1
|
Dolezal R. Computational Analysis of the Fully Activated Orexin Receptor 2 across Various Thermodynamic Ensembles with Surface Tension Monitoring and Markov State Modeling. J Phys Chem B 2025; 129:1976-1996. [PMID: 39935320 DOI: 10.1021/acs.jpcb.4c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
In this study, we investigated the stability of the fully activated conformation of the orexin receptor 2 (OX2R) embedded in a pure POPC bilayer using MD simulations. Various thermodynamic ensembles (i.e., NPT, NVT, NVE, NPAT, μVT, and NPγT) were employed to explore the dynamical heterogeneity of the system in a comprehensive way. In addition, informational similarity metrics (e.g., Jensen-Shannon divergence) as well as Markov state modeling approaches were utilized to elucidate the receptor kinetics. Special attention was paid to assessing surface tension within the simulation box, particularly under NPγT conditions, where 21 nominal surface tension constants were evaluated. Our findings suggest that traditional thermodynamic ensembles such as NPT may not adequately control physical properties of the POPC membrane, impacting the plausibility of the OX2R model. In general, the performed study underscores the importance of employing the NPγT ensemble for computational investigations of membrane-embedded receptors, as it effectively maintains zero surface tension in the simulated system. These results offer valuable insights for future research aimed at understanding receptor dynamics and designing targeted therapeutics.
Collapse
Affiliation(s)
- Rafael Dolezal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 03 Hradec Kralove, Czech Republic
- Department of Epidemiology, Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic
| |
Collapse
|
2
|
Jalali P, Nowroozi A, Moradi S, Shahlaei M. Exploration of lipid bilayer mechanical properties using molecular dynamics simulation. Arch Biochem Biophys 2024; 761:110151. [PMID: 39265694 DOI: 10.1016/j.abb.2024.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Important biological structures known for their exceptional mechanical qualities, lipid bilayers are essential to many cellular functions. Fluidity, elasticity, permeability, stiffness, tensile strength, compressibility, shear viscosity, line tension, and curvature elasticity are some of the fundamental characteristics affecting their behavior. The purpose of this review is to examine these characteristics in more detail by molecular dynamics simulation, elucidating their importance and the elements that lead to their appearance in lipid bilayers. Comprehending the mechanical characteristics of lipid bilayers is critical for creating medications, drug delivery systems, and biomaterials that interact with biological membranes because it allows one to understand how these materials respond to different stresses and deformations. The influence of mechanical characteristics on important lipid bilayer properties is examined in this review. The mechanical properties of lipid bilayers were clarified through the use of molecular dynamics simulation analysis techniques, including bilayer thickness, stress-strain analysis, lipid bilayer area compressibility, membrane bending rigidity, and time- or ensemble-averaged the area per lipid evaluation. We explain the significance of molecular dynamics simulation analysis methods, providing important new information about the stability and dynamic behavior of the bilayer. In the end, we hope to use molecular dynamics simulation to provide a comprehensive understanding of the mechanical properties and behavior of lipid bilayers, laying the groundwork for further studies and applications. Taken together, careful investigation of these mechanical aspects deepens our understanding of the adaptive capacities and functional roles of lipid bilayers in biological environments.
Collapse
Affiliation(s)
- Parvin Jalali
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Nowroozi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Cordina RJ, Smith B, Tuttle T. Mathematical and computational modeling of fats and triacylglycerides. Compr Rev Food Sci Food Saf 2024; 23:e13316. [PMID: 38506169 DOI: 10.1111/1541-4337.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
Fats and oils are found in many food products; however, their macroscopic properties are difficult to predict, especially when blending different fats or oils together. With difficulties in sourcing specific fats or oils, whether due to availability or pricing, food companies may be required to find alternative sources for these ingredients, with possible differences in ingredient performance. Mathematical and computational modeling of these ingredients can provide a quick way to predict their properties, avoiding costly trials or manufacturing problems, while, most importantly, keeping the consumers happy. This review covers a range of mathematical models for triacylglycerides (TAGs) and fats, namely, models for the prediction of melting point, solid fat content, and crystallization temperature and composition. There are a number of models that have been designed for both TAGs and fats and which have been shown to agree very well with empirical measurements, using both kinetic and thermodynamic approaches, with models for TAGs being used to, in turn, predict fat properties. The last section describes computational models to simulate the behavior of TAGs using molecular dynamics (MD). Simulation of TAGs using MD, however, is still at an early stage, although the most recent papers on this topic are bringing this area up to speed.
Collapse
Affiliation(s)
- Robert J Cordina
- Cadbury UK Ltd., Birmingham, UK
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | | | - Tell Tuttle
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| |
Collapse
|
4
|
Piasentin N, Lian G, Cai Q. In Silico Prediction of Stratum Corneum Partition Coefficients via COSMOmic and Molecular Dynamics Simulations. J Phys Chem B 2023; 127:2719-2728. [PMID: 36930176 PMCID: PMC10068742 DOI: 10.1021/acs.jpcb.2c08566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Stratum corneum (SC) is the main barrier of human skin where the inter-corneocytes lipids provide the main pathway for transdermal permeation of functional actives of skin care and health. Molecular dynamics (MD) has been increasingly used to simulate the SC lipid bilayer structure so that the barrier property and its affecting factors can be elucidated. Among reported MD simulation studies, solute partition in the SC lipids, an important parameter affecting SC permeability, has received limited attention. In this work, we combine MD simulation with COSMOmic to predict the partition coefficients of dermatologically relevant solutes in SC lipid bilayer. Firstly, we run MD simulations to obtain equilibrated SC lipid bilayers with different lipid types, compositions, and structures. Then, the simulated SC lipid bilayer structures are fed to COSMOmic to calculate the partition coefficients of the solutes. The results show that lipid types and bilayer geometries play a minor role in the predicted partition coefficients. For the more lipophilic solutes, the predicted results of solute partition in SC lipid bilayers agree well with reported experimental values of solute partition in extracted SC lipids. For the more hydrophilic molecules, there is a systematical underprediction. Nevertheless, the MD/COSMOmic approach correctly reproduces the phenomenological correlation between the SC lipid/water partition coefficients and the octanol/water partition coefficients. Overall, the results show that the MD/COSMOmic approach is a fast and valid method for predicting solute partitioning into SC lipids and hence supporting the assessment of percutaneous absorption of skin care ingredients, dermatological drugs as well as environmental pollutants.
Collapse
Affiliation(s)
- Nicola Piasentin
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K.,Unilever R&D Colworth, Unilever, Sharnbrook MK441LQ, U.K
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K.,Unilever R&D Colworth, Unilever, Sharnbrook MK441LQ, U.K
| | - Qiong Cai
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K
| |
Collapse
|
5
|
Pillai VV, Kumari P, Benedetto A, Gobbo D, Ballone P. Absorption of Phosphonium Cations and Dications into a Hydrated POPC Phospholipid Bilayer: A Computational Study. J Phys Chem B 2022; 126:4272-4288. [PMID: 35666883 PMCID: PMC9207913 DOI: 10.1021/acs.jpcb.2c02212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Molecular dynamics (MD) based on an empirical force field is applied to investigate the effect of phosphonium cations ([P6,6,6,6]+) and geminal dications ([DxC10]2+) inserted at T = 300 K into the hydration layer separating planar POPC phospholipid bilayers. Up to high concentration, nearly every added cation and dication becomes absorbed into the lipid phase. Absorption takes place during several microseconds and is virtually irreversible. The neutralizing counterions ([Cl]-, in the present simulation) remain dissolved in water, giving origin to the charge separation and the strong electrostatic double layer at the water/lipid interface. Incorporation of cations and dications changes the properties of the lipid bilayer such as diffusion, viscosity, and the electrostatic pattern. At high ionic concentration, the bilayer acquires a long-wavelength standing undulation, corresponding to a change of phase from fluid planar to ripple. All these changes are potentially able to affect processes relevant in the context of cell biology. The major difference between cations and dications concerns the kinetics of absorption, which takes place nearly two times faster in the [P6,6,6,6]+ case, and for [DxC10]2+ dications displays a marked separation into two-stages, corresponding to the easy absorption of the first phosphonium head of the dication and the somewhat more activated absorption of the second phosphonium head of each dication.
Collapse
Affiliation(s)
- V. V.
