1
|
Bednarska-Szczepaniak K, Ebenryter-Olbińska K, Gajek G, Śmiałkowski K, Suwara J, Fiedorowicz L, Leśnikowski Z. Synthesis of DNA-Boron Cluster Composites and Assembly into Functional Nanoparticles with Dual, Anti-EGFR, and Anti-c-MYC Oncogene Silencing Activity. Chemistry 2024; 30:e202303531. [PMID: 38214885 DOI: 10.1002/chem.202303531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
A versatile method for the automated synthesis of composites containing DNA-oligonucleotides and boron cluster scaffolds and their assembly into functional nanoparticles is described. The obtained, torus-like nanoparticles carry antisense oligonucleotides that target two different oncogenes simultaneously. The nanoparticles exhibited notable silencing efficiency in vitro in a pancreatic carcinoma cell line PANC-1 toward EGFR and c-Myc genes at the mRNA level, and a significant efficiency at the protein level. The proposed approach may be an attractive alternative to methods currently used, including one therapeutic nucleic acid, one genetic target, or the use of cocktails of therapeutic nucleic acids.
Collapse
Affiliation(s)
- Katarzyna Bednarska-Szczepaniak
- Laboratory of Medicinal Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodowa Łódź, 106, 92-232, Lodz, Poland
| | - Katarzyna Ebenryter-Olbińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, Łódź, 112, 90-363 Lodz, Poland
| | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa Łódź, 106, 92-232, Lodz, Poland
| | - Krzysztof Śmiałkowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodowa Łódź, 106, 92-232, Lodz, Poland
- Lodz Institutes of the Polish Academy of Science, The Bio-Med-Chem Doctoral School, University of Lodz, Poland
| | - Justyna Suwara
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, Łódź, 112, 90-363 Lodz, Poland
| | - Lidia Fiedorowicz
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology Polish Academy of Sciences, Lodowa Łódź, 106, 92-232, Lodz, Poland
- Lodz Institutes of the Polish Academy of Science, The Bio-Med-Chem Doctoral School, University of Lodz, Poland
| | - Zbigniew Leśnikowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodowa Łódź, 106, 92-232, Lodz, Poland
| |
Collapse
|
2
|
Kaniowski D, Ebenryter-Olbinska K, Kulik K, Janczak S, Maciaszek A, Bednarska-Szczepaniak K, Nawrot B, Lesnikowski Z. Boron clusters as a platform for new materials: composites of nucleic acids and oligofunctionalized carboranes (C 2B 10H 12) and their assembly into functional nanoparticles. NANOSCALE 2020; 12:103-114. [PMID: 31763634 DOI: 10.1039/c9nr06550d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nucleic acids are key biomolecules in all life forms. These biomolecules can encode and transfer information via Watson-Crick base-pairing interactions and can form double-stranded structures between complementary sequences with high precision. These properties make nucleic acids extremely successful in applications in materials science as nanoconstruction materials. Herein, we describe a method for the automated synthesis of "oligopeds", which are building blocks based on the boron cluster structure equipped with short DNA adapters; these building blocks assemble into functional nanoparticles. The obtained, well defined, torus-like structures are the first DNA nanoconstructs based on a boron cluster scaffold. The results indicate the potential of boron clusters in DNA nanoconstruction and open the way for the design of entirely new types of buildings blocks based on polyhedral heteroborane geometry and its unique properties. The use of antisense oligonucleotides as DNA adapters illustrates one of the possible applications of the obtained nanoconstructs as vectors for therapeutic nucleic acids.
Collapse
Affiliation(s)
- Damian Kaniowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Katarzyna Ebenryter-Olbinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Slawomir Janczak
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 92-232 Lodz, Poland.
| | - Anna Maciaszek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | | | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Zbigniew Lesnikowski
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 92-232 Lodz, Poland.
| |
Collapse
|
3
|
Mathews DH, Turner DH, Watson RM. RNA Secondary Structure Prediction. ACTA ACUST UNITED AC 2016; 67:11.2.1-11.2.19. [DOI: 10.1002/cpnc.19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Chang L, Qi H, Xiao Y, Li C, Wang Y, Guo T, Liu Z, Liu Q. Integrated analysis of noncoding RNAs and mRNAs reveals their potential roles in the biological activities of the growth hormone receptor. Growth Horm IGF Res 2016; 29:11-20. [PMID: 27064376 DOI: 10.1016/j.ghir.2016.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/14/2016] [Accepted: 03/18/2016] [Indexed: 11/28/2022]
Abstract
Accumulating evidence has indicated that noncoding RNAs (ncRNAs) have important regulatory potential in various biological processes. The molecular mechanisms by which growth hormone receptor (GHR) deficiency protects against age-related pathologies, reduces the incidence and delays the occurrence of fatal neoplasms are unclear. The aim of this study was to investigate miRNA, lncRNA and mRNA expression profiles and the potential functional roles of these RNA molecules in GHR knockout (GHR-KO) mice. Microarray expression profiles of miRNAs, lncRNAs and mRNAs were determined in wild type control mice and in GHR-KO mice. Differential expression, pathway and gene network analyses were developed to identify the possible biological roles of functional RNA molecules. Compared to wild type control mice, 1695 lncRNAs, 914 mRNAs and 9 miRNAs were upregulated and 1747 lncRNAs, 786 mRNAs and 21 miRNAs were downregulated in female GHR-KO mice. Moreover, 1265 lncRNAs, 724 mRNAs and 41 miRNAs were upregulated and 1377 lncRNAs, 765 mRNAs and 16 miRNAs were downregulated in male GHR-KO mice compared to wild type mice. Co-expression analysis of mRNAs, lncRNAs, and miRNAs showed that mRNAs including Hemxi2, Ero1Ib, 4933434i20RIK, Pde7a and Lgals1, lncRNAs including ASMM9PARTA014848, EL605414-P1, ASMM9PARTA051724, ASMM9PARTA045378 and ASMM9PARTA049185, and miRNAs including miR-188-3p, miR-690, miR-709 and miR-710 are situated at the core position of a three-dimensional lncRNA-mRNA-miRNA regulatory network. KEGG analysis showed that the most significantly regulated pathway was steroid hormone biosynthesis. We identified a set of lncRNAs, miRNAs and mRNAs that were aberrantly expressed in GHR-KO mice. Our results provide a foundation and an expansive view of the biological activities of the GHR.
Collapse
Affiliation(s)
- Lei Chang
- Department of General Surgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Haolong Qi
- Department of General Surgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Yusha Xiao
- Department of General Surgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Changsheng Li
- Department of General Surgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Yitao Wang
- Department of General Surgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Tao Guo
- Department of General Surgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Zhisu Liu
- Department of General Surgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Quanyan Liu
- Department of General Surgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, PR China.
| |
Collapse
|
5
|
Hollins AJ, Benboubetra M, Omidi Y, Zinselmeyer BH, Schatzlein AG, Uchegbu IF, Akhtar S. Evaluation of generation 2 and 3 poly(propylenimine) dendrimers for the potential cellular delivery of antisense oligonucleotides targeting the epidermal growth factor receptor. Pharm Res 2016; 21:458-66. [PMID: 15070097 DOI: 10.1023/b:pham.0000019300.04836.51] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To evaluate low generation, G2 and G3, poly(propylenimine) dendrimers for the potential cellular delivery of antisense oligonucleotides (ODNs) targeting the epidermal growth factor receptor (EGFR) in A431 epidermoid carcinoma cells. METHODS Cell cytotoxicity of the dendrimers was evaluated using trypan blue exclusion assays. Cellular uptake studies of fluorescently labeled ODNs were performed using fluorescence-activated cell sorting analysis. Intracellular fate of dendrimer-delivered ODNs was assessed in both fixed and live cells using fluorescent microscopy. Antisense ODN activity was assessed in terms of cancer cell growth, inhibition of target EGFR protein, and reduction in mRNA levels. RESULTS G2 dendrimer (DAB-8) was less toxic than G3 (DAB-16) dendrimer in A431 cells, with IC50 of >175 and approximately 30 microg/ml, respectively. Uptake of fluorescently labeled ODN:dendrimer complexes was increased by up to 100-fold compared to a marker of fluid-phase endocytosis and up to 9-fold over free ODN at the optimal dendrimer:ODN (w/w) ratio of 5:1. Uptake of dendrimer:ODN complexes was significantly reduced at 4 degrees C (p < 0.05). Live cell fluorescent microscopy resulted in an intracellular distribution of dendrimer:ODN complexes that was suggestive of endocytic uptake; in contrast, cell fixation resulted in an artefactual nuclear localization. Treatment of A431 cells with anti-EGFR antisense ODN:dendrimer complexes inhibited cell growth, protein, and mRNA expression to levels comparable to Oligofectamine-mediated delivery. CONCLUSIONS G2 and G3 poly(propylenimine) dendrimers markedly improved the delivery and activity of ODNs and thus may represent general reagents for the delivery of ODNs to cells in culture.
Collapse
Affiliation(s)
- Andrew J Hollins
- Centre for Genome-based Therapeutics, Welsh School of Pharmacy, Cardiff University, Cardiff, CF10 3XF, Wales, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Qi HL, Li CS, Qian CW, Xiao YS, Yuan YF, Liu QY, Liu ZS. The long noncoding RNA, EGFR-AS1, a target of GHR, increases the expression of EGFR in hepatocellular carcinoma. Tumour Biol 2015; 37:1079-89. [PMID: 26271667 DOI: 10.1007/s13277-015-3887-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/03/2015] [Indexed: 12/30/2022] Open
Abstract
LncRNA has provided an important new perspective regarding gene regulation. Both the expression and activation of EGFR have been proven to be under the tight control of the GHR pathway. EGFR-AS1 has been found to inhibit the expression of EGFR. GHR-siRNA and EGFR-AS1-siRNA were transfected into HCC cell lines, and a series of WB, q-PCR, and IF experiments was conducted to evaluate whether EGFR-AS1 participated in the regulation of GHR and EGFR. We found that impeded expression of GHR decreased the expression of EGFR and EGFR-AS1 in vivo and in vitro. Then, it was verified that EGFR and EGFR-AS1 were relatively upregulated in HCC tissue, and they were significantly related to some clinical characteristics and patient prognosis. Furthermore, EGFR-AS1 was determined to promote HCC development by improving the ability of invasion and proliferation of HCC cells in vitro, and it was also found to affect the cell cycle. Our study identified that EGFR-AS1 may promote HCC genesis and development. EGFR-AS1 may act as a prognostic factor in HCC. More importantly, we observed that the inhibition of EGFR-AS1 in HCC cells significantly impeded cell proliferation and invasion in vivo, which might provide a potential possibility for targeted therapy of HCC.
Collapse
Affiliation(s)
- Hao-Long Qi
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Chang-Sheng Li
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Chong-Wei Qian
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Yu-Sha Xiao
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Yu-Feng Yuan
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Quan-Yan Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Zhi-Su Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China
| |
Collapse
|
7
|
Affiliation(s)
- David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center Rochester New York
| |
Collapse
|
8
|
Shang X, Wang Y, Zhao Q, Wu K, Li X, Ji X, He R, Zhang W. siRNAs target sites selection of ezrin and the influence of RNA interference on ezrin expression and biological characters of osteosarcoma cells. Mol Cell Biochem 2012; 364:363-71. [PMID: 22286748 DOI: 10.1007/s11010-012-1238-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/13/2012] [Indexed: 12/27/2022]
Abstract
Ezrin, one of the ezrin/radixin/moesin (ERM) protein family which act as membrane organizers and linkers between plasma membrane and cytoskeleton, has attracted much attention as a crucial factor for tumor metastasis. Overexpression of ezrin has been correlated with the metastatic potential of several cancers especially for osteosarcoma. Short interfering RNA (siRNA) downregulate gene expression through an enzyme-mediated process named RNA interference (RNAi). RNAi has rapidly come to be recognized as a powerful tool for the study of gene function and a potential target therapy. In the present study, the human osteosarcoma cell line MG63 was cultured. Three siRNAs targeting ezrin mRNA were designed by the multiple computational methods and then were sythesized. These siRNAs were transfected into osteosarcoma cells. Then the expression of ezrin mRNA and protein in osteosarcoma cells was detected. The cellular proliferation and apoptosis was evaluated. C726–U730, C1653–A1661 and G1749–A1771 were selected to be the suitable target sites through the multiple computational methods because of their ideal secondary structures and hybridization thermodynamics. siRNAs against G1749–A1771 downregulated the expression level of ezrin mRNA and protein, inhibit the cellular proliferation and promoted the cellular apoptosis effectively. There is a significant correlation between the multiple computational methods and the efficacy of the corresponding siRNAs. siRNAs targeting ezrin may have therapeutic potential as inhibitors of osteosarcoma metastasis.
Collapse
Affiliation(s)
- XiFu Shang
- Department of Orthopedic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, No.17 LuJiang Road, Hefei 230001, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Akhtar S, Yousif MHM, Dhaunsi GS, Chandrasekhar B, Al-Farsi O, Benter IF. Angiotensin-(1-7) inhibits epidermal growth factor receptor transactivation via a Mas receptor-dependent pathway. Br J Pharmacol 2012; 165:1390-400. [PMID: 21806601 DOI: 10.1111/j.1476-5381.2011.01613.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The transactivation of the epidermal growth factor (EGF) receptor appears to be an important central transduction mechanism in mediating diabetes-induced vascular dysfunction. Angiotensin-(1-7) [Ang-(1-7)] via its Mas receptor can prevent the development of hyperglycaemia-induced cardiovascular complications. Here, we investigated whether Ang-(1-7) can inhibit hyperglycaemia-induced EGF receptor transactivation and its classical signalling via ERK1/2 and p38 MAPK in vivo and in vitro. EXPERIMENTAL APPROACH Streptozotocin-induced diabetic rats were chronically treated with Ang-(1-7) or AG1478, a selective EGF receptor inhibitor, for 4 weeks and mechanistic studies performed in the isolated mesenteric vasculature bed as well as in primary cultures of vascular smooth muscle cells (VSMCs). KEY RESULTS Diabetes significantly enhanced phosphorylation of EGF receptor at tyrosine residues Y992, Y1068, Y1086, Y1148, as well as ERK1/2 and p38 MAPK in the mesenteric vasculature bed whereas these changes were significantly attenuated upon Ang-(1-7) or AG1478 treatment. In VSMCs grown in conditions of high glucose (25 mM), an Src-dependent elevation in EGF receptor phosphorylation was observed. Ang-(1-7) inhibited both Ang II- and glucose-induced transactivation of EGF receptor. The inhibition of high glucose-mediated Src-dependant transactivation of EGF receptor by Ang-(1-7) could be prevented by a selective Mas receptor antagonist, D-Pro7-Ang-(1-7). CONCLUSIONS AND IMPLICATIONS These results show for the first time that Ang-(1-7) inhibits EGF receptor transactivation via a Mas receptor/Src-dependent pathway and might represent a novel general mechanism by which Ang-(1-7) exerts its beneficial effects in many disease states including diabetes-induced vascular dysfunction.
