1
|
Toulmin A, Baltierra-Jasso LE, Morten MJ, Sabir T, McGlynn P, Schröder GF, Smith BO, Magennis SW. Conformational Heterogeneity in a Fully Complementary DNA Three-Way Junction with a GC-Rich Branchpoint. Biochemistry 2017; 56:4985-4991. [PMID: 28820590 DOI: 10.1021/acs.biochem.7b00677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA three-way junctions (3WJs) are branched structures that serve as important biological intermediates and as components in DNA nanostructures. We recently derived the global structure of a fully complementary 3WJ and found that it contained unpaired bases at the branchpoint, which is consistent with previous observations of branch flexibility and branchpoint reactivity. By combining high-resolution single-molecule Förster resonance energy transfer, molecular modeling, time-resolved ensemble fluorescence spectroscopy, and the first 19F nuclear magnetic resonance observations of fully complementary 3WJs, we now show that the 3WJ structure can adopt multiple distinct conformations depending upon the sequence at the branchpoint. A 3WJ with a GC-rich branchpoint adopts an open conformation with unpaired bases at the branch and at least one additional conformation with an increased number of base interactions at the branchpoint. This structural diversity has implications for branch interactions and processing in vivo and for technological applications.
Collapse
Affiliation(s)
- Anita Toulmin
- The School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K.,The Photon Science Institute, The University of Manchester , Alan Turing Building, Oxford Road, Manchester M13 9PL, U.K
| | - Laura E Baltierra-Jasso
- The School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K.,The Photon Science Institute, The University of Manchester , Alan Turing Building, Oxford Road, Manchester M13 9PL, U.K.,School of Chemistry, WestCHEM, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| | - Michael J Morten
- School of Chemistry, WestCHEM, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| | - Tara Sabir
- The School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K.,The Photon Science Institute, The University of Manchester , Alan Turing Building, Oxford Road, Manchester M13 9PL, U.K
| | - Peter McGlynn
- Department of Biology, University of York , Wentworth Way, York YO10 5DD, U.K
| | - Gunnar F Schröder
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany.,Physics Department, Heinrich-Heine Universität Düsseldorf , Düsseldorf, Germany
| | - Brian O Smith
- Institute of Molecular, Cell and Systems Biology, University of Glasgow , Glasgow G12 8QQ, U.K
| | - Steven W Magennis
- School of Chemistry, WestCHEM, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
2
|
Abstract
Electrophoresis in polyacrylamide gels provides a simple yet powerful means of analyzing the relative disposition of helical arms in branched nucleic acids. The electrophoretic mobility of DNA or RNA with a central discontinuity is determined by the angle subtended between the arms radiating from the branchpoint. In a multi-helical branchpoint, comparative gel electrophoresis can provide a relative measure of all the inter-helical angles and thus the shape and symmetry of the molecule. Using the long-short arm approach, the electrophoretic mobility of all the species with two helical arms that are longer than all others is compared. This can be done as a function of conditions, allowing the analysis of ion-dependent folding of branched DNA and RNA species. Notable successes for the technique include the four-way (Holliday) junction in DNA and helical junctions in functionally significant RNA species such as ribozymes. Many of these structures have subsequently been proved correct by crystallography or other methods, up to 10 years later in the case of the Holliday junction. Just as important, the technique has not failed to date. Comparative gel electrophoresis can provide a window on both fast and slow conformational equilibria such as conformer exchange in four-way DNA junctions. But perhaps the biggest test of the approach has been to deduce the structures of complexes of four-way DNA junctions with proteins. Two recent crystallographic structures show that the global structures were correctly deduced by electrophoresis, proving the worth of the method even in these rather complex systems. Comparative gel electrophoresis is a robust method for the analysis of branched nucleic acids and their complexes.
Collapse
|
3
|
Rothemund PWK, Papadakis N, Winfree E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2004; 2:e424. [PMID: 15583715 PMCID: PMC534809 DOI: 10.1371/journal.pbio.0020424] [Citation(s) in RCA: 325] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 10/05/2004] [Indexed: 11/19/2022] Open
Abstract
Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal pattern—a Sierpinski triangle—as it grows. To achieve this, abstract tiles were translated into DNA tiles based on double-crossover motifs. Serving as input for the computation, long single-stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. For both of two independent molecular realizations, atomic force microscopy revealed recognizable Sierpinski triangles containing 100–200 correct tiles. Error rates during assembly appear to range from 1% to 10%. Although imperfect, the growth of Sierpinski triangles demonstrates all the necessary mechanisms for the molecular implementation of arbitrary cellular automata. This shows that engineered DNA self-assembly can be treated as a Turing-universal biomolecular system, capable of implementing any desired algorithm for computation or construction tasks. Engineered DNA self-assembly to produce a fractal pattern demonstrates all the necessary mechanisms for the molecular implementation of arbitrary cellular automata
Collapse
Affiliation(s)
- Paul W. K Rothemund
- 1Computation and Neural Systems, California Institute of TechnologyPasadena, CaliforniaUnited States of America
- 2Computer Science, California Institute of TechnologyPasadena, CaliforniaUnited States of America
| | - Nick Papadakis
- 2Computer Science, California Institute of TechnologyPasadena, CaliforniaUnited States of America
| | - Erik Winfree
- 1Computation and Neural Systems, California Institute of TechnologyPasadena, CaliforniaUnited States of America
- 2Computer Science, California Institute of TechnologyPasadena, CaliforniaUnited States of America
| |
Collapse
|
4
|
Rothemund PWK, Ekani-Nkodo A, Papadakis N, Kumar A, Fygenson DK, Winfree E. Design and Characterization of Programmable DNA Nanotubes. J Am Chem Soc 2004; 126:16344-52. [PMID: 15600335 DOI: 10.1021/ja044319l] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA self-assembly provides a programmable bottom-up approach for the synthesis of complex structures from nanoscale components. Although nanotubes are a fundamental form encountered in tile-based DNA self-assembly, the factors governing tube structure remain poorly understood. Here we report and characterize a new type of nanotube made from DNA double-crossover molecules (DAE-E tiles). Unmodified tubes range from 7 to 20 nm in diameter (4 to 10 tiles in circumference), grow as long as 50 microm with a persistence length of approximately 4 microm, and can be programmed to display a variety of patterns. A survey of modifications (1) confirms the importance of sticky-end stacking, (2) confirms the identity of the inside and outside faces of the tubes, and (3) identifies features of the tiles that profoundly affect the size and morphology of the tubes. Supported by these results, nanotube structure is explained by a simple model based on the geometry and energetics of B-form DNA.
