass T, Lemcke H, Lantow M, Kuznetsov SA, Weiss DG, Panáková D. Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/β-catenin pathway activation to facilitate cell differentiation. J Biol Chem 2014; 289:27937-51. [PMID: 25124032 PMCID: PMC4183826 DOI: 10.1074/jbc.m114.573519] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that reactive oxygen species (ROS) can stimulate the Wnt/β-catenin pathway in a number of cellular processes. However, potential sources of endogenous ROS have not been thoroughly explored. Here, we show that growth factor depletion in human neural progenitor cells induces ROS production in mitochondria. Elevated ROS levels augment activation of Wnt/β-catenin signaling that regulates neural differentiation. We find that growth factor depletion stimulates the release of Ca(2+) from the endoplasmic reticulum stores. Ca(2+) subsequently accumulates in the mitochondria and triggers ROS production. The inhibition of mitochondrial Ca(2+) uptake with simultaneous growth factor depletion prevents the rise in ROS metabolism. Moreover, low ROS levels block the dissociation of the Wnt effector Dishevelled from nucleoredoxin. Attenuation of the response amplitudes of pathway effectors delays the onset of the Wnt/β-catenin pathway activation and results in markedly impaired neuronal differentiation. Our findings reveal Ca(2+)-mediated ROS metabolic cues that fine-tune the efficiency of cell differentiation by modulating the extent of the Wnt/β-catenin signaling output.
Collapse
Affiliation(s)
- Tareck Rharass
- From Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch and Cell Biology and Biosystems Technology, Institute of Biological Sciences, and Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Heiko Lemcke
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, and Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Margareta Lantow
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, and
| | - Sergei A Kuznetsov
- Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Dieter G Weiss
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, and Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Daniela Panáková
- From Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch and
| |
Collapse
|
2
|
Ohlsson B, Rehfeld JF, Sundler F. Cholecystokinin does not affect the pancreatic contents of epidermal growth factor or its receptor. Pancreas 2000; 21:385-91. [PMID: 11075993 DOI: 10.1097/00006676-200011000-00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Cholecystokinin (CCK) is a hormone with well-known secretory and trophic effects on the pancreas. This also is true for epidermal growth factor (EGF), which acts in a paracrine and autocrine way. The aim was to study the influence of CCK on cell proliferation in rat pancreas with special reference to the expression of EGF, the EGF receptor, and phosphorylated tyrosine. Twenty-four male Sprague-Dawley rats received either one single injection, or injections twice daily for 3 days of 6 microg sulfated CCK-8 (CCK-8S) subcutaneously in the neck. The same number of rats received injections of 1% bovine serum albumin (BSA) in the same way. The rats were killed 1, 3, or 6 hours after the last injection. One hour before killing, they received 50 mg/kg of bromodeoxyuridine (BrdU) intraperitoneally. Plasma was collected for analysis of CCK. The pancreas was dissected, and in situ hybridization using a probe for EGF mRNA was performed for semiquantification of gene expression. Immunocytochemistry using antibodies against the EGF receptor and phosphotyrosine was performed to examine the expression of the proteins, and against BrdU for measuring the cell proliferation. A single injection of CCK-8S led to hyperCCKemia at 1 and 3 hours afterward. After 6 hours, plasma CCK had returned to the same levels as in control rats. The cell proliferation was unaffected. The rats that received CCK-8S injections for 3 days still had hyperCCKemia 6 hours after the last injection. The cell proliferation was increased by CCK, as indicated by the BrdU labeling. However, neither body weight nor pancreatic weight was affected. In controls, EGF was expressed all over the gland, but its receptor and phosphotyrosine were expressed only in ductal cells and in the islet cells of endocrine pancreas. There was no difference in the pancreatic staining of EGF, its receptor, or phosphotyrosine at the different time points studied. There was no difference in the staining of EGF and its receptor between CCK-8S- and BSA-treated animals, but phosphotyrosine staining was detectable in acinar cells after 3 days of CCK-8S injections. Thus CCK-8S causes hyperCCKemia with ensuing enhanced cell proliferation in rat pancreas. This effect on the cell proliferation seems to be a direct effect of CCK and not mediated by changes in the tissue levels of EGF or its receptor.
Collapse
Affiliation(s)
- B Ohlsson
- Department of Surgery, University of Lund, Sweden
| | | | | |
Collapse
|
3
|
Tapia JA, Camello C, Jensen RT, García LJ. EGF stimulates tyrosine phosphorylation of focal adhesion kinase (p125FAK) and paxillin in rat pancreatic acini by a phospholipase C-independent process that depends on phosphatidylinositol 3-kinase, the small GTP-binding protein, p21rho, and the integrity of the actin cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1448:486-499. [PMID: 9990300 DOI: 10.1016/s0167-4889(98)00157-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Epidermal growth factor (EGF) is a potent mitogen in many cell types including pancreatic cells. Recent studies show that the effects of some growth factors on growth and cell migration are mediated by tyrosine phosphorylation of the cytosolic tyrosine kinase p125 focal adhesion kinase (p125FAK) and the cytoskeletal protein, paxillin. The aim of the present study was to determine whether EGF activates this pathway in rat pancreatic acini and causes tyrosine phosphorylation of each of these proteins, and to examine the intracellular pathways involved. Treatment of pancreatic acini with EGF induced a rapid, concentration-dependent increase in p125FAK and paxillin tyrosine phosphorylation. Depletion of the intracellular calcium pool or inhibition of PKC activation had no effect on the response to EGF. However, inhibition of the phosphatidylinositol 3-kinase (PI3-kinase) or inactivation of p21rho inhibited EGF-stimulated phosphorylation of p125FAK and paxillin by more than 70%. Finally, cytochalasin D, a selective disrupter of the actin filament network, completely inhibited EGF-stimulated tyrosine phosphorylation of both proteins. All these treatments did not modify EGF receptor autophosphorylation in response to EGF. These results identify p125FAK and paxillin as components of the intracellular pathways stimulated after EGF receptor occupation in rat pancreatic acini. Activation of this cascade requires activation of PI3-kinase and participation of p21rho, but not PKC activation and calcium mobilization.
Collapse
Affiliation(s)
- J A Tapia
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | | | | |
Collapse
|
4
|
Lajas AI, Pozo MJ, Salido GM, Pariente JA. Effect of basic fibroblast growth factor on cholecystokinin-induced amylase release and intracellular calcium increase in male rat pancreatic acinar cells. Biochem Pharmacol 1998; 55:903-8. [PMID: 9586964 DOI: 10.1016/s0006-2952(97)00546-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Isolated rat pancreatic acinar cells were used to investigate the effect of basic fibroblast growth factor (bFGF) on both amylase secretion and intracellular free calcium concentration ([Ca2+]i) in response to the calcium-mobilizing secretagogue cholecystokinin-octapeptide (CCK-8). Our data show that bFGF inhibited CCK-8-induced amylase release in a concentration-dependent manner and decreased the CCK-8-induced rise in [Ca2+]i. This inhibitory effect of bFGF on both amylase secretion and [Ca2+]i increase in response to CCK-8 was reverted when acinar cells were pretreated with 100 microM tyrphostin A25, a tyrosine kinase inhibitor. Tyrphostin A25 also inhibited Ca2+ influx induced by CCK-8. These results show that bFGF inhibits CCK-8-induced pancreatic response by a tyrosine kinase-dependent mechanism. A role for tyrosine phosphorylation in capacitative Ca2+ entry is suggested.
Collapse
Affiliation(s)
- A I Lajas
- Department of Physiology, Faculty of Veterinary Science, University of Extremadura, Cáceres, Spain
| | | | | | | |
Collapse
|
5
|
Juma LM, Singh J, Pallot DJ, Salido GM, Adeghate E. Interactions of islet hormones with acetylcholine in the isolated rat pancreas. Peptides 1997; 18:1415-22. [PMID: 9392845 DOI: 10.1016/s0196-9781(97)00202-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study investigates the effects of the islet hormones, insulin (INS), glucagon (GLU) and somatostatin (SOM) on acetylcholine (ACh)-evoked amylase secretion and calcium (Ca2+) mobilization in the isolated rat pancreas. Stimulation of pancreatic segments and acini with either INS, GLU or SOM resulted in small increases of amylase output compared to much large increases in enzyme output with ACh. Combinations of the peptide hormones with ACh resulted in enhanced secretory responses compared to the effects obtained with either ACh or each of the islet hormone alone. Genistein, the tyrosine kinase inhibitor, evoked a decrease in amylase output from pancreatic segments. It had no effect on the ACh evoke secretory response but it markedly inhibited the potentiation of the islet hormones with ACh. In pancreatic acinar cells either INS, GLU or SOM elicited moderate increases in amylase output compared to much larger responses with ACh. Furthermore, the islet hormones failed to potentiate the secretory effect of ACh in pancreatic acini. In fura-2 AM loaded acinar cells both INS and GLU evoked small increases in intracellular free calcium concentration [Ca2+]i compared to a much larger elevation with ACh. Both INS and GLU enhanced the ACh-evoked [Ca2+]i. Genistein elicited a decrease in [Ca2+]i both in the absence and presence of both INS and GLU. It also decreased the rise in [Ca2+]i resulting from the combined presence of ACh with both INS and GLU. SOM had no significant effect on the ACh-induced [Ca2+]i. When genistein was combined with ACh and SOM there was a decrease in [Ca2+]i compared to the response obtained with SOM and ACh alone. The results indicate that both tyrosine kinase and cellular Ca2+ seem to be the intracellular mediators associated with the enhanced secretory responses obtained with a combination of the islet hormones with ACh. Finally, our results using immunohistochemical techniques confirm the presence of INS-, GLU- SOM- and ACh-immunoreactive cells in the endocrine and neural elements of the rat pancreas.
Collapse
Affiliation(s)
- L M Juma
- Department of Applied Biology, University of Central Lancashire, Preston, England
| | | | | | | | | |
Collapse
|
6
|
Stryjek-Kaminska D, Piiper A, Zeuzem S. Epidermal growth factor regulates adenylate cyclase activity via Gs and Gi1-2 proteins in pancreatic acinar membranes. Biochem J 1996; 316 ( Pt 1):87-91. [PMID: 8645237 PMCID: PMC1217354 DOI: 10.1042/bj3160087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the present study, Western-blot and radioreceptor analyses have revealed the presence of the epidermal growth factor (EGF) receptor in pancreatic acinar membranes. Isolated pancreatic acinar membranes, which allow access of functional antibodies to individual components of the signal transduction cascade, were used to examine EGF-induced regulation of adenylate cyclase activity. Forskolin, vasoactive intestinal peptide (VIP) and to a smaller extent EGF increased cAMP production in pancreatic acinar membranes. Preincubation of the membranes with anti-GS alpha antibody abolished EGF- and VIP-induced cAMP production, but had no effect on forskolin-induced cAMP accumulation. In the presence of either VIP or forskolin, EGF inhibited the VIP- and forskolin-induced cAMP production with an IC50 of 5 nM. Anti-G alpha i1-2 protein antibody, but not anti-G alpha i3 antibody, increased basal cAMP production, indicating that Gi proteins exert an inhibitory influence on basal adenylate cyclase activity. Anti-G alpha i1-2 antibody, but not anti-G alpha i3 antibody, abolished the inhibitory effect of EGF on the forskolin- and VIP-induced cAMP accumulation. A peptide corresponding to the juxtamembrane region in the cytosolic domain of the rat EGF receptor increased cAMP production in pancreatic acinar membranes in an anti-G alpha s antibody-sensitive fashion, whereas the EGF receptor peptide did not mimic the inhibitory effect of the native EGF receptor. The tyrosine kinase inhibitors genistein and pp60v-src (137-157) inhibited both the stimulatory and the inhibitory effects of EGF on cAMP production. Thus the data of the present study show that EGF regulates adenylate cyclase via activation of Gs and Gi proteins by a tyrosine phosphorylation-dependent mechanism in pancreatic acinar membranes. This leads to stimulation of basal and inhibition of forskolin- and VIP-induced adenylate cyclase activity respectively.
Collapse
Affiliation(s)
- D Stryjek-Kaminska
- II. Medical Department, University of Frankfurt, Frankfurt/Main, Federal Republic of Germany
| | | | | |
Collapse
|
7
|
Piiper A, Stryjek-Kaminska D, Gebhardt R, Zeuzem S. Pertussis toxin-sensitive G-proteins inhibit fibroblast growth factor-induced signaling in pancreatic acini. J Cell Physiol 1996; 167:52-9. [PMID: 8698840 DOI: 10.1002/(sici)1097-4652(199604)167:1<52::aid-jcp6>3.0.co;2-b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Signal transduction of fibroblast growth factor (FGF) receptors is known to involve tyrosine phosphorylation of several substrates, including Grb2, phospholipase C-gamma, and phosphatidylinositol 3-kinase, whereas the role of G-proteins in FGF receptor signaling is controversial. In the present study we investigated the role of G-proteins in FGF receptor signaling in rat pancreatic acini. Immunological analysis revealed the presence of FGF receptor and phospholipase C-gamma1 in rat pancreatic acini. Both basic fibroblast growth factor (FGF-2) and guanosine 5'-(gamma-O-thio)triphosphate (GTPgammaS) caused an increase in inositol 1,4,5-trisphosphate (1,4,5-IP3) production and amylase release. Combined stimulation of the acini with GTPgammaS and FGF-2 led to a decrease of these responses as compared to the effect of the single substances. When pancreatic acini were preincubated with FGF-2 (1 nM) or vehicle (water) ADP-ribosylation of the alpha-subunit of Gi-type G-proteins by pertussis toxin was reduced in membranes prepared from FGF-2 pretreated acini as compared to control acini, suggesting functional interaction of FGF receptors with Gi-proteins. Pretreatment of acini with pertussis toxin which inhibits Gi-type G-proteins abolished the inhibitory effect of GTPgammaS on FGF-induced 1,4,5-IP3 production and amylase release, whereas the stimulatory effects of FGF-2 and GTPgammaS on these parameters remained unchanged. In conclusion, these results show communication of FGF receptors and Gi-type G-proteins and that Gi-type G-proteins exert an inhibitory influence on FGF-induced activation of phosphoinositide-specific phospholipase C in pancreatic acinar cells.
Collapse
Affiliation(s)
- A Piiper
- Medical Department, University of Frankfurt, Germany
| | | | | | | |
Collapse
|
8
|
Stryjek-Kaminska D, Piiper A, Caspary WF, Zeuzem S. Epidermal growth factor inhibits hormone- and fibroblast growth factor-induced activation of phospholipase C in rat pancreatic acini. Peptides 1995; 16:123-8. [PMID: 7536322 DOI: 10.1016/0196-9781(94)00164-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Epidermal growth factor (EGF) inhibits cholecystokinin-octapeptide-stimulated amylase release and inositol 1,4,5-trisphosphate (1,4,5-IP3) production in isolated rat pancreatic acini. In the present study, pancreatic acini were used to investigate the effect of EGF on amylase release and 1,4,5-IP3 production induced by secretagogues that activate either phospholipase C-beta (carbachol, bombesin) or phospholipase C-gamma [basic fibroblast growth factor (bFGF)]. The results show that EGF (100 ng/ml) inhibited bombesin (0.1 nM-1 microM)-induced amylase release almost completely. Similarly, the effect of EGF on carbachol-stimulated amylase release was substantial at submaximal (0.1 microM: 44% inhibition), maximal (1 microM: 75% inhibition), and supramaximal (100 microM: 33% inhibition) carbachol concentrations. EGF reduced amylase release at submaximal bFGF concentrations (0.1 nM: 40% inhibition), but not at supramaximal bFGF concentrations (1 and 10 nM). EGF decreased the peak increase of 1,4,5-IP3 in response to bombesin and carbachol (5 s after beginning of the incubation) and bFGF (15 s after beginning of the incubation) by 81 +/- 19%, 65 +/- 15%, and 56 +/- 18%, respectively. Receptor binding characteristics for secretagogues that activate phospholipase C were not influenced by coincubation with EGF excluding heterologous transmembrane receptor modulation. These results suggest that EGF inhibits the action of phospholipase C-beta- and gamma-isoenzyme-activating secretagogues in the exocrine pancreas by a postreceptor mechanism.