Collapse
Affiliation(s)
- Saghir Akhtar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| | | | | | | | | | | |
Collapse
|
10
|
Akhtar S, Yousif MHM, Chandrasekhar B, Benter IF. Activation of EGFR/ERBB2 via pathways involving ERK1/2, P38 MAPK, AKT and FOXO enhances recovery of diabetic hearts from ischemia-reperfusion injury. PLoS One 2012; 7:e39066. [PMID: 22720029 PMCID: PMC3374768 DOI: 10.1371/journal.pone.0039066] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
This study characterized the effects of diabetes and/or ischemia on epidermal growth factor receptor, EGFR, and/or erbB2 signaling pathways on cardiac function. Isolated heart perfusion model of global ischemia was used to study the effect of chronic inhibition or acute activation of EGFR/erbB2 signaling on cardiac function in a rat model of type-1 diabetes. Induction of diabetes with streptozotocin impaired recovery of cardiac function (cardiac contractility and hemodynamics) following 40 minutes of global ischemia in isolated hearts. Chronic treatment with AG825 or AG1478, selective inhibitors of erbB2 and EGFR respectively, did not affect hyperglycemia but led to an exacerbation whereas acute administration of the EGFR ligand, epidermal growth factor (EGF), led to an improvement in cardiac recovery in diabetic hearts. Diabetes led to attenuated dimerization and phosphorylation of cardiac erbB2 and EGFR receptors that was associated with reduced signaling via extracellular-signal-regulated kinase 1/2 (ERK1/2), p38 mitogen activated protein (MAP) kinase and AKT (protein kinase B). Ischemia was also associated with reduced cardiac signaling via these molecules whereas EGF-treatment opposed diabetes and/or ischemia induced changes in ERK1/2, p38 MAP kinase, and AKT-FOXO signaling. Losartan treatment improved cardiac function in diabetes but also impaired EGFR phosphorylation in diabetic heart. Co-administration of EGF rescued Losartan-mediated reduction in EGFR phosphorylation and significantly improved cardiac recovery more than with either agent alone. EGFR/erbB2 signaling is an important cardiac survival pathway whose activation, particularly in diabetes, ischemia or following treatment with drugs that inhibit this cascade, significantly improves cardiac function. These findings may have clinical relevance particularly in the treatment of diabetes-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Saghir Akhtar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.
| | | | | | | |
Collapse
|
11
|
Ezrin mRNA target site selection for DNAzymes using secondary structure and hybridization thermodynamics. Tumour Biol 2011; 32:809-17. [PMID: 21559778 DOI: 10.1007/s13277-011-0183-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022] Open
Abstract
Ezrin, a membrane organizer and linker between plasma membrane and cytoskeleton, is well documented to play an important role in the metastatic capacity of cancer cells especially for osteosarcoma cells. It has provided an ideal target for cancer gene therapy. RNA-cleaving 10-23 DNAzymes, consisting of a 15-nucleotide catalytical domain flanked by two target-specific complementary arms, can cleave the target mRNA at purine-pyrimidine dinucleotide effectively. In the present study, we designed and screened the target sites for 10-23 DNAzymes against ezrin mRNA by using multiple computational methods with combination of secondary structural and hybridization thermodynamic parameters. Then, we testified the activities of the DNAzymes directed against these selected target sites in vitro. Our results show that AU1751 is the most effective target site of ezrin mRNA for DNAzymes because of its ideal secondary structure and hybridization thermodynamics. So, there is a significant correlation between the multiple computational methods and the efficacy of the corresponding DNAzymes. These provide a rational, efficient way for DNAzymes selection.