S. Pillai
- School
of Physics, University College Dublin, Dublin 4, Ireland
- Conway
Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin
4, Ireland
| | - P. Kumari
- School
of Physics, University College Dublin, Dublin 4, Ireland
- Conway
Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin
4, Ireland
| | - A. Benedetto
- School
of Physics, University College Dublin, Dublin 4, Ireland
- Conway
Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin
4, Ireland
- Department
of Sciences, University of Roma Tre, I-00154 Rome, Italy
| | - D. Gobbo
- School
of Pharmaceutical Sciences and ISPSO, University
of Geneva, Rue Michel-Servet
1, CH-1211, Geneva
4, Switzerland
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, I-16163 Genova, Italy
| | - P. Ballone
- School
of Physics, University College Dublin, Dublin 4, Ireland
- Conway
Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin
4, Ireland
| |
Collapse
|
6
|
Capecchi A, Cai X, Personne H, Köhler T, van Delden C, Reymond JL. Machine learning designs non-hemolytic antimicrobial peptides. Chem Sci 2021; 12:9221-9232. [PMID: 34349895 PMCID: PMC8285431 DOI: 10.1039/d1sc01713f] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/05/2021] [Indexed: 12/28/2022] Open
Abstract
Machine learning (ML) consists of the recognition of patterns from training data and offers the opportunity to exploit large structure-activity databases for drug design. In the area of peptide drugs, ML is mostly being tested to design antimicrobial peptides (AMPs), a class of biomolecules potentially useful to fight multidrug-resistant bacteria. ML models have successfully identified membrane disruptive amphiphilic AMPs, however mostly without addressing the associated toxicity to human red blood cells. Here we trained recurrent neural networks (RNN) with data from DBAASP (Database of Antimicrobial Activity and Structure of Peptides) to design short non-hemolytic AMPs. Synthesis and testing of 28 generated peptides, each at least 5 mutations away from training data, allowed us to identify eight new non-hemolytic AMPs against Pseudomonas aeruginosa, Acinetobacter baumannii, and methicillin-resistant Staphylococcus aureus (MRSA). These results show that machine learning (ML) can be used to design new non-hemolytic AMPs.
Collapse
Affiliation(s)
- Alice Capecchi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Xingguang Cai
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Hippolyte Personne
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva Switzerland
- Service of Infectious Diseases, University Hospital of Geneva Geneva Switzerland
| | - Christian van Delden
- Department of Microbiology and Molecular Medicine, University of Geneva Switzerland
- Service of Infectious Diseases, University Hospital of Geneva Geneva Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
7
|
Marzuoli I, Cruz CHB, Lorenz CD, Fraternali F. Nanocapsule designs for antimicrobial resistance. NANOSCALE 2021; 13:10342-10355. [PMID: 34137751 DOI: 10.1039/d0nr08146a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The pressing need of new antimicrobial products is growing stronger, particularly because of widespread antimicrobial resistance, endangering our ability to treat common infections. The recent coronavirus pandemic has dramatically highlighted the necessity of effective antibacterial and antiviral protection. This work explores at the molecular level the mechanism of action of antibacterial nanocapsules assembled in virus-like particles, their stability and their interaction with mammal and antimicrobial model membranes. We use Molecular Dynamics with force-fields of different granularity and protein design strategies to study the stability, self-assembly and membrane poration properties of these nanocapsules.
Collapse
Affiliation(s)
- Irene Marzuoli
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| | - Carlos H B Cruz
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| | | | - Franca Fraternali
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| |
Collapse
|
8
|
Tot A, Maksimović I, Putnik-Delić M, Daničić M, Gadžurić S, Bešter-Rogač M, Vraneš M. The effect of polar head group of dodecyl surfactants on the growth of wheat and cucumber. CHEMOSPHERE 2020; 254:126918. [PMID: 32957302 DOI: 10.1016/j.chemosphere.2020.126918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
The increasing application of various surfactants nowadays, may lead to the contamination of the natural environment and represent potential threat to terrestrial higher plants. In this article, the effect of 13 surfactants, with dodecyl alkyl chain and various aromatic (imidazolium, pyridinium, thiazolium) and aliphatic (guanidinium, ammonium, thiosemicarbazidium) polar heads, on germination, development and growth of wheat and cucumber was investigated. The study aimed to prove how changes in lipophilicity of surfactants and their various structural modifications (existence of the aliphatic or aromatic polar group, the introduction of oxygen and sulfur) influence toxicity towards investigated plants. The calculated lipophilic parameter (AlogP) is shown to be a useful parameter for predicting potential toxicity of the compound. The strategy of using surfactants with aliphatic polar heads instead of aromatic prove to be a promising strategy in reducing harmful effect, as well as the introduction of polar groups in the structure of cation. From all investigated compounds, surfactants with imidazolium polar head displayed the most harmful effect towards wheat and cucumber. The cucumber seeds were more sensitive to the addition of surfactants comparing to wheat. All obtained experimental results were additionally investigated using computational methods, simulating the transport of surfactants through a lipid bilayer. The influence of cation tendency to fit in lipid bilayer structure was correlated with toxicity. For the first time, it is concluded that cation ability to mimic the structure of bilayer have less harmful effect on plant development.
Collapse
Affiliation(s)
- Aleksandar Tot
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000, Novi Sad, Serbia
| | - Ivana Maksimović
- University of Novi Sad, Faculty of Agriculture, Trg D. Obradovića 8, 21000, Novi Sad, Serbia
| | - Marina Putnik-Delić
- University of Novi Sad, Faculty of Agriculture, Trg D. Obradovića 8, 21000, Novi Sad, Serbia
| | - Milena Daničić
- University of Novi Sad, Faculty of Agriculture, Trg D. Obradovića 8, 21000, Novi Sad, Serbia
| | - Slobodan Gadžurić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000, Novi Sad, Serbia
| | - Marija Bešter-Rogač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna Pot 113, 1000, Ljubljana, Slovenia
| | - Milan Vraneš
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000, Novi Sad, Serbia.
| |
Collapse
|
9
|
Yu Y, Klauda JB. Update of the CHARMM36 United Atom Chain Model for Hydrocarbons and Phospholipids. J Phys Chem B 2020; 124:6797-6812. [PMID: 32639155 DOI: 10.1021/acs.jpcb.0c04795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accurate lipid force field (FF) parameters used in molecular dynamics (MD) simulations are crucial for understanding the properties of lipid-containing systems and biological processes related to lipids. The last update of the CHARMM36 united atom chain model (C36UA) was in 2013 [Lee, S. J. Phys. Chem. B 2014, 118, 547 556]; it utilized CHARMM36 (C36) lipid FF parameters for headgroups and OPLS-UA Lennard-Jones (LJ) parameters for tails. Simulations with the FF were able to reproduce many experimental observables of lipid bilayers accurately, but to be more applicable for a wide range of lipids, additional FF parameter optimization was needed. In this work, we present an update of the model, named C36UAr. The parameterization included the LJ parameters for hydrocarbons and related dihedrals. Bulk liquid properties (density, heat of vaporization, isothermal compressibility, and diffusion constant) of model compounds were used as targets for the LJ parameter fitting, and dihedrals were fit to either quantum mechanical (QM) or potential of mean force (PMF) calculations using C36. Thermodynamic reweighting was used to further improve the parameters. Bilayer simulations of various lipid headgroups (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol) and tails (saturated, monounsaturated, and polyunsaturated) were performed to validate the model, and significant improvements were seen in bilayer properties, including surface area, membrane thicknesses, NMR deuterium order parameters, and density profiles. C36UAr was also compared to the hydrogen mass repartitioning (HMR) method. The high accuracy and competitive efficiency shown in this study make C36UAr one of the best choices for studies of membrane structure and membrane-associated proteins.
Collapse
|
10
|
Zheng W, Huang W, Song Z, Tang Z, Sun W. Insight into the structure-antibacterial activity of amino cation-based and acetate anion-based ionic liquids from computational interactions with the POPC phospholipid bilayer. Phys Chem Chem Phys 2020; 22:15573-15581. [PMID: 32613219 DOI: 10.1039/d0cp02353a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Investigations relevant to ionic liquids (ILs) as antibacterial agents have drawn considerable attention. However, the high cost and potential toxicity of ILs have severely limited their extensive applications, which has motivated researchers to design inexpensive and health-benign ILs. In this work, the interactions between the hydrated zwitterionic phospholipid (POPC) bilayer and a series of hypothetical amino cation-based and acetate anion-based ILs with different counterparts were investigated using molecular dynamics (MD) simulations to predict their antibacterial abilities. The cations of the ILs were found to insert into the lipid bilayer spontaneously, especially amino cations. Reorientation of the inserted imidazolium-based cations was observed, while the inserted amino cations showed no obvious reorientation phenomena, probably because of the strong charge interactions between the positive NH3 groups of the amino cation and the negative PO4 groups of the lipid bilayer. Due to their strong affinity with water, acetate-based anions disperse better in water solution, which weakens the insertion of the cations into the lipid bilayer to some extent. The structure and dynamic properties of the lipid bilayer, such as electrostatic potential, local ordering, area per lipid, volume per lipid, bilayer thickness, and lateral diffusion, are significantly influenced by the insertion of the cations, which results in disorder of the lipid bilayer and further disruption of the activity of the cell membrane. The insights into the relationship between the structures of ILs and their antibacterial activity in this work will provide a good reference for the screening and design of less expensive, safer, and greener IL candidates as antibacterial agents.