Collapse
Affiliation(s)
- Paul W K Rothemund
- Department of Computer Science, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
The global structures of branched RNA species are important to their function. Branched RNA species are defined as molecules in which double-helical segments are interrupted by abrupt discontinuities. These include helical junctions of different orders, and base bulges and loops. Common helical junctions are three- and four-way junctions, often interrupted by mispairs or additional nucleotides. There are many interesting examples of functional RNA junctions, including the hammerhead and hairpin ribozymes, and junctions that serve as binding sites for proteins. The junctions display some common structural properties. These include a tendency to undergo pairwise helical stacking and ion-induced conformational transitions. Helical branchpoints can act as key architectural components and as important sites for interactions with proteins. Copyright 1999 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David M. J. Lilley
- CRC Nucleic Acid Structure Research Group, Department of Biochemistry, The University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
6
|
Fogg JM, Schofield MJ, White MF, Lilley DM. Sequence and functional-group specificity for cleavage of DNA junctions by RuvC of Escherichia coli. Biochemistry 1999; 38:11349-58. [PMID: 10471285 DOI: 10.1021/bi990926n] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RuvC is the DNA junction-resolving enzyme of Escherichia coli. While the enzyme binds to DNA junctions independently of base sequence, it exhibits considerable sequence selectivity for the phosphodiester cleavage reaction. We have analyzed the sequence specificity using a panel of DNA junctions, measuring the rate of cleavage of each under single-turnover conditions. We have found that the optimal sequence for cleavage can be described by (A approximately T)TT downward arrow(C>G approximately A), where downward arrow denotes the position of backbone scission. Cleavage is fastest when the cleaved phosphodiester linkage is located at the point of strand exchange. However, cleavage is possible one nucleotide 3' of this position when directed by the sequence, with a rate that is 1 order of magnitude slower than the optimal. The maximum sequence discrimination occurs at the central TT in the tetranucleotide site, where any alteration of sequence results in a rate reduction of at least 100-fold and cleavage is undetectable for some changes. However, certain sequences in the outer nucleotides are strongly inhibitory to cleavage. Introduction of base analogues around the cleavage site reveals a number of important functional groups and suggests that major-groove contacts in the center of the tetranucleotide are important for the cleavage process. Since RuvC binds to all the variant junctions with very similar affinity, any contacts affecting the rate of cleavage must be primarily important in the transition state. Introduction of the optimal cleavage sequence into a three-way DNA junction led to relatively efficient cleavage by RuvC, at a rate only 3-fold slower than the optimal four-way junction. This is consistent with a protein-induced alteration in the conformation of the DNA.
Collapse
Affiliation(s)
- J M Fogg
- CRC Nucleic Acid Structure Research Group, Department of Biochemistry, The University of Dundee, United Kingdom
| | | | | | | |
Collapse
|
7
|
Thiviyanathan V, Luxon BA, Leontis NB, Illangasekare N, Donne DG, Gorenstein DG. Hybrid-hybrid matrix structural refinement of a DNA three-way junction from 3D NOESY-NOESY. JOURNAL OF BIOMOLECULAR NMR 1999; 14:209-221. [PMID: 10481274 DOI: 10.1023/a:1008330011425] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Homonuclear 3D NOESY-NOESY has shown great promise for the structural refinement of large biomolecules. A computationally efficient hybrid-hybrid relaxation matrix refinement methodology, using 3D NOESY-NOESY data, was used to refine the structure of a DNA three-way junction having two unpaired bases at the branch point of the junction. The NMR data and the relaxation matrix refinement confirm that the DNA three-way junction exists in a folded conformation with two of the helical stems stacked upon each other. The third unstacked stem extends away from the junction, forming an acute angle (approximately 60 degrees) with the stacked stems. The two unpaired bases are stacked upon each other and are exposed to the solvent. Helical parameters for the bases in all three strands show slight deviations from typical values expected for right-handed B-form DNA. Inter-nucleotide imino-imino NOEs between the bases at the branch point of the junction show that the junction region is well defined. The helical stems show mobