1
|
Kabata D, Ryoki A, Kitamura S, Terao K. Chain Alignment of a Rigid Ring Polymer in the Lyotropic Liquid Crystal Phase: Cyclic Amylose Tris( n-butylcarbamate) in Tetrahydrofuran and Ethyl Lactate. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daigo Kabata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akiyuki Ryoki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Shinichi Kitamura
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai 599-8570, Japan
| | - Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Rajeev A, Basavaraj MG. Confinement effect on spatio-temporal growth of spherulites from cellulose/ionic liquid solutions. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Kim D, Ryoki A, Kabata D, Kitamura S, Terao K. Lyotropic Liquid Crystallinity of Linear and Cyclic Amylose Derivatives: Amylose Tris( n-octadecylcarbamate) in Tetrahydrofuran and 2-Octanone. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- DongChan Kim
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akiyuki Ryoki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Daigo Kabata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shinichi Kitamura
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai 599-8570, Japan
| | - Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Rajeev A, Basavaraj MG. Colloidal Particle-Induced Microstructural Transition in Cellulose/Ionic Liquid/Water Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12428-12438. [PMID: 31461293 DOI: 10.1021/acs.langmuir.9b01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The role of colloidal particles in enhancing the mechanical and thermal properties of liquid crystalline (LC) gels formed in microcrystalline cellulose/1-allyl-3-methylimidazolium chloride/water mixtures is experimentally investigated by means of rheology and polarized optical microscopy (POM). The overshoot in loss modulus and increase in the melting temperature of LC domains as observed in differential scanning calorimetry signal a stronger interaction of cellulose with both hydrophobic polystyrene and hydrophilic silica nanoparticles which in turn point to considerable amphiphilic nature of cellulose. The aggregation of nanoparticles observed by POM and the rheological behavior point to the development of a sample-spanning network of cellulose-nanoparticle clusters during the sol-gel transition with an increase in concentration of water. Furthermore, the LC gels obey Chambon-Winter (CW) criterion, indicating a self-similar gel network, except at very high particle loadings. Moreover, the LC domains show a temporal evolution into a space-spanning network of cellulose spherulites. The evolution process largely depends on the particle concentration, with highly loaded samples showing quicker evolution, which leads to a violation of the CW criterion. Furthermore, the temperature-induced microstructural transition (with and without shear) is also examined.
Collapse
Affiliation(s)
- Ashna Rajeev
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
5
|
Hasegawa H, Terao K, Sato T, Nagata Y, Suginome M. Lyotropic Liquid Crystallinity of Linear and Star Poly(quinoxaline-2,3-diyl)s: Isotropic-Liquid Crystal Phase Equilibria in Tetrahydrofuran. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hirokazu Hasegawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Materials Characterization Laboratories, Toray Research Center, Inc., 3-3-7, Sonoyama, Otsu, Shiga 520-8567, Japan
| | - Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Takahiro Sato
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuuya Nagata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
6
|
Wong JTY. Architectural Organization of Dinoflagellate Liquid Crystalline Chromosomes. Microorganisms 2019; 7:microorganisms7020027. [PMID: 30678153 PMCID: PMC6406473 DOI: 10.3390/microorganisms7020027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Dinoflagellates have some of the largest genome sizes, but lack architectural nucleosomes. Their liquid crystalline chromosomes (LCCs) are the only non-architectural protein-mediated chromosome packaging systems, having high degrees of DNA superhelicity, liquid crystalline condensation and high levels of chromosomal divalent cations. Recent observations on the reversible decompaction–recompaction of higher-order structures implicated that LCCs are composed of superhelical modules (SPMs) comprising highly supercoiled DNA. Orientated polarizing light photomicrography suggested the presence of three compartments with different packaging DNA density in LCCs. Recent and previous biophysical data suggest that LCCs are composed of: (a) the highly birefringent inner core compartment (i) with a high-density columnar-hexagonal mesophase (CH-m); (b) the lower-density core surface compartment (ii.1) consisting of a spiraling chromonema; (c) the birefringent-negative periphery compartment (ii.2) comprising peripheral chromosomal loops. C(ii.1) and C(ii.2) are in dynamic equilibrium, and can merge into a single compartment during dinomitosis, regulated through multiphasic reversible soft-matter phase transitions.
Collapse
Affiliation(s)
- Joseph Tin Yum Wong
- Division of Life Science, Hong Kong University of Life Science, Clearwater Bay, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Rajeev A, Deshpande AP, Basavaraj MG. Rheology and microstructure of concentrated microcrystalline cellulose (MCC)/1-allyl-3-methylimidazolium chloride (AmimCl)/water mixtures. SOFT MATTER 2018; 14:7615-7624. [PMID: 30159579 DOI: 10.1039/c8sm01448e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Water added to a solution of microcrystalline cellulose (MCC) in 1-allyl-3-methylimidazolium chloride (AmimCl) reduces the solvent quality and causes significant changes in the flow properties and microstructure due to restructuring and aggregation of cellulose molecules. We report an experimental investigation by means of polarization optical microscopy (POM) and rheology of the distinct phases formed in 5-20 wt% MCC/AmimCl solutions due to the addition of water. With increase in the cellulose concentration, the MCC/AmimCl/water mixtures showed different morphologies such as the non-aligned cholesteric liquid crystalline (LC) domain, the coexistence of spherulite-like structures within the LC domain and a space-spanning network of spherulite-like structures at high concentrations of water. In situ microscopy during shear and POM observations pre and post shear revealed a significant increase in the size of the birefringent domains as the shear rate is increased, which continued to exist even after the cessation of shear. With an increase in the concentration of water, the zero shear viscosity of the MCC/AmimCl/water mixtures was found to go through a minimum, beyond which the aggregation of cellulose commenced. The corresponding oscillatory shear response showed a sol-gel transition with an increase in water concentration. Moreover, at high cellulose concentrations (12-20 wt%), the MCC/AmimCl/water gels exhibited self-similarity and followed the Chambon-Winter (CW) criterion. The similar phase behavior and rheological response observed for MCC dissolved in 1-butyl-3 methylimidazolium chloride (BmimCl) indicated the generality of the presented results.
Collapse
Affiliation(s)
- Ashna Rajeev
- Polymer Engineering and Colloid Science Laboratory (PECS), Department of Chemical Engineering, Indian Institute of Technology Madras, India.
| | | | | |
Collapse
|
8
|
Vidal BDC, Mello MLS. Chiral supramolecular order revealed during the formation of calf thymus and phage DNA crystals. Micron 2017; 102:44-50. [DOI: 10.1016/j.micron.2017.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 01/30/2023]
|
9
|
Affiliation(s)
- Amar Nath Gupta
- Biophysics and Complex Fluids
Group, Department of Physics, National University of Singapore, 2 Science Drive 3, Republic of Singapore 117542
| | - Johan R. C. van der Maarel
- Biophysics and Complex Fluids
Group, Department of Physics, National University of Singapore, 2 Science Drive 3, Republic of Singapore 117542
| |
Collapse
|
10
|
Sun S, Liu M, Dong F, Fan S, Yao Y. A histone-like protein induces plasmid DNA to form liquid crystals in vitro and gene compaction in vivo. Int J Mol Sci 2013; 14:23842-57. [PMID: 24322443 PMCID: PMC3876081 DOI: 10.3390/ijms141223842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/17/2013] [Accepted: 11/21/2013] [Indexed: 12/15/2022] Open
Abstract
The liquid crystalline state is a universal phenomenon involving the formation of an ordered structure via a self-assembly process that has attracted attention from numerous scientists. In this study, the dinoflagellate histone-like protein HCcp3 is shown to induce super-coiled pUC18 plasmid DNA to enter a liquid crystalline state in vitro, and the role of HCcp3 in gene condensation in vivo is also presented. The plasmid DNA (pDNA)-HCcp3 complex formed birefringent spherical particles with a semi-crystalline selected area electronic diffraction (SAED) pattern. Circular dichroism (CD) titrations of pDNA and HCcp3 were performed. Without HCcp3, pUC18 showed the characteristic B conformation. As the HCcp3 concentration increased, the 273 nm band sharply shifted to 282 nm. When the HCcp3 concentration became high, the base pair (bp)/dimer ratio fell below 42/1, and the CD spectra of the pDNA-HCcp3 complexes became similar to that of dehydrated A-form DNA. Microscopy results showed that HCcp3 compacted the super-coiled gene into a condensed state and that inclusion bodies were formed. Our results indicated that HCcp3 has significant roles in gene condensation both in vitro and in histone-less eukaryotes in vivo. The present study indicates that HCcp3 has great potential for applications in non-viral gene delivery systems, where HCcp3 may compact genetic material to form liquid crystals.
Collapse
Affiliation(s)
- Shiyong Sun
- Key Laboratory of Solid Waste Treatment and Resource Recycle & Fundamental Science on Nuclear Waste and Environmental Security Laboratory, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; E-Mail:
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; E-Mails: (S.F.); (Y.Y.)
- Authors to whom correspondence should be addressed; E-Mails: (S.S.); (F.D.); Tel./Fax: +86-816-2419569 (S.S.)
| | - Mingxue Liu
- Key Laboratory of Solid Waste Treatment and Resource Recycle & Fundamental Science on Nuclear Waste and Environmental Security Laboratory, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; E-Mail:
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle & Fundamental Science on Nuclear Waste and Environmental Security Laboratory, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (S.S.); (F.D.); Tel./Fax: +86-816-2419569 (S.S.)
| | - Shenglan Fan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; E-Mails: (S.F.); (Y.Y.)
| | - Yanchen Yao
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; E-Mails: (S.F.); (Y.Y.)
| |
Collapse
|
11
|
Terao K, Shigeuchi K, Oyamada K, Kitamura S, Sato T. Solution Properties of a Cyclic Chain Having Tunable Chain Stiffness: Cyclic Amylose Tris(n-butylcarbamate) in Θ and Good Solvents. Macromolecules 2013. [DOI: 10.1021/ma400774r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka,
Osaka 560-0043, Japan
| | - Kazuya Shigeuchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka,
Osaka 560-0043, Japan
| | - Keiko Oyamada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka,
Osaka 560-0043, Japan
| | - Shinichi Kitamura
- Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Nakaku, Sakai, 599-8531, Japan
| | - Takahiro Sato
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka,
Osaka 560-0043, Japan
| |
Collapse
|
12
|
|
13
|
Ao G, Nepal D, Aono M, Davis VA. Cholesteric and nematic liquid crystalline phase behavior of double-stranded DNA stabilized single-walled carbon nanotube dispersions. ACS NANO 2011; 5:1450-1458. [PMID: 21275385 DOI: 10.1021/nn103225r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The first lyotropic cholesteric single-walled carbon nanotube (SWNT) liquid crystal phase was obtained by dispersing SWNTs in an aqueous solution of double-stranded DNA (dsDNA). Depending on the dispersion methodology, the polydomain nematic phase previously reported for other lyotropic carbon nanotube dispersions could also be obtained. The phase behavior and dispersion microstructure were affected by the relative concentrations of dsDNA and SWNT and whether small bundles were removed prior to concentrating the dispersions. This readily controlled phase behavior opens new routes for producing SWNT films with controlled morphology.
Collapse
Affiliation(s)
- Geyou Ao
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | |
Collapse
|
14
|
Olesiak-Banska J, Mojzisova H, Chauvat D, Zielinski M, Matczyszyn K, Tauc P, Zyss J. Liquid crystal phases of DNA: Evaluation of DNA organization by two-photon fluorescence microscopy and polarization analysis. Biopolymers 2011; 95:365-75. [DOI: 10.1002/bip.21583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Theory of crystallization of a closed macromolecule. Int J Biol Macromol 2010; 47:439-44. [DOI: 10.1016/j.ijbiomac.2010.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 11/16/2022]
|
16
|
Zhu X, Ng SY, Gupta AN, Feng YP, Ho B, Lapp A, Egelhaaf SU, Forsyth VT, Haertlein M, Moulin M, Schweins R, van der Maarel JRC. Effect of crowding on the conformation of interwound DNA strands from neutron scattering measurements and Monte Carlo simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:061905. [PMID: 20866438 DOI: 10.1103/physreve.81.061905] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 03/18/2010] [Indexed: 05/29/2023]
Abstract
With a view to determining the distance between the two opposing duplexes in supercoiled DNA, we have measured small angle neutron scattering from pHSG298 plasmid (2675 base pairs) dispersed in saline solutions. Experiments were carried out under full and zero average DNA neutron scattering contrast using hydrogenated plasmid and a 1:1 mixture of hydrogenated and perdeuterated plasmid, respectively. In the condition of zero average contrast, the scattering intensity is directly proportional to the single DNA molecule scattering function (form factor), irrespective of the DNA concentration and without complications from intermolecular interference. The form factors are interpreted with Monte Carlo computer simulation. For this purpose, the many body problem of a dense DNA solution was reduced to the one of a single DNA molecule in a congested state by confinement in a cylindrical potential. It was observed that the interduplex distance decreases with increasing concentration of salt as well as plasmid. Therefore, besides ionic strength, DNA crowding is shown to be important in controlling the interwound structure and site juxtaposition of distal segments of supercoiled DNA. This first study exploiting zero average DNA contrast has been made possible by the availability of perdeuterated plasmid.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Department of Physics, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Song H, Zhang J, Niu Y, Wang Z. Phase Transition and Rheological Behaviors of Concentrated Cellulose/Ionic Liquid Solutions. J Phys Chem B 2010; 114:6006-13. [DOI: 10.1021/jp1013863] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongzan Song
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China, Graduate School, Chinese Academy of Sciences, Beijing, 100049 P. R. China, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230026 P. R. China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China, Graduate School, Chinese Academy of Sciences, Beijing, 100049 P. R. China, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230026 P. R. China
| | - Yanhua Niu
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China, Graduate School, Chinese Academy of Sciences, Beijing, 100049 P. R. China, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230026 P. R. China
| | - Zhigang Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China, Graduate School, Chinese Academy of Sciences, Beijing, 100049 P. R. China, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230026 P. R. China
| |
Collapse
|
18
|
Mojzisova H, Olesiak J, Zielinski M, Matczyszyn K, Chauvat D, Zyss J. Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA. Biophys J 2010; 97:2348-57. [PMID: 19843467 DOI: 10.1016/j.bpj.2009.07.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 11/18/2022] Open
Abstract
Highly concentrated DNA solutions exhibit self-ordering properties such as the generation of liquid-crystalline phases. Such organized domains may play an important role in the global chromatin topology but can also be used as a simple model for the study of more complex 3D DNA structures. In this work, using polarized two-photon fluorescence microscopy, we report on the orientation of DNA molecules in liquid-crystalline phases. For this purpose, we analyze the signal emitted by fluorophores that are noncovalently bound to DNA strands. In nonlinear processes, excitation occurs exclusively in the focal volume, which offers advantages such as the reduction of photobleaching of out-of-focus molecules and intrinsic 3D sectioning capability. Propidium iodide and Hoechst, two fluorophores with different DNA binding modes, have been considered. Polarimetric measurements show that the dyes follow the alignment with respect to the DNA strands and allow the determination of the angles between the emission dipoles and the longitudinal axis of the DNA double strand. These results provide a useful starting point toward the application of two-photon polarimetry techniques to determine the local orientation of condensed DNA in physiological conditions.
Collapse
Affiliation(s)
- Halina Mojzisova
- Laboratoire de Photonique Quantique et Moléculaire, Institut d'Alembert, Ecole Normale Supérieure de Cachan, Cachan, France.
| | | | | | | | | | | |
Collapse
|
19
|
Lim W, Ng SY, Lee C, Feng YP, van der Maarel JRC. Conformational response of supercoiled DNA to confinement in a nanochannel. J Chem Phys 2009; 129:165102. [PMID: 19045317 DOI: 10.1063/1.2992076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Monte Carlo simulations were done to study the conformation of supercoiled DNA confined in a nanochannel. The molecule has a superhelical density of around -0.05 and is bathed in a monovalent salt solution with an ionic strength of 2, 10, or 150 mM. The cross-sectional diameter of the circular shaped nanochannel was varied in the range of 10 to 80 nm. The conformational properties were characterized by the writhing number and the distribution in the distance between the two opposing strands of the superhelix. With increasing confinement, as set by a smaller tube diameter and/or decreased screening of the Coulomb interaction, the supercoil becomes more tightly interwound and long-range structural features such as branching and the formation of hairpins are progressively suppressed. Analysis of the energetics shows a concurrent increase in electrostatic energy and energy of interaction of the supercoil with the wall, but the elastic twisting energy decreases. Confinement in a nanochannel or otherwise hence results in a decrease in the absolute value of the twist exerted on the duplex. The bending energy remains approximately constant, which means that there are no significant deflections from the wall. The simulation results are interpreted with theory based on the wormlike chain model, including the effects of the wall, charge, elasticity, and configurational entropy. It was found that the theory is reasonably successful in predicting the structural response to the confinement at the local level of the diameter and pitch of the supercoil.