Collapse
Affiliation(s)
- Weizhong Zheng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | |
Collapse
|
11
|
Cellular absorption of small molecules: free energy landscapes of melatonin binding at phospholipid membranes. Sci Rep 2020; 10:9235. [PMID: 32513935 PMCID: PMC7280225 DOI: 10.1038/s41598-020-65753-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/05/2020] [Indexed: 12/28/2022] Open
Abstract
Free energy calculations are essential to unveil mechanisms at the atomic scale such as binding of small solutes and their translocation across cell membranes, eventually producing cellular absorption. Melatonin regulates biological rhythms and is directly related to carcinogenesis and neurodegenerative disorders. Free energy landscapes obtained from well-tempered metadynamics simulations precisely describe the characteristics of melatonin binding to specific sites in the membrane and reveal the role of cholesterol in free energy barrier crossing. A specific molecular torsional angle and the distance between melatonin and the center of the membrane along the normal to the membrane Z-axis have been considered as suitable reaction coordinates. Free energy barriers between two particular orientations of the molecular structure (folded and extended) have been found to be of about 18 kJ/mol for z-distances of about 1–2 nm. The ability of cholesterol to expel melatonin out of the internal regions of the membrane towards the interface and the external solvent is explained from a free energy perspective. The calculations reported here offer detailed free energy landscapes of melatonin embedded in model cell membranes and reveal microscopic information on its transition between free energy minima, including the location of relevant transition states, and provide clues on the role of cholesterol in the cellular absorption of small molecules.
Collapse
|
12
|
Marzuoli I, Margreitter C, Fraternali F. Lipid Head Group Parameterization for GROMOS 54A8: A Consistent Approach with Protein Force Field Description. J Chem Theory Comput 2019; 15:5175-5193. [PMID: 31433640 PMCID: PMC7377650 DOI: 10.1021/acs.jctc.9b00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Membranes
are a crucial component of both bacterial and mammalian
cells, being involved in signaling, transport, and compartmentalization.
This versatility requires a variety of lipid species to tailor the
membrane’s behavior as needed, increasing the complexity of
the system. Molecular dynamics simulations have been successfully
applied to study model membranes and their interactions with proteins,
elucidating some crucial mechanisms at the atomistic detail and thus
complementing experimental techniques. An accurate description of
the functional interplay of the diverse membrane components crucially
depends on the selected parameters that define the adopted force field.
A coherent parameterization for lipids and proteins is therefore needed.
In this work, we propose and validate new lipid head group parameters
for the GROMOS 54A8 force field, making use of recently published
parametrizations for key chemical moieties present in lipids. We make
use additionally of a new canonical set of partial charges for lipids,
chosen to be consistent with the parameterization of soluble molecules
such as proteins. We test the derived parameters on five phosphocholine
model bilayers, composed of lipid patches four times larger than the
ones used in previous studies, and run 500 ns long simulations of
each system. Reproduction of experimental data like area per lipid
and deuterium order parameters is good and comparable with previous
parameterizations, as well as the description of liquid crystal to
gel-phase transition. On the other hand, the orientational behavior
of the head groups is more realistic for this new parameter set, and
this can be crucial in the description of interactions with other
polar molecules. For that reason, we tested the interaction of the
antimicrobial peptide lactoferricin with two model membranes showing
that the new parameters lead to a weaker peptide–membrane binding
and give a more realistic outcome in comparing binding to antimicrobial
versus mammal membranes.
Collapse
Affiliation(s)
- Irene Marzuoli
- Randall Centre for Cell and Molecular Biology , King's College London , London SE1 1UL , U.K
| | - Christian Margreitter
- Randall Centre for Cell and Molecular Biology , King's College London , London SE1 1UL , U.K
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biology , King's College London , London SE1 1UL , U.K
| |
Collapse
|
13
|
Leonard AN, Wang E, Monje-Galvan V, Klauda JB. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chem Rev 2019; 119:6227-6269. [DOI: 10.1021/acs.chemrev.8b00384] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Stachura SS, Malajczuk CJ, Kuprusevicius E, Mancera RL. Influence of Bilayer Size and Number in Multi-Bilayer DOPC Simulations at Full and Low Hydration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2399-2411. [PMID: 30632763 DOI: 10.1021/acs.langmuir.8b03212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biophysical studies of model cell membranes at full and low hydration are usually carried out using scattering measurements on multi-bilayer systems. Molecular simulations of lipid bilayers aimed at reproducing those experimental conditions are usually conducted using single bilayers with different amounts of water. These simulation conditions may lead to artifacts arising from size effects and self-interactions because of periodic boundary conditions. We have tested the influence of the size and number of bilayers on membrane properties using the Lipid14 force field for lipids in molecular dynamics simulations of 1,2-dioleoyl- sn-glycero-3-phosphocholine bilayers at full hydration (44 water molecules per lipid), low hydration (18 water molecules per lipid), and dehydration (9 water molecules per lipid). A number of additional simulations were conducted with the Slipids force field for comparison. We have found that the average area per lipid (APL), thickness, mass density profiles, and acyl tail order parameters are insensitive to the size and the number of bilayers for all hydration states. The Lipid14 force field can also successfully reproduce the experimentally observed decrease in APL and corresponding increase in bilayer thickness upon dehydration, reflecting the increase in ordering as the system becomes more gel-like. Additionally, decreasing hydration levels were associated with a trend away from normal lateral diffusion and toward more subdiffusive regimes across both force fields. In summary, at least for the Lipid14 force field, the use of a single bilayer with 128 phospholipid molecules provides an adequate representation of multi-bilayer systems at varying levels of hydration.
Collapse
Affiliation(s)
- Sławomir S Stachura
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation , Curtin University , GPO Box U1987, Perth , Western Australia 6845 , Australia
| | - Chris J Malajczuk
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation , Curtin University , GPO Box U1987, Perth , Western Australia 6845 , Australia
| | - Egidijus Kuprusevicius
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation , Curtin University , GPO Box U1987, Perth , Western Australia 6845 , Australia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation , Curtin University , GPO Box U1987, Perth , Western Australia 6845 , Australia
| |
Collapse
|
15
|
Feng S, Hu Y, Liang H. Entropic elasticity based coarse-grained model of lipid membranes. J Chem Phys 2018; 148:164705. [PMID: 29716201 DOI: 10.1063/1.5023562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Various models for lipid bilayer membranes have been presented to investigate their morphologies. Among them, the aggressive coarse-grained models, where the membrane is represented by a single layer of particles, are computationally efficient and of practical importance for simulating membrane dynamics at the microscopic scale. In these models, soft potentials between particle pairs are used to maintain the fluidity of membranes, but the underlying mechanism of the softening requires further clarification. We have analyzed the membrane area decrease due to thermal fluctuations, and the results demonstrate that the intraparticle part of entropic elasticity is responsible for the softening of the potential. Based on the stretching response of the membrane, a bottom-up model is developed with an entropic effect explicitly involved. The model reproduces several essential properties of the lipid membrane, including the fluid state and a plateau in the stretching curve. In addition, the area compressibility modulus, bending rigidity, and spontaneous curvature display linear dependence on model parameters. As a demonstration, we have investigated the closure and morphology evolution of membrane systems driven by spontaneous curvature, and vesicle shapes observed experimentally are faithfully reproduced.
Collapse
Affiliation(s)
- Shuo Feng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yucai Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
16
|
Elola MD, Rodriguez J. Influence of Cholesterol on the Dynamics of Hydration in Phospholipid Bilayers. J Phys Chem B 2018; 122:5897-5907. [PMID: 29742895 DOI: 10.1021/acs.jpcb.8b00360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the dynamics of interfacial waters in dipalmitoylphosphatidylcholine (DPPC) bilayers upon the addition of cholesterol, by molecular dynamics simulations. Our data reveal that the inclusion of cholesterol modifies the membrane aqueous interfacial dynamics: waters diffuse faster, their rotational decay time is shorter, and the DPPC/water hydrogen bond dynamics relaxes faster than in the pure DPPC membrane. The observed acceleration of the translational water dynamics agrees with recent experimental results, in which, by means of NMR techniques, an increment of the surface water diffusivity is measured upon the addition of cholesterol. A microscopic analysis of the lipid/water hydrogen bond network at the interfacial region suggests that the mechanism underlying the observed water mobility enhancement is given by the rupture of a fraction of interlipid water bridge hydrogen bonds connecting two different DPPC molecules, concomitant to the formation of new lipid/solvent bonds, whose dynamics is faster than that of the former. The consideration of a simple two-state model for the decay of the hydrogen bond correlation function yielded excellent results, obtaining two well-separated characteristic time scales: a slow one (∼250 ps) associated with bonds linking two DPPC molecules, and a fast one (∼15 ps), related to DPPC/solvent bonds.