Collapse
|
9
|
Morisset J, Bérubé FL, Vanier M, Benrezzak O. Alterations of pancreatic amylase secretion in the reserpinized rat model of cystic fibrosis. Effects of cerulein and EGF. INTERNATIONAL JOURNAL OF PANCREATOLOGY : OFFICIAL JOURNAL OF THE INTERNATIONAL ASSOCIATION OF PANCREATOLOGY 1994; 16:37-44. [PMID: 7528761 DOI: 10.1007/bf02925608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reserpine treatment resulted in altered enzyme secretion from rat pancreatic acini in response to carbamylcholine and secretin (1,2). This study was undertaken: (1) To evaluate if the alterations caused by reserpine can be prevented by EGF and/or cerulein treatments; (2) To determine the time-course of secretion recovery after reserpine treatment; and (3) To establish if EGF and/or cerulein treatments can accelerate such a recovery after the reserpine treatment. Male Sprague-Dawley rats (250-265 g) were used in these experiments. In experiment I, rats divided into three groups received either reserpine (R) or the reserpine vehicle for the controls (C) and the pair-fed controls (PF) for 7 d. During treatment, PF and R rats were given SC, twice a day, saline, EGF (10 micrograms/kg), cerulein (1 microgram/kg), or both at the same dose. C rats received saline in gelatin. In experiment II, rats were treated for 7 d with reserpine or the vehicle as described in experiment I, were allowed a 30-d recovery period and then were killed. In experiment III, C, PF, and R rats were treated for 7 d as described in experiment I; on the 8th d and for the next 6 d, reserpine rats received saline (reserpine-saline), cerulein, EGF, or both cerulein +EGF at the same dose as indicated in experiment I. C and PF rats received saline in gelatin. After sacrifice, acini were prepared, and amylase dose-response curves to carbamylcholine (Cch) and secretin were established. EGF, cerulein, or their combination given to R rats did not improve the desensitized secretory response to Cch.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Morisset
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|
10
|
Soler C, Galan X, Peinado-Onsurbe J, Quintana I, Llobera M, Soley M, Ramírez I. Epidermal growth factor interferes with the effect of adrenaline on glucose production and on hepatic lipase secretion in rat hepatocytes. REGULATORY PEPTIDES 1993; 44:11-6. [PMID: 8484015 DOI: 10.1016/0167-0115(93)90125-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We studied the interaction of epidermal growth factor (EGF) and adrenaline in the control of several metabolic functions in isolated hepatocytes from fed rats. EGF did not modulate glucose release, urea production or hepatic lipase secretion, but interfered with the stimulatory effect of adrenaline on both glucose and urea production and also with the inhibitory effect of this hormone on hepatic lipase secretion. EGF also interfered with the effect of both angiotensin II and vasopressin on glucose release and on hepatic lipase secretion. While the effect of EGF interfering with the action of adrenaline on glucose release was potentiated in the absence of extracellular calcium, the effect on the inhibition of hepatic lipase secretion was abolished. These results suggest that EGF interfered with catecholamine actions in the liver at a site distal from the generation of the calcium signal.
Collapse
Affiliation(s)
- C Soler
- Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Willems PH, Van Emst-De Vries SE, Van Os CH, De Pont JJ. Dose-dependent recruitment of pancreatic acinar cells during receptor-mediated calcium mobilization. Cell Calcium 1993; 14:145-59. [PMID: 7681361 DOI: 10.1016/0143-4160(93)90084-j] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Digital-imaging microscopy of Fura-2-loaded rabbit pancreatic acinar cells was used to simultaneously monitor the cholecystokinin-octapeptide (CCK8)-induced changes in free cytosolic Ca2+ concentration, [Ca2+]i, in large numbers of individual acinar cells. CCK8 typically evoked a switchlike increase in [Ca2+]i which was preceded by a concentration-dependent latency. The threshold concentration for the CCK8-induced rise in [Ca2+]i differed greatly among individual acinar cells, resulting in the dose-dependent recruitment of acinar cells in terms of CCK8-induced Ca2+ mobilization. The EC50 value for CCK8-induced cell-recruitment was estimated to be 15 pM. The hormone was equally potent in stimulating amylase secretion from acinar cells in suspension. At a CCK8 concentration of 100 pM, virtually all cells responded to the hormone with an increase in [Ca2+]i and the number of responding cells remained unchanged upon further increase of the CCK8 concentration. The dose-response curve for cell-recruitment coincides with that of the apparent [Ca2+]i increase in a suspension of acinar cells. This suggests that the most likely interpretation of the latter dose-response curve is not a generalized increase in [Ca2+]i but an increase in the number of responding cells. The initial rise in [Ca2+]i, which was transient by nature, was followed by repetitive [Ca2+]i transients of long duration. The dose-response curve for the effect of CCK8 on the percentage of acinar cells displaying these distinct [Ca2+]i oscillations was biphasic. A maximum of 99% of the cells showing oscillatory behaviour was reached at 100 pM CCK8, beyond which concentration the number of oscillating cells dose-dependently decreased again. The latter decrease was paralleled by a dose-dependent increase of the percentage responding but non-oscillating cells, indicating that beyond 100 pM CCK8 an increasing number of acinar cells became desensitized towards hormonal induction of oscillatory changes in [Ca2+]i. CCK8 was approximately 100-fold more potent in reducing the percentage of oscillating cells than in inhibiting amylase secretion. Oscillating acinar cells responded to a stepwise increase of the medium CCK8 concentration with a rapid change in amplitude and frequency of the oscillations. Thus, with increasing CCK8 concentration the frequency gradually increased, whereas the amplitude only slightly increased at first, reached a maximum, and decreased thereafter. In some cells full extinction was reached. Again, large differences in dose-dependency were observed among individual acinar cells. The observations presented demonstrate the existence of a marked functional heterogeneity among pancreatic acinar cells in terms of CCK8-induced Ca2+ mobilization.
Collapse
Affiliation(s)
- P H Willems
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
12
|
Piiper A, Pröfrock A, Schulz I. Effects of epidermal growth factor and calcium omission on cholecystokinin-stimulated Cl- conductance in rat pancreatic zymogen granules. Biochem Biophys Res Commun 1991; 181:827-32. [PMID: 1755862 DOI: 10.1016/0006-291x(91)91264-d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Evidence suggests that cholecystokinin-octapeptide (CCK-8)-induced activation of a Cl- conductance in the membrane of zymogen granules (ZG) is closely related to pancreatic enzyme secretion. Following stimulation of isolated pancreatic acinar cells with increasing concentrations of CCK-8, the Cl- conductance in the ZG from these acini increased, reached a maximum of 40 +/- 7% above basal Cl- conductance at 10(-12) M CCK-8, and then decreased at CCK-8 concentrations higher than 10(-9) M to a level comparable to the basal Cl- conductance. We had interpreted the inhibitory action of high CCK-8 concentrations to be due to the generation of high concentrations of diacylglycerol and/or its metabolites by an "overstimulation" of phospholipase C at supramaximal CCK-8 concentrations. We now show that EGF abolishes the downstroke of the dose response curve for CCK-8-induced ZG Cl- conductance and shifts the stimulatory response to higher CCK-8 concentrations. Similarly in a nominally "Ca(2+)-free buffer" (free [Ca2+] approximately 0.2 nM), stimulated Cl- conductance at 10(-12) M CCK-8 is nearly abolished and the decreased Cl- conductance at 10(-8) M CCK-8 is increased to the level of maximal stimulation at 10(-12) M CCK-8. We conclude that both EGF and low [Ca2+] affect CCK-8-induced ZG Cl- conductance by decreasing phospholipase C activity.
Collapse
Affiliation(s)
- A Piiper
- Max-Planck-Institut für Biopyhsik, Frankfurt am Main, FRG
| | | | | |
Collapse
|