Collapse
|
12
|
Nomani A, Haririan I, Rahimnia R, Fouladdel S, Gazori T, Dinarvand R, Omidi Y, Azizi E. Physicochemical and biological properties of self-assembled antisense/poly(amidoamine) dendrimer nanoparticles: the effect of dendrimer generation and charge ratio. Int J Nanomedicine 2010; 5:359-69. [PMID: 20517481 PMCID: PMC2875730 DOI: 10.2147/ijn.s9070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine) dendrimer (PAMAM) dendrimer and a short-stranded DNA (antisense oligonucleotide), multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS); zeta potential measurement; and atomic force microscopy (AFM). PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller molecules produce more heterodisperse and large nanoparticles when they are condensed with a cationic dendrimer. AFM images also showed that such nanoparticles were spherical. The stability of the antisense content of the nanoparticles was investigated over different charge ratios using polyacrylamide gel electrophoresis. It was clear from such analyses that much more than charge neutrality point was required to obtain stable nanoparticles. For cell uptake, self-assembled nanoparticles were prepared with PAMAM G5 and 5’-FITC labeled antisense and the uptake experiment was carried out in T47D cell culture. This investigation also shows that the cytotoxicity of the nanoparticles was dependent upon the generation and charge ratio of the PAMAM dendrimer, and the antisense concentration had no significant effect on the cytotoxicity.
Collapse
Affiliation(s)
- Alireza Nomani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Benter IF, Benboubetra M, Hollins AJ, Yousif MHM, Canatan H, Akhtar S. Early inhibition of EGFR signaling prevents diabetes-induced up-regulation of multiple gene pathways in the mesenteric vasculature. Vascul Pharmacol 2009; 51:236-45. [PMID: 19577003 DOI: 10.1016/j.vph.2009.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 06/12/2009] [Accepted: 06/23/2009] [Indexed: 01/29/2023]
Abstract
Diabetes mellitus is associated with vascular complications including an impairment of vascular function and alterations in the reactivity of blood vessels to vasoactive hormones. However, the signaling mechanisms leading to vascular dysfunction in diabetes are not fully understood. This microarray-based study was designed to identify differential gene expression between the normal and diabetic mesenteric vasculature and to investigate the effect of inhibiting epidermal growth factor receptor (EGFR) signaling on global gene expression in the mesenteric bed of streptozotocin (STZ)-induced diabetic rats. Transcriptome analysis was performed in triplicate using oligonucleotide microarrays housing 10,000 rat genes on the mesenteric bed of normal, diabetic, and diabetic rats treated with AG1478, a selective inhibitor of EGFR. Four weeks of diabetes led to a profound alteration in gene expression within the mesenteric bed with 1167 of the 3074 annotated genes being up-regulated and 141 genes down-regulated by at least 2-fold. The up-regulated gene ontologies included receptor tyrosine kinases, G-protein coupled receptors and ion channel activity. In particular, significant overexpressions of colipase, phospholipase A2, carboxypeptidases, and receptor tyrosine kinases such as EGFR, erbB2 and fibroblast growth factor receptor were observed in diabetes mesenteric vasculature. A 4-week intraperitoneal treatment of diabetic animals with AG1478 (1.2 mg/kg/alt diem) beginning on the same day as STZ injection prevented up-regulation of the majority (approximately 95%) of the genes associated with STZ diabetes including those apparently "unrelated" to the known EGFR pathway without correction of hyperglycemia. These results suggest that activation of EGFR signaling is a key initiating step that leads to induction of multiple signaling pathways in the development of diabetes-induced vascular dysfunction. Thus, therapeutic targeting of EGFR may represent a novel strategy for the prevention and/or treatment of vascular dysfunction in diabetes.
Collapse
Affiliation(s)
- Ibrahim F Benter
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| | | | | | | | | | | |
Collapse
|
14
|
Down-regulation of epidermal growth factor receptor induced by estrogens and phytoestrogens promotes the differentiation of U2OS human osteosarcoma cells. J Cell Physiol 2009; 220:35-44. [DOI: 10.1002/jcp.21724] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Benter IF, Canatan H, Benboubetra M, Yousif MHM, Akhtar S. Global upregulation of gene expression associated with renal dysfunction in DOCA-salt-induced hypertensive rats occurs via signaling cascades involving epidermal growth factor receptor: a microarray analysis. Vascul Pharmacol 2009; 51:101-9. [PMID: 19410658 DOI: 10.1016/j.vph.2009.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 04/10/2009] [Accepted: 04/17/2009] [Indexed: 12/20/2022]
Abstract
Renal dysfunction is a major cause of morbidity and mortality in patients with hypertension. In an attempt to understand the molecular mechanisms leading to renal dysfunction and in particular that of epidermal growth factor receptor (EGFR) and RasGTPase signaling, we analyzed global gene expression changes in the kidneys of deoxycorticosterone acetate (DOCA)-salt-induced hypertensive rats with and without treatment with AG1478, a selective inhibitor of EGFR tyrosine kinase, or FPTIII, a farnesyl transferase inhibitor known to inhibit RasGTPase. Microarray-based global gene expression analysis was performed in triplicate for each rat kidney taken from normotensive Wistar rats, DOCA-salt hypertensive (DH) rats, DH rats treated with AG1478, or DH rats treated with FPTIII. From the initial data set of 10,163 gene spots per group, upregulation of 2398 genes and downregulation of only 50 genes by more than 2-fold was observed in hypertensive rat kidneys compared to non-diseased controls. Interestingly, treatment of animals with AG1478 or FPTIII prevented upregulation of more than 97% of genes associated with hypertension in the rat kidney. Analysis of proteinuria, renal artery responsiveness and histopathology studies confirmed that DOCA-salt hypertensive rats had developed kidney damage over the study period and that this kidney dysfunction could be significantly prevented upon AG1478 or FPTIII treatment without normalising blood pressure. Taken together, our data imply that signaling cascades involving EGFR and/or RasGTPase pathways are key contributors to the induction of renal damage in hypertension and these and potentially other downstream effector molecules may serve as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ibrahim F Benter
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Details for predicting secondary structure of RNA sequences using free energy minimization are given. Protocols present the use of the RNAstructure computer program (for PCs) and the mfold server (for Unix platforms). The minimum free energy structure and a set of suboptimal structures with similar free energies are predicted. Prediction of high-affinity oligonucleotide binding sites to a structured RNA target is also presented.
Collapse
|
17
|
Abstract
RNAstructure is a user-friendly program for the prediction and analysis of RNA secondary structure under Microsoft Windows. This unit provides protocols for RNA secondary structure prediction and prediction of high-affinity oligonucleotide binding sites to a structured RNA target.
Collapse
Affiliation(s)
- David H Mathews
- University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
18
|
Mathews DH. Revolutions in RNA secondary structure prediction. J Mol Biol 2006; 359:526-32. [PMID: 16500677 DOI: 10.1016/j.jmb.2006.01.067] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/13/2006] [Accepted: 01/18/2006] [Indexed: 01/09/2023]
Abstract
RNA structure formation is hierarchical and, therefore, secondary structure, the sum of canonical base-pairs, can generally be predicted without knowledge of the three-dimensional structure. Secondary structure prediction algorithms evolved from predicting a single, lowest free energy structure to their current state where statistics can be determined from the thermodynamic ensemble. This article reviews the free energy minimization technique and the salient revolutions in the dynamic programming algorithm methods for secondary structure prediction. Emphasis is placed on highlighting the recently developed method, which statistically samples structures from the complete Boltzmann ensemble.
Collapse
Affiliation(s)
- David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, NY 14642, USA.
| |
Collapse
|
19
|
Sohail M, Doran G, Kang S, Akhtar S, Southern EM. Structural rearrangements in RNA on the binding of an antisense oligonucleotide: implications for the study of intra-molecular RNA interactions and the design of cooperatively acting antisense reagents with enhanced efficacy. J Drug Target 2005; 13:61-70. [PMID: 15848955 DOI: 10.1080/10611860400003825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We show that binding of an antisense oligonucleotide can lead to considerable changes in the target mRNA structure. The approaches described here are not only useful in the study of intra-molecular interactions in RNAs but can also be used to design oligonucleotides that facilitate binding of other antisense reagents. Such "cooperatively acting" antisense reagents have the potential to overcome several problems faced in their use, for example, low efficacy and non-specificity. To provide proof-of-principle, radiolabelled cyclin B5 transcript, a model mRNA, was hybridised with an antisense oligonucleotide array. An oligonucleotide sequence was selected from the array hybridisation data and was used in an RNase H/oligonucleotide library (dN12) assay to assess its ability to enhance cleavage of target RNA. This oligonucleotide ("facilitator") greatly enhanced cleavage of B5 RNA at a neighbouring site. The precise position and sequence of this "new" site was determined by further hybridisation of RNA-facilitator mixture to the B5 antisense array. Antisense oligonucleotides designed from the new region were used in combination with the facilitator in a cell-free system. The presence of the facilitator considerably enhanced cleavage of B5 RNA with these oligonucleotides. These approaches may be useful in designing antisense reagents against sequences of specific interest, such as, gene fusion sites, splice variants, mutant alleles and tightly structured RNA sites.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3Q, UK.
| | | | | | | | | |
Collapse
|
20
|
Gilmore IR, Fox SP, Hollins AJ, Sohail M, Akhtar S. The design and exogenous delivery of siRNA for post-transcriptional gene silencing. J Drug Target 2005; 12:315-40. [PMID: 15545082 DOI: 10.1080/10611860400006257] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RNA interference (RNAi) is a natural cellular process that effects post-transcriptional gene silencing in eukaryotic systems. Small interfering RNA (siRNA) molecules are the key intermediaries in this process which when exogenously administered can inhibit or "silence" the expression of any given target gene. Thus, siRNA molecules hold great promise as biological tools and as potential therapeutic agents for targeted inhibition of disease-causing genes. However, key challenges to the effective and widespread use of these polyanionic, macromolecular duplexes of RNA are their appropriate design and efficient delivery to cells in vitro and in vivo. This review highlights the current strategies used in the design of effective siRNA molecules and also summarises the main strategies being considered for the exogenous delivery of siRNA for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Ian R Gilmore
- Centre for Genome-based Therapeutics, The Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3XF, UK
| | | | | | | | | |
Collapse
|
21
|
Islam A, Thompson KSJ, Akhtar S, Handley SL. Increased 5-HT2A receptor expression and function following central glucocorticoid receptor knockdown in vivo. Eur J Pharmacol 2005; 502:213-20. [PMID: 15476747 DOI: 10.1016/j.ejphar.2004.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 06/18/2004] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
Central glucocorticoid receptor function may be reduced in depression. In vivo modelling of glucocorticoid receptor underfunctionality would assist in understanding its role in depressive illness. The role of glucocorticoid receptors in modulating 5-HT(2A) receptor expression and function in the central nervous system (CNS) is presently unclear, but 5-HT(2A) receptor function also appears altered in depression. With the aid of RNAse H accessibility mapping, we have developed a 21-mer antisense oligodeoxynucleotide (5'-TAAAAACAGGCTTCTGATCCT-3', termed GRAS-5) that showed 56% reduction in glucocorticoid receptor mRNA and 80% down-regulation in glucocorticoid receptor protein in rat C6 glioma cells. Sustained delivery to rat cerebral ventricles in slow release biodegradable polymer microspheres produced a marked decrease in glucocorticoid receptor mRNA and protein in hypothalamus (by 39% and 80%, respectively) and frontal cortex (by 26% and 67%, respectively) 5 days after a single injection, with parallel significant up-regulation of 5-HT(2A) receptor mRNA expression (13%) and binding (21%) in frontal cortex. 5-HT(2A) receptor function, determined by DOI-head-shakes, showed a 55% increase. These findings suggest that central 5-HT(2A) receptors are, directly or indirectly, under tonic inhibitory control by glucocorticoid receptor.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line, Tumor
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiology
- Gene Silencing/drug effects
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Hypothalamus/physiology
- Male
- Molecular Sequence Data
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Binding/drug effects
- Protein Binding/physiology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A/biosynthesis
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/physiology
- Receptors, Glucocorticoid/deficiency
- Receptors, Glucocorticoid/genetics
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Aminul Islam
- LHS, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | | | | | | |
Collapse
|
22
|
Hussain M, Shchepinov M, Sohail M, Benter IF, Hollins AJ, Southern EM, Akhtar S. A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides. J Control Release 2004; 99:139-55. [PMID: 15342187 DOI: 10.1016/j.jconrel.2004.06.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 06/22/2004] [Indexed: 01/25/2023]
Abstract
The optimal design of hybridisation-competent antisense oligonucleotides (ODNs) coupled with an efficient delivery system appear to be important prerequisites for the successful use of antisense reagents for gene silencing. We selected an antisense ODN complementary to an accessible region of the epidermal growth factor receptor (EGFR) mRNA with the aid of an antisense oligonucleotide scanning array. The scanning array comprised 2684 antisense ODN sequences targeting the first 120 nts in the coding region of EGFR mRNA. The array-designed antisense ODN was covalently conjugated to a novel anionic dendrimer using a pentaerythritol-based phosphoroamidite synthon via automated DNA synthesis and the ability of this conjugate to effectively deliver and down-regulate EGFR expression in cancer cells was evaluated. Each dendrimeric structure had nine ODN molecules covalently linked to a common centre at their 3' termini. This dendrimer conjugate was markedly more stable to serum nucleases compared to the free ODNs and the cellular uptake of ODN-dendrimer conjugates was up to 100-fold greater as compared to mannitol, a marker for fluid phase endocytosis, and up to 4-fold greater than naked ODN in cancer cells. ODN-dendrimer uptake was energy-dependent and mediated, at least in part, via binding to cell surface proteins; a process that was inhibited by self-competition and by competition with free ODN, salmon sperm DNA, heparin and dextran sulphate. Fluorescent microscopy studies showed a combination of punctate and more diffuse cytosolic distribution pattern for fluorescently labelled ODN-dendrimer conjugate in A431 cells implying internalization by endocytosis followed by release and sequestration of the conjugate into the cytosol. Little or no conjugate appeared to be present in the nuclei of A431 cells. In vitro RNase H-mediated cleavage assays confirmed that covalently conjugated antisense ODNs in the dendrimer conjugate were able to hybridize and cleave the array-defined hybridisation target site within the EGFR mRNA without the need for ODN dissociation from the conjugate. In cell culture, ODN-dendrimer conjugates were effective in inhibiting cancer cell growth that correlated with a marked knockdown in EGFR protein expression. These data highlight a novel anionic dendrimer delivery system for gene silencing oligonucleotides that improved their biological stability, cellular delivery and antisense activity in cultured cancer cells.
Collapse
Affiliation(s)
- Majad Hussain
- Centre for Genome-based Therapeutics, Welsh School of Pharmacy, Cardiff University, Cardiff CF10 3XF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Beale G, Hollins AJ, Benboubetra M, Sohail M, Fox SP, Benter I, Akhtar S. Gene silencing nucleic acids designed by scanning arrays: anti-EGFR activity of siRNA, ribozyme and DNA enzymes targeting a single hybridization-accessible region using the same delivery system. J Drug Target 2004; 11:449-56. [PMID: 15203934 DOI: 10.1080/1061186042000207039] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gene silencing nucleic acids such as ribozymes, DNA enzymes (DNAzymes), antisense oligonucleotides (ODNs), and small interfering (si)RNA rely on hybridization to accessible sites within target mRNA for activity. However, the accurate prediction of hybridization accessible sites within mRNAs for design of effective gene silencing reagents has been problematic. Here we have evaluated the use of scanning arrays for the effective design of ribozymes, DNAzymes and siRNA sequences targeting the epidermal growth factor receptor (EGFR) mRNA. All three gene silencing nucleic acids designed to be complementary to the same array-defined hybridization accessible-site within EGFR mRNA were effective in inhibiting the growth of EGFR over-expressing A431 cancer cells in a dose dependent manner when delivered using the cationic lipid (Lipofectin) delivery system. Effects on cell growth were correlated in all cases with concomitant dose-dependent reduction in EGFR protein expression. The control sequences did not markedly alter cell growth or EGFR expression. The ribozyme and DNAzyme exhibited similar potency in inhibiting cell growth with IC50 values of around 750 nM. In contrast, siRNA was significantly more potent with an IC50 of about 100 nM when delivered with Lipofectin. The potency of siRNA was further enhanced when Oligofectamine was used to further improve both the cellular uptake and subcellular distribution of fluorescently labelled siRNA. Our studies show that active siRNAs can be designed using hybridization accessibility profiles on scanning arrays and that siRNAs targeting the same array-designed hybridization accessible site in EGFR mRNA and delivered using the same delivery system are more potent than ribozymes and DNAzymes in inhibiting EGFR expression in A431 cells.
Collapse
Affiliation(s)
- Gary Beale
- Centre for Genome-based Therapeutics, The Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3XF, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Omidi Y, Hollins AJ, Benboubetra M, Drayton R, Benter IF, Akhtar S. Toxicogenomics of non-viral vectors for gene therapy: a microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J Drug Target 2004; 11:311-23. [PMID: 14668052 DOI: 10.1080/10611860310001636908] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Of the non-viral vectors, cationic lipid (CL) formulations are the most widely studied for the delivery of genes, antisense oligonucleotides and gene silencing nucleic acids such as small interfering RNAs. However, little is known about the impact of these delivery systems on global gene expression in target cells. In an attempt to study the geno-compatibility of CL formulations in target cells, we have used microarrays to examine the effect of Lipofectin and Oligofectamine on the gene expression profiles of human A431 epithelial cells. Using the manufacturer's recommended CL concentrations routinely used for gene delivery, cDNA microarray expression profiling revealed marked changes in the expression of several genes for both Lipofectin- and Oligofectamine-treated cells. Data from the 200 spot arrays housing 160 different genes indicated that Lipofectin or Oligofectamine treatment of A431 cells resulted in more than 2-fold altered expression of 10 and 27 genes, respectively. The downstream functional consequences of CL-induced gene expression alterations led to an increased tendency of cells to enter early apoptosis as assessed by annexin V-FITC flow cytometry analyses. This effect was greater for Oligofectamine than Lipofectin. Observed gene expression changes were not sufficient to induce any significant DNA damage as assessed by single cell gel electrophoresis (COMET) assay. These data highlight the fact that inadvertent gene expression changes can be induced by the delivery formulation alone and that these may, ultimately, have important safety implications for the use of these non-viral vectors in gene-based therapies. Also, the induced non-target gene changes should be taken into consideration in gene therapy or gene silencing experiments using CL formulations where they may potentially mask or interfere with the desired genotype and/or phenotype end-points.
Collapse
Affiliation(s)
- Yadollah Omidi
- Centre for Genome-based Therapeutics, Cardiff University, The Welsh School of Pharmacy, Redwood Building, King Edward VII Avenue, CF10 3XF Cardiff, UK
| | | | | | | | | | | |
Collapse
|