Collapse
Affiliation(s)
- M Dolores Elola
- Departamento de Física , Comisión Nacional de Energía Atómica , Av Libertador 8250, 1429 Buenos Aires , Argentina
| | - Javier Rodriguez
- Departamento de Física , Comisión Nacional de Energía Atómica , Av Libertador 8250, 1429 Buenos Aires , Argentina.,ECyT , UNSAM , Martín de Irigoyen 3100, 1650 San Martín, Provincia de Buenos Aires , Argentina
| |
Collapse
|
17
|
Lee K, Zhang L, Yi Y, Wang X, Yu Y. Rupture of Lipid Membranes Induced by Amphiphilic Janus Nanoparticles. ACS NANO 2018; 12:3646-3657. [PMID: 29617553 DOI: 10.1021/acsnano.8b00759] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The surface coatings of nanoparticles determine their interaction with biomembranes, but studies have been limited almost exclusively to nanoparticles with a uniform surface chemistry. Although nanoparticles are increasingly made with complex surface chemistries to achieve multifunctionalities, our understanding of how a heterogeneous surface coating affects particle-biomembrane interaction has been lagging far behind. Here we report an investigation of this question in an experimental system consisting of amphiphilic "two-faced" Janus nanoparticles and supported lipid membranes. We show that amphiphilic Janus nanoparticles at picomolar concentrations induce defects in zwitterionic lipid bilayers. In addition to revealing the various effects of hydrophobicity and charge in particle-bilayer interactions, we demonstrate that the Janus geometry-the spatial segregation of hydrophobicity and charges on particle surface-causes nanoparticles to bind more strongly to bilayers and induce defects more effectively than particles with uniformly mixed surface functionalities. We combine experiments with computational simulation to further elucidate how amphiphilic Janus nanoparticles extract lipids to rupture intact lipid bilayers. This study provides direct evidence that the spatial arrangement of surface functionalities on a nanoparticle, rather than just its overall surface chemistry, plays a crucial role in determining how it interacts with biological membranes.
Collapse
Affiliation(s)
- Kwahun Lee
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Liuyang Zhang
- State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Yi Yi
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Xianqiao Wang
- College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Yan Yu
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
18
|
Pezeshkian W, Khandelia H, Marsh D. Lipid Configurations from Molecular Dynamics Simulations. Biophys J 2018; 114:1895-1907. [PMID: 29694867 PMCID: PMC5937052 DOI: 10.1016/j.bpj.2018.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/10/2023] Open
Abstract
The extent to which current force fields faithfully reproduce conformational properties of lipids in bilayer membranes, and whether these reflect the structural principles established for phospholipids in bilayer crystals, are central to biomembrane simulations. We determine the distribution of dihedral angles in palmitoyl-oleoyl phosphatidylcholine from molecular dynamics simulations of hydrated fluid bilayer membranes. We compare results from the widely used lipid force field of Berger et al. with those from the most recent C36 release of the CHARMM force field for lipids. Only the CHARMM force field produces the chain inequivalence with sn-1 as leading chain that is characteristic of glycerolipid packing in fluid bilayers. The exposure and high partial charge of the backbone carbonyls in Berger lipids leads to artifactual binding of Na+ ions reported in the literature. Both force fields predict coupled, near-symmetrical distributions of headgroup dihedral angles, which is compatible with models of interconverting mirror-image conformations used originally to interpret NMR order parameters. The Berger force field produces rotamer populations that correspond to the headgroup conformation found in a phosphatidylcholine lipid bilayer crystal, whereas CHARMM36 rotamer populations are closer to the more relaxed crystal conformations of phosphatidylethanolamine and glycerophosphocholine. CHARMM36 alone predicts the correct relative signs of the time-average headgroup order parameters, and reasonably reproduces the full range of NMR data from the phosphate diester to the choline methyls. There is strong motivation to seek further experimental criteria for verifying predicted conformational distributions in the choline headgroup, including the 31P chemical shift anisotropy and 14N and CD3 NMR quadrupole splittings.
Collapse
Affiliation(s)
- Weria Pezeshkian
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark
| | - Himanshu Khandelia
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark
| | - Derek Marsh
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark; Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| |
Collapse
|
19
|
Hartkamp R, Moore TC, Iacovella CR, Thompson MA, Bulsara PA, Moore DJ, McCabe C. Composition Dependence of Water Permeation Across Multicomponent Gel-Phase Bilayers. J Phys Chem B 2018; 122:3113-3123. [PMID: 29504755 PMCID: PMC6028149 DOI: 10.1021/acs.jpcb.8b00747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The permeability
of multicomponent phospholipid bilayers in the
gel phase is investigated via molecular dynamics simulation. The physical
role of the different molecules is probed by comparing multiple mixed-component
bilayers containing distearylphosphatidylcholine (DSPC) with varying
amounts of either the emollient isostearyl isostearate or long-chain
alcohol (dodecanol, octadecanol, or tetracosanol) molecules. Permeability
is found to depend on both the tail packing density and hydrogen bonding
between lipid headgroups and water. Whereas the addition of emollient
or alcohol molecules to a gel-phase DSPC bilayer can increase the
tail packing density, it also disturbed the hydrogen-bonding network,
which in turn can increase interfacial water dynamics. These phenomena
have opposing effects on bilayer permeability, which is found to depend
on the balance between enhanced tail packing and decreased hydrogen
bonding.
Collapse
Affiliation(s)
- Remco Hartkamp
- Process & Energy Department , Delft University of Technology , Leeghwaterstraat 39 , 2628 CB Delft , The Netherlands
| | | | | | - Michael A Thompson
- GlaxoSmithKline Consumer Healthcare , 184 Liberty Corner Road , Suite 200, Warren , New Jersey 07059 , United States
| | - Pallav A Bulsara
- GlaxoSmithKline Consumer Healthcare , 184 Liberty Corner Road , Suite 200, Warren , New Jersey 07059 , United States
| | - David J Moore
- GlaxoSmithKline Consumer Healthcare , 184 Liberty Corner Road , Suite 200, Warren , New Jersey 07059 , United States
| | | |
Collapse
|
20
|
Abstract
Truncation is still chosen for many long-range intermolecular interaction calculations to efficiently compute free-boundary systems, macromolecular systems and net-charge molecular systems, for example. Advanced truncation methods have been developed for long-range intermolecular interactions. Every truncation method can be implemented as one of two basic cut-off schemes, namely either an atom-based or a group-based cut-off scheme. The former computes interactions of “atoms” inside the cut-off radius, whereas the latter computes interactions of “molecules” inside the cut-off radius. In this work, the effect of group-based cut-off is investigated for isotropic periodic sum (IPS) techniques, which are promising cut-off treatments to attain advanced accuracy for many types of molecular system. The effect of group-based cut-off is clearly different from that of atom-based cut-off, and severe artefacts are observed in some cases. However, no severe discrepancy from the Ewald sum is observed with the extended IPS techniques.