Collapse
Affiliation(s)
- Wilber Lim
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | | | | | | | | |
Collapse
|
20
|
Sau SP, Ramanathan KV. Visualization of Enantiomers in the Liquid-Crystalline Phase of a Fragmented DNA Solution. J Phys Chem B 2009; 113:1530-2. [DOI: 10.1021/jp806534v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sujay P. Sau
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - K. V. Ramanathan
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
21
|
Ramos JÉB, Neto JR, de Vries R. Polymer induced condensation of DNA supercoils. J Chem Phys 2008; 129:185102. [DOI: 10.1063/1.2998521] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Corsi J, Dymond MK, Ces O, Muck J, Zink D, Attard GS. DNA that is dispersed in the liquid crystalline phases of phospholipids is actively transcribed. Chem Commun (Camb) 2008:2307-9. [DOI: 10.1039/b801199k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Creek JA, Ziegler GR, Runt J. Amylose Crystallization from Concentrated Aqueous Solution. Biomacromolecules 2006; 7:761-70. [PMID: 16529412 DOI: 10.1021/bm050766x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maize amylose, separated from granular starch by means of an aqueous leaching process, was used to investigate spherulite formation from concentrated mixtures of starch in water. Amylose (10-20%, w/w) was found to form a spherulitic semicrystalline morphology over a wide range of cooling rates (1-250 degrees C/min), provided it was first heated to >170 degrees C. This is explained through the effect of temperature on chain conformation. A maximum quench temperature of approximately 70 degrees C was required to produce spherulitic morphology. Quench temperatures between 70 and 110 degrees C produced a gel-like morphology. This is explained on the basis of the relative kinetics of liquid-liquid phase separation vis-à-vis crystallization. The possibility of the presence of a liquid crystalline phase affecting the process of spherulite formation is discussed.
Collapse
Affiliation(s)
- John A Creek
- The Pennsylvania State University, 116 Borland Lab, University Park, 16801, USA
| | | | | |
Collapse
|
24
|
Stevenson CL, Bennett DB, Lechuga-Ballesteros D. Pharmaceutical liquid crystals: the relevance of partially ordered systems. J Pharm Sci 2006; 94:1861-80. [PMID: 16052511 DOI: 10.1002/jps.20435] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pharmaceutical solids have generally been characterized as either three-dimensional crystals or amorphous solids based on X-ray powder diffraction and modulated temperature differential scanning calorimetry. In contrast, fewer examples of thermotropic and lyotropic liquid crystals, or mesophases, appear in the pharmaceutical literature, and that literature teaches that the aforementioned analytical techniques should be complemented with polarized light microscopy and small-angle X-ray scattering in order to effectively identify potential liquid crystalline states. Lyotropic liquid crystals are induced by the presence of solvent, and have been extensively described elsewhere in the context of emulsion technology; however, other pharmaceutical examples are emerging. Thermotropic liquid crystals are induced by a change in temperature and are essentially free of solvent, where more pharmaceutical applications appear in the literature. In the present review the general structural characteristics that favor the formation of liquid crystalline mesophases are categorized by therapeutic target and molecular size, and the analytical means of their identification are presented.
Collapse
|
25
|
Abstract
Nucleic acids are characterized by a vast structural variability. Secondary structural conformations include the main polymorphs A, B, and Z, cruciforms, intrinsic curvature, and multistranded motifs. DNA secondary motifs are stabilized and regulated by the primary base sequence, contextual effects, environmental factors, as well as by high-order DNA packaging modes. The high-order modes are, in turn, affected by secondary structures and by the environment. This review is concerned with the flow of structural information among the hierarchical structural levels of DNA molecules, the intricate interplay between the various factors that affect these levels, and the regulation and physiological significance of DNA high-order structures.
Collapse
Affiliation(s)
- Abraham Minsky
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
26
|
Spakowitz AJ, Wang ZG. Semiflexible polymer solutions. I. Phase behavior and single-chain statistics. J Chem Phys 2003. [DOI: 10.1063/1.1628669] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|