Collapse
|
21
|
Houang EM, Bates FS, Sham YY, Metzger JM. All-Atom Molecular Dynamics-Based Analysis of Membrane-Stabilizing Copolymer Interactions with Lipid Bilayers Probed under Constant Surface Tensions. J Phys Chem B 2017; 121:10657-10664. [PMID: 29049887 DOI: 10.1021/acs.jpcb.7b08938] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An all-atom phospholipid bilayer and triblock copolymer model was developed for molecular dynamics (MD) studies. These were performed to investigate the mechanism of interaction between membrane-stabilizing triblock copolymer P188 and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) lipid bilayers under applied lateral surface tension (γ) to model membrane mechanical stress. Results showed that P188 insertion is driven by the hydrophobic poly(propylene oxide) (PPO) core and dependent on bilayer area per lipid. Moreover, insertion of P188 increased the bilayer's resistance to mechanical rupture, as observed by a significant increase in the absolute lateral pressure required to disrupt the bilayer. To further investigate the specific chemical features of P188 underlying membrane stabilizer function, a series of MD simulations with triblock copolymers of the same class as P188 but of varying chemical composition and sizes were performed. Results showed that triblock copolymer insertion into the lipid bilayer is dependent on overall copolymer hydrophobicity, with higher copolymer hydrophobicity requiring a reduced bilayer area per lipid ratio for insertion. Further analysis revealed that the effect of copolymer insertion on membrane mechanical integrity was also dependent on hydrophobicity. Here, P188 insertion significantly increased the absolute apparent lateral pressure required to rupture the POPC bilayer, thereby protecting the membrane against mechanical stress. In marked contrast, highly hydrophobic copolymers decreased the lateral pressure necessary for membrane rupture and thus rendering the membrane significantly more susceptible to mechanical stress. These new in silico findings align with recent experimental findings using synthetic lipid bilayers and in muscle cells in vitro and mouse models in vivo. Collectively, these data underscore the importance of PEO-PPO-PEO copolymer chemical composition in copolymer-based muscle membrane stabilization in vitro and in vivo. All-atom modeling with MD simulations holds promise for investigating novel copolymers with enhanced membrane interacting properties.
Collapse
Affiliation(s)
- Evelyne M Houang
- Integrative Biology and Physiology, University of Minnesota Medical School , Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Yuk Y Sham
- Integrative Biology and Physiology, University of Minnesota Medical School , Minneapolis, Minnesota 55455, United States.,University of Minnesota Informatics Institute , Minneapolis, Minnesota 55455, United States.,Bioinformatics and Computational Biology Program, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Joseph M Metzger
- Integrative Biology and Physiology, University of Minnesota Medical School , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Structure-function relationships in ABCG2: insights from molecular dynamics simulations and molecular docking studies. Sci Rep 2017; 7:15534. [PMID: 29138424 PMCID: PMC5686161 DOI: 10.1038/s41598-017-15452-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/25/2017] [Indexed: 12/29/2022] Open
Abstract
Efflux pumps of the ATP-binding cassette transporters superfamily (ABC transporters) are frequently involved in the multidrug-resistance (MDR) phenomenon in cancer cells. Herein, we describe a new atomistic model for the MDR-related ABCG2 efflux pump, also named breast cancer resistance protein (BCRP), based on the recently published crystallographic structure of the ABCG5/G8 heterodimer sterol transporter, a member of the ABCG family involved in cholesterol homeostasis. By means of molecular dynamics simulations and molecular docking, a far-reaching characterization of the ABCG2 homodimer was obtained. The role of important residues and motifs in the structural stability of the transporter was comprehensively studied and was found to be in good agreement with the available experimental data published in literature. Moreover, structural motifs potentially involved in signal transmission were identified, along with two symmetrical drug-binding sites that are herein described for the first time, in a rational attempt to better understand how drug binding and recognition occurs in ABCG2 homodimeric transporters.
Collapse
|
23
|
Piggot TJ, Allison JR, Sessions RB, Essex JW. On the Calculation of Acyl Chain Order Parameters from Lipid Simulations. J Chem Theory Comput 2017; 13:5683-5696. [PMID: 28876925 DOI: 10.1021/acs.jctc.7b00643] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For molecular dynamics simulations of biological membrane systems to live up to the potential of providing accurate atomic level detail into membrane properties and functions, it is essential that the force fields used to model such systems are as accurate as possible. One membrane property that is often used to assess force field accuracy is the carbon-hydrogen (or carbon-deuterium) order parameters of the lipid tails, which can be accurately measured using experimental NMR techniques. There are a variety of analysis tools available to calculate these order parameters from simulations and it is essential that these computational tools work correctly to ensure the accurate assessment of the simulation force fields. In this work we compare many of these computational tools for calculating the order parameters of POPC membranes. While tools that work on all-atom systems and tools that work on saturated lipid tails in general work extremely well, we demonstrate that the majority of the tested tools that calculate the order parameters for unsaturated united-atom lipid tails do so incorrectly. We identify tools that do perform accurate calculations and include one such program with this work, enabling rapid and accurate calculation of united-atom lipid order parameters. Furthermore, we discuss cases in which it is nontrivial to appropriately predict the unsaturated carbon order parameters in united-atom systems. Finally, we examine order parameter splitting for carbon 2 in sn-2 lipid chains, demonstrating substantial deviations from experimental values in several all-atom and united-atom lipid force fields.
Collapse
Affiliation(s)
- Thomas J Piggot
- Chemical, Biological and Radiological Sciences, Defence Science and Technology Laboratory , Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K.,Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K
| | - Jane R Allison
- Centre for Theoretical Chemistry and Physics, Institute of Natural and Mathematical Sciences, Massey University , Auckland 0632, New Zealand
| | - Richard B Sessions
- School of Biochemistry, University of Bristol , University Walk, Bristol BS8 1TD, U.K
| | - Jonathan W Essex
- Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
24
|
Isabettini S, Massabni S, Kohlbrecher J, Schuler LD, Walde P, Sturm M, Windhab EJ, Fischer P, Kuster S. Understanding the Enhanced Magnetic Response of Aminocholesterol Doped Lanthanide-Ion-Chelating Phospholipid Bicelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8533-8544. [PMID: 28759249 DOI: 10.1021/acs.langmuir.7b01370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cholesterol (Chol-OH) and its conjugates are powerful molecules for engineering the physicochemical and magnetic properties of phospholipid bilayers in bicelles. Introduction of aminocholesterol (3β-amino-5-cholestene, Chol-NH2) in bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the thulium-ion-chelating phospholipid 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA/Tm3+) results in unprecedented high magnetic alignments by selectively tuning the magnetic susceptibility Δχ of the bilayer. However, little is known on the underlying mechanisms behind the magnetic response and, more generally, on the physicochemical forces governing a Chol-NH2 doped DMPC bilayer. We tackled this shortcoming with a multiscale bottom-up comparative investigation of Chol-OH and Chol-NH2 mixed with DMPC. First, simplified monolayer models on a Langmuir trough were employed to compare the two steroid molecules at various contents in DMPC. In a second step, a molecular dynamics (MD) simulation allowed for a more representative model of the bicelle bilayer while monitoring the amphiphiles and their interactions on the molecular level. In a final step, we moved away from the models and investigated the effect of temperature on the structure and magnetic alignment of Chol-NH2 doped bicelles by SANS. The DMPC/steroid monolayer studies showed that Chol-OH induces a larger condensation effect than Chol-NH2 at steroid contents of 16 and 20 mol %. However, this tendency was inversed at steroid contents of 10, 30, and 40 mol %. Although the MD simulation with 16 mol % steroid revealed that both compounds induce a liquid-ordered state in DMPC, the bilayer containing Chol-NH2 was much less ordered than the analogous system containing Chol-OH. Chol-NH2 underwent significantly more hydrogen bonding interactions with neighboring DMPC lipids than Chol-OH. It seems that, by altering the dynamics of the hydrophilic environment of the bicelle, Chol-NH2 changes the crystal field and angle of the phospholipid-lanthanide DMPE-DTPA/Tm3+ complex. These parameters largely determine the magnetic susceptibility Δχ of the complex, explaining the SANS results, which show significant differences in magnetic alignment of the steroid doped bicelles. Highly magnetically alignable DMPC/Chol-NH2/DMPE-DTPA/Tm3+ (molar ratio 16:4:5:5) bicelles were achieved up to temperatures of 35 °C before a thermoreversible rearrangement into nonalignable vesicles occurred. The results confirm the potential of Chol-NH2 doped bicelles to act as building blocks for the development of the magnetically responsive soft materials of tomorrow.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Sarah Massabni
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute , 5232 Villigen PSI, Switzerland
| | | | - Peter Walde
- Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Marina Sturm
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Erich J Windhab
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Simon Kuster
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
25
|
Zhang L, Zhao Y, Wang X. Nanoparticle-Mediated Mechanical Destruction of Cell Membranes: A Coarse-Grained Molecular Dynamics Study. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26665-26673. [PMID: 28719184 DOI: 10.1021/acsami.7b05741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of binding mode, shape, binding strength, and rotational speed of actively rotating nanoparticles on the integrity of cell membranes have been systematically studied using dissipative particle dynamics simulations. With theoretical analyses of lipid density, surface tension, stress distribution, and water permeation, we demonstrate that the rotation of nanoparticles can provide a strong driving force for membrane rupture. The results show that nanoparticles embedded inside a cell membrane via endocytosis are more capable of producing large membrane deformations under active rotation than nanoparticles attached on the cell membrane surface. Nanoparticles with anisotropic shapes produce larger deformation and have a higher rupture efficiency than those with symmetric shapes. Our findings provide useful design guidelines for a general strategy based on utilizing mechanical forces to rupture cell membranes and therefore destroy the integrity of cells.
Collapse
Affiliation(s)
- Liuyang Zhang
- College of Engineering, University of Georgia , Athens, Georgia 30602, United States
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia , Athens, Georgia 30602, United States
| | - Xianqiao Wang
- College of Engineering, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
26
|
Hartkamp R, Moore TC, Iacovella CR, Thompson MA, Bulsara PA, Moore DJ, McCabe C. Investigating the Structure of Multicomponent Gel-Phase Lipid Bilayers. Biophys J 2017; 111:813-823. [PMID: 27558724 DOI: 10.1016/j.bpj.2016.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022] Open
Abstract
Single- and multicomponent lipid bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC), isostearyl isostearate, and heptadecanoyl heptadecanoate in the gel phase are studied via molecular dynamics simulations. It is shown that the structural properties of multicomponent bilayers can deviate strongly from the structures of their single-component counterparts. Specifically, the lipid mixtures are shown to adopt a compact packing by offsetting the positioning depths at which different lipid species are located in the bilayer. This packing mechanism affects the area per lipid, the bilayer height, and the chain tilt angles and has important consequences for other bilayer properties, such as interfacial hydrogen bonding and bilayer permeability. In particular, the simulations suggest that bilayers containing isostearyl isostearate or heptadecanoyl heptadecanoate are less permeable than pure 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine or DSPC bilayers. Furthermore, hydrogen-bond analysis shows that the residence times of lipid-water hydrogen bonds depend strongly on the bilayer composition, with longer residence times for bilayers that have a higher DSPC content. The findings illustrate and explain the fundamental differences between the properties of single- and multicomponent bilayers.
Collapse
Affiliation(s)
- Remco Hartkamp
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee
| | - Timothy C Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee
| | | | | | - David J Moore
- GlaxoSmithKline Consumer Healthcare, Warren, New Jersey
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
27
|
Vanin AA, Brodskaya EN. Molecular-dynamics simulation of the surface layer of a nonionic micelle. COLLOID JOURNAL 2017. [DOI: 10.1134/s1061933x17030188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Simulation study of influence of component polarizability on the properties of the electric double layer of an ionic micelle. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Okuda S, Eiraku M. Role of molecular turnover in dynamic deformation of a three-dimensional cellular membrane. Biomech Model Mechanobiol 2017; 16:1805-1818. [PMID: 28555369 PMCID: PMC5599494 DOI: 10.1007/s10237-017-0920-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/13/2017] [Indexed: 11/26/2022]
Abstract
In cells, the molecular constituents of membranes are dynamically turned over by transportation from one membrane to another. This molecular turnover causes the membrane to shrink or expand by sensing the stress state within the cell, changing its morphology. At present, little is known as to how this turnover regulates the dynamic deformation of cellular membranes. In this study, we propose a new physical model by which molecular turnover is coupled with three-dimensional membrane deformation to explore mechanosensing roles of turnover in cellular membrane deformations. In particular, as an example of microscopic machinery, based on a coarse-graining description, we suppose that molecular turnover depends on the local membrane strain. Using the proposed model, we demonstrate computational simulations of a single vesicle. The results show that molecular turnover adaptively facilitates vesicle deformation, owing to its stress dependence; while the vesicle drastically expands in the case with low bending rigidity, it shrinks in that with high bending rigidity. Moreover, localized active tension on the membrane causes cellular migration by driving the directional transport of molecules within the cell. These results illustrate the use of the proposed model as well as the role of turnover in the dynamic deformations of cellular membranes.
Collapse
Affiliation(s)
- Satoru Okuda
- Laboratory for in vitro Histogenesis, Center for Developmental Biology (CDB), RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Mototsugu Eiraku
- Laboratory for in vitro Histogenesis, Center for Developmental Biology (CDB), RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
30
|
Witzke S, List NH, Olsen JMH, Steinmann C, Petersen M, Beerepoot MTP, Kongsted J. An averaged polarizable potential for multiscale modeling in phospholipid membranes. J Comput Chem 2017; 38:601-611. [PMID: 28160294 DOI: 10.1002/jcc.24718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/28/2023]
Abstract
A set of average atom-centered charges and polarizabilities has been developed for three types of phospholipids for use in polarizable embedding calculations. The lipids investigated are 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1-palmitoyl-2-oleoyl-sn-glycerol-3-phospho-L-serine given their common use both in experimental and computational studies. The charges, and to a lesser extent the polarizabilities, are found to depend strongly on the molecular conformation of the lipids. Furthermore, the importance of explicit polarization is underlined for the description of larger assemblies of lipids, that is, membranes. In conclusion, we find that specially developed polarizable parameters are needed for embedding calculations in membranes, while common non-polarizable point-charge force fields usually perform well enough for structural and dynamical studies. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah Witzke
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, DK-5230, Denmark
| | - Nanna Holmgaard List
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | | | - Casper Steinmann
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Michael Petersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, DK-5230, Denmark
| | - Maarten T P Beerepoot
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, Tromsø, N-9037, Norway
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, DK-5230, Denmark
| |
Collapse
|
31
|
Hartkamp R, Moore TC, Iacovella CR, Thompson MA, Bulsara PA, Moore DJ, McCabe C. Structural Properties of Phospholipid-based Bilayers with Long-Chain Alcohol Molecules in the Gel Phase. J Phys Chem B 2016; 120:12863-12871. [DOI: 10.1021/acs.jpcb.6b10192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Remco Hartkamp
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Multiscale
Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Timothy C. Moore
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Multiscale
Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Christopher R. Iacovella
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Multiscale
Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Michael A. Thompson
- GlaxoSmithKline Consumer Healthcare, 184 Liberty Corner Road, Suite 200, Warren, New Jersey 07059, United States
| | - Pallav A. Bulsara
- GlaxoSmithKline Consumer Healthcare, 184 Liberty Corner Road, Suite 200, Warren, New Jersey 07059, United States
| | - David J. Moore
- GlaxoSmithKline Consumer Healthcare, 184 Liberty Corner Road, Suite 200, Warren, New Jersey 07059, United States
| | - Clare McCabe
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Multiscale
Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
32
|
Das C, Olmsted PD. The physics of stratum corneum lipid membranes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0126. [PMID: 27298438 PMCID: PMC4920276 DOI: 10.1098/rsta.2015.0126] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 05/22/2023]
Abstract
The stratum corneum (SC), the outermost layer of skin, comprises rigid corneocytes (keratin-filled dead cells) in a specialized lipid matrix. The continuous lipid matrix provides the main barrier against uncontrolled water loss and invasion of external pathogens. Unlike all other biological lipid membranes (such as intracellular organelles and plasma membranes), molecules in the SC lipid matrix show small hydrophilic groups and large variability in the length of the alkyl tails and in the numbers and positions of groups that are capable of forming hydrogen bonds. Molecular simulations provide a route for systematically probing the effects of each of these differences separately. In this article, we present the results from atomistic molecular dynamics of selected lipid bilayers and multi-layers to probe the effect of these polydispersities. We address the nature of the tail packing in the gel-like phase, the hydrogen bond network among head groups, the bending moduli expected for leaflets comprising SC lipids and the conformation of very long ceramide lipids in multi-bilayer lipid assemblies.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Collapse
Affiliation(s)
- Chinmay Das
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Peter D Olmsted
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
33
|
Brodskaya EN, Vanin AA. The influence of electronic polarizability of components on the electric field of an ionic micelle according to molecular simulation data. COLLOID JOURNAL 2016. [DOI: 10.1134/s1061933x16040025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Poger D, Caron B, Mark AE. Validating lipid force fields against experimental data: Progress, challenges and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1556-65. [DOI: 10.1016/j.bbamem.2016.01.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/07/2016] [Accepted: 01/27/2016] [Indexed: 01/16/2023]
|
35
|
Pluhackova K, Kirsch SA, Han J, Sun L, Jiang Z, Unruh T, Böckmann RA. A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers. J Phys Chem B 2016; 120:3888-903. [DOI: 10.1021/acs.jpcb.6b01870] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kristyna Pluhackova
- Computational
Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Sonja A. Kirsch
- Computational
Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Jing Han
- Computational
Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Liping Sun
- Computational
Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Zhenyan Jiang
- Computational
Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Tobias Unruh
- Lehrstuhl
für Kristallografie und Strukturphysik, Department Physik, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - Rainer A. Böckmann
- Computational
Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
36
|
Garay AS, Rodrigues DE, Fuselli A, Martino DM, Passeggi MCG. First Steps in the Aggregation Process of Copolymers Based on Thymine Monomers: Characterization by Molecular Dynamics Simulations and Atomic Force Microscopy. J Phys Chem B 2016; 120:3414-24. [PMID: 26991880 DOI: 10.1021/acs.jpcb.5b11342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomistic molecular dynamic simulations were performed to study the structure of isolated VBT-VBA (vinylbenzylthymine-vinylbenzyltriethylammonium chloride) copolymer chains in water at different monomeric species ratios (1:1 and 1:4). The geometric parameters of the structure that the copolymers form in equilibrium together with the basic interactions that stabilize them were determined. Atomic force microscopy (AFM) measurements of dried diluted concentrations of the two copolymers onto highly oriented pyrolytic graphite (HOPG) substrates were carried out to study their aggregation arrangement. The experiments show that both copolymers arrange in fiber-like structures. Comparing the diameters predicted by the simulation results and those obtained by AFM, it can be concluded that individual copolymers arrange in bunches of two chains, stabilized by contra-ions-copolymer interactions for the 1:1 copolymerization ratio at the ionic strength of our samples. In contrast, for the 1:4 system the individual copolymer chains do not aggregate in bunches. These results remark the relevance of the copolymerization ratio and ionic strength of the solvent in the mesoscopic structure of these materials.
Collapse
Affiliation(s)
- A Sergio Garay
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, C.C. 242, Ciudad Universitaria, Universidad Nacional del Litoral (UNL) , S3000ZAA Santa Fe, Argentina
| | - Daniel E Rodrigues
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, C.C. 242, Ciudad Universitaria, Universidad Nacional del Litoral (UNL) , S3000ZAA Santa Fe, Argentina
| | - Antonela Fuselli
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, C.C. 242, Ciudad Universitaria, Universidad Nacional del Litoral (UNL) , S3000ZAA Santa Fe, Argentina
| | | | - Mario C G Passeggi
- Departamento de Materiales, Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL) , Santiago del Estero 2829, S3000AOM Santa Fe, Argentina
| |
Collapse
|
37
|
Magalhães PR, Machuqueiro M, Baptista AM. Constant-pH Molecular Dynamics Study of Kyotorphin in an Explicit Bilayer. Biophys J 2016; 108:2282-90. [PMID: 25954885 DOI: 10.1016/j.bpj.2015.03.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/05/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022] Open
Abstract
To our knowledge, we present the first constant-pH molecular dynamics study of the neuropeptide kyotorphin in the presence of an explicit lipid bilayer. The overall conformation freedom of the peptide was found to be affected by the interaction with the membrane, in accordance with previous results using different methodologies. Analysis of the interactions between the N-terminus amine group of the peptide and several lipid atoms shows that the membrane is able to stabilize both ionized and neutral forms of kyotorphin, resulting in a pKa value that is similar to the one obtained in water. This illustrates how a detailed molecular model of the membrane leads to rather different results than would be expected from simply regarding it as a low-dielectric slab.
Collapse
Affiliation(s)
- Pedro R Magalhães
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - António M Baptista
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
38
|
Lyubartsev AP, Rabinovich AL. Force Field Development for Lipid Membrane Simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2483-2497. [PMID: 26766518 DOI: 10.1016/j.bbamem.2015.12.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 02/04/2023]
Abstract
With the rapid development of computer power and wide availability of modelling software computer simulations of realistic models of lipid membranes, including their interactions with various molecular species, polypeptides and membrane proteins have become feasible for many research groups. The crucial issue of the reliability of such simulations is the quality of the force field, and many efforts, especially in the latest several years, have been devoted to parametrization and optimization of the force fields for biomembrane modelling. In this review, we give account of the recent development in this area, covering different classes of force fields, principles of the force field parametrization, comparison of the force fields, and their experimental validation. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, SE 106 91, Stockholm, Sweden.
| | - Alexander L Rabinovich
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya 11, Petrozavodsk, 185910, Russian Federation.
| |
Collapse
|
39
|
Tjörnhammar R, Edholm O. Reparameterized United Atom Model for Molecular Dynamics Simulations of Gel and Fluid Phosphatidylcholine Bilayers. J Chem Theory Comput 2015; 10:5706-15. [PMID: 26583252 DOI: 10.1021/ct500589z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new united atom parametrization of diacyl lipids like dipalmitoylphosphatidylcholine (DPPC) and the dimyristoylphosphatidylcholine (DMPC) has been constructed based on ab initio calculations to obtain fractional charges and the dihedral potential of the hydrocarbon chains, while the Lennard-Jones parameters of the acyl chains were fitted to reproduce the properties of liquid hydrocarbons. The results have been validated against published experimental X-ray and neutron scattering data for fluid and gel phase DPPC. The derived charges of the lipid phosphatidylcholine (PC) headgroup are shown to yield dipole components in the range suggested by experiments. The aim has been to construct a new force field that retains and improves the good agreement for the fluid phase and at the same time produces a gel phase at low temperatures, with properties coherent with experimental findings. The gel phase of diacyl-PC lipids forms a regular triangular lattice in the hydrocarbon region. The global bilayer tilt obtains an azimuthal value of 31° and is aligned between lattice vectors in the bilayer plane. We also show that the model yields a correct heat of melting as well as decent heat capacities in the fluid and gel phase of DPPC.
Collapse
Affiliation(s)
- Richard Tjörnhammar
- Theoretical Biological Physics, Department of Theoretical Physics, KTH Royal Institute of Technology, AlbaNova University Center , SE-106 91 Stockholm, Sweden
| | - Olle Edholm
- Theoretical Biological Physics, Department of Theoretical Physics, KTH Royal Institute of Technology, AlbaNova University Center , SE-106 91 Stockholm, Sweden
| |
Collapse
|
40
|
Ulmschneider JP, Ulmschneider MB. United Atom Lipid Parameters for Combination with the Optimized Potentials for Liquid Simulations All-Atom Force Field. J Chem Theory Comput 2015; 5:1803-13. [PMID: 26610004 DOI: 10.1021/ct900086b] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a new united-atom set of lipid force field parameters for dipalmitoylphosphatidylcholine (DPPC) lipid bilayers that can be combined with the all-atom optimized potentials for liquid simulations (OPLS-AA) protein force field. For this, all torsions have been refitted for a nonbonded 1-4 scale factor of 0.5, which is the standard in OPLS-AA. Improved van der Waals parameters have been obtained for the acyl lipid tails by matching simulation results of bulk pentadecane against recently improved experimental measurements. The charge set has been adjusted from previous lipid force fields to allow for an identical treatment of the alkoxy ester groups. This reduces the amount of parameters required for the model. Simulation of DPPC bilayers in the tension-free NPT ensemble at 50 °C gives the correct area per lipid of 62.9 ± 0.1 Å(2), which compares well with the recently refined experimental value of 63.0 Å(2). Electron density profiles and deuterium order parameters are similarly well reproduced. The new parameters will allow for improved simulation results in microsecond scale peptide partitioning simulations, which have proved problematic with prior parametrizations.
Collapse
Affiliation(s)
- Jakob P Ulmschneider
- IWR, University of Heidelberg, Heidelberg, Germany, and Department of Chemistry, University of Utrecht, Utrecht, The Netherlands
| | - Martin B Ulmschneider
- IWR, University of Heidelberg, Heidelberg, Germany, and Department of Chemistry, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
41
|
Exploring the Effects on Lipid Bilayer Induced by Noble Gases via Molecular Dynamics Simulations. Sci Rep 2015; 5:17235. [PMID: 26601882 PMCID: PMC4658558 DOI: 10.1038/srep17235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022] Open
Abstract
Noble gases seem to have no significant effect on the anesthetic targets due to their simple, spherical shape. However, xenon has strong narcotic efficacy and can be used clinically, while other noble gases cannot. The mechanism remains unclear. Here, we performed molecular dynamics simulations on phospholipid bilayers with four kinds of noble gases to elucidate the difference of their effects on the membrane. Our results showed that the sequence of effects on membrane exerted by noble gases from weak to strong was Ne, Ar, Kr and Xe, the same order as their relative narcotic potencies as well as their lipid/water partition percentages. Compared with the other three kinds of noble gases, more xenon molecules were distributed between the lipid tails and headgroups, resulting in membrane’s lateral expansion and lipid tail disorder. It may contribute to xenon’s strong anesthetic potency. The results are well consistent with the membrane mediated mechanism of general anesthesia.
Collapse
|
42
|
Conceição K, Magalhães PR, Campos SRR, Domingues MM, Ramu VG, Michalek M, Bertani P, Baptista AM, Heras M, Bardaji ER, Bechinger B, Ferreira ML, Castanho MARB. The anti-inflammatory action of the analgesic kyotorphin neuropeptide derivatives: insights of a lipid-mediated mechanism. Amino Acids 2015; 48:307-18. [DOI: 10.1007/s00726-015-2088-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/26/2015] [Indexed: 01/12/2023]
|
43
|
Roy S, Gruenbaum SM, Skinner JL. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. II. Two-dimensional spectra. J Chem Phys 2015; 141:22D505. [PMID: 25494776 DOI: 10.1063/1.4895968] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The structural stability and function of biomolecules is strongly influenced by the dynamics and hydrogen bonding of interfacial water. Understanding and characterizing the dynamics of these water molecules require a surface-sensitive technique such as two-dimensional vibrational sum-frequency generation (2DSFG) spectroscopy. We have combined theoretical 2DSFG calculations with molecular dynamics simulations in order to investigate the dynamics of water near different lipid and surfactant monolayer surfaces. We show that 2DSFG can distinguish the dynamics of interfacial water as a function of the lipid charge and headgroup chemistry. The dynamics of water is slow compared to the bulk near water-zwitterionic and water-anionic interfaces due to conformational constraints on interfacial water imposed by strong phosphate-water hydrogen bonding. The dynamics of water is somewhat faster near water-cationic lipid interfaces as no such constraint is present. Using hydrogen bonding and rotational correlation functions, we characterize the dynamics of water as a function of the distance from the interface between water and zwitterionic lipids. We find that there is a transition from bulk-like to interface-like dynamics approximately 7 Å away from a zwitterionic phosphatidylcholine monolayer surface.
Collapse
Affiliation(s)
- S Roy
- Theoretical Chemistry Institute and Department of Chemistry, 1101 University Ave., University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - S M Gruenbaum
- Theoretical Chemistry Institute and Department of Chemistry, 1101 University Ave., University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - J L Skinner
- Theoretical Chemistry Institute and Department of Chemistry, 1101 University Ave., University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
44
|
Brodskaya EN, Vanin AA. Effect of water on the local electric potential of simulated ionic micelles. J Chem Phys 2015; 143:044707. [DOI: 10.1063/1.4927089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Elena N. Brodskaya
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petrodvoretz, St. Petersburg 198504, Russia
| | - Alexander A. Vanin
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petrodvoretz, St. Petersburg 198504, Russia
| |
Collapse
|
45
|
Vanin AA, Brodskaya EN. Computer simulation of the surface layer of an ionic micelle with explicit allowance for the contribution of water. COLLOID JOURNAL 2015. [DOI: 10.1134/s1061933x15030199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Wang Y, Chen L, Wang X, Dai C, Chen J. Effects on lipid bilayer and nitrogen distribution induced by lateral pressure. J Mol Model 2015; 21:120. [PMID: 25893515 DOI: 10.1007/s00894-015-2663-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 03/23/2015] [Indexed: 11/24/2022]
Abstract
The lateral pressure exerted on cell membrane is of great importance to signal transduction. Here, we perform molecular dynamics simulation to explore how lateral pressure affects the biophysical properties of lipid bilayer as well as nitrogen distribution in the membrane. Our results show that both physical properties of cell membrane and nitrogen distribution are highly sensitive to the lateral pressure. With the increasing lateral pressure, area per lipid drops and thickness of membrane increases obviously, while nitrogen molecules are more congested in the center of lipid bilayer than those under lower lateral pressure. These results suggest that the mechanism of nitrogen narcosis may be related to the lateral pressure.
Collapse
Affiliation(s)
- Yu Wang
- School of Sciences, Zhejiang A & F University, Lin'an, 311300, China
| | | | | | | | | |
Collapse
|
47
|
Victor BL, Lousa D, Antunes JM, Soares CM. Self-assembly molecular dynamics simulations shed light into the interaction of the influenza fusion Peptide with a membrane bilayer. J Chem Inf Model 2015; 55:795-805. [PMID: 25826469 DOI: 10.1021/ci500756v] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Influenza virus is one of the most devastating human pathogens. In order to infect host cells, this virus fuses its membrane with the host membrane in a process mediated by the glycoprotein hemagglutinin. During fusion, the N-terminal region of hemagglutinin, which is known as the fusion peptide (FP), inserts into the host membrane, promoting lipid mixing between the viral and host membranes. Therefore, this peptide plays a key role in the fusion process, but the exact mechanism by which it promotes lipid mixing is still unclear. To shed light into this matter, we performed molecular dynamics (MD) simulations of the influenza FP in different environments (water, dodecylphosphocholine (DPC) micelles, and a dimyristoylphosphatidylcholine (DMPC) membrane). While in pure water the peptide lost its initial secondary structure, in simulations performed in the presence of DPC micelles it remained stable, in agreement with previous experimental observations. In simulations performed in the presence of a preassembled DMPC bilayer, the peptide became unstructured and was unable to insert into the membrane as a result of technical limitations of the method used. To overcome this problem, we used a self-assembly strategy, assembling the membrane together with the peptide. These simulations revealed that the peptide can adopt a membrane-spanning conformation, which had not been predicted by previous MD simulation studies. The peptide insertion had a strong effect on the membrane, lowering the bilayer thickness, disordering nearby lipids, and promoting lipid tail protrusion. These results contribute to a better understanding of the role of the FP in the fusion process.
Collapse
Affiliation(s)
- Bruno L Victor
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Diana Lousa
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Jorge M Antunes
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cláudio M Soares
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
48
|
Benedetto A, Bingham RJ, Ballone P. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids. J Chem Phys 2015; 142:124706. [DOI: 10.1063/1.4915918] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Antonio Benedetto
- School of Physics, University College Dublin, Dublin 4, Ireland
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Richard J. Bingham
- York Centre for Complex Systems Analysis, University of York, York YO10 5GE, United Kingdom
| | - Pietro Ballone
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia (IIT), 00185 Roma, Italy
- Department of Physics, Università di Roma “La Sapienza,” 00185 Roma, Italy
| |
Collapse
|
49
|
Sun D, Forsman J, Woodward CE. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol. J Chem Theory Comput 2015; 11:1775-91. [PMID: 26574387 DOI: 10.1021/ct501063a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abundant peptides and proteins containing arginine (Arg) and lysine (Lys) amino acids can apparently permeate cell membranes with ease. However, the mechanisms by which these peptides and proteins succeed in traversing the free energy barrier imposed by cell membranes remain largely unestablished. Precise thermodynamic studies (both theoretical and experimental) on the interactions of Arg and Lys residues with model lipid bilayers can provide valuable clues to the efficacy of these cationic peptides and proteins. We have carried out molecular dynamics simulations to calculate the interactions of ionized Arg and Lys side-chains with the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer for 10 widely used lipid/protein force fields: CHARMM36/CHARMM36, SLIPID/AMBER99SB-ILDN, OPLS-AA/OPLS-AA, Berger/OPLS-AA, Berger/GROMOS87, Berger/GROMOS53A6, GROMOS53A6/GROMOS53A6, nonpolarizable MARTINI, polarizable MARTINI, and BMW MARTINI. We performed umbrella sampling simulations to obtain the potential of mean force for Arg and Lys side-chains partitioning from water to the bilayer interior. We found significant differences between the force fields, both for the interactions between side-chains and bilayer surface, as well as the free energy cost for placing the side-chain at the center of the bilayer. These simulation results were compared with the Wimley-White interfacial scale. We also calculated the free energy cost for transferring ionized Arg and Lys side-chains from water to both dry and wet octanol. Our simulations reveal rapid diffusion of water molecules into octanol whereby the equilibrium mole fraction of water in the wet octanol phase was ∼25%. Surprisingly, our free energy calculations found that the high water content in wet octanol lowered the water-to-octanol partitioning free energies for cationic residues by only 0.6 to 0.7 kcal/mol.
Collapse
Affiliation(s)
- Delin Sun
- School of Physical, Environmental and Mathematical Sciences, University of New South Wales , Canberra ACT 2600, Australia
| | - Jan Forsman
- Theoretical Chemistry, Chemical Centre, Lund University , P.O. Box 124, S-221 00 Lund, Sweden
| | - Clifford E Woodward
- School of Physical, Environmental and Mathematical Sciences, University of New South Wales , Canberra ACT 2600, Australia
| |
Collapse
|
50
|
Slingsby JG, Vyas S, Maupin CM. A charge-modified general amber force field for phospholipids: improved structural properties in the tensionless ensemble. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.985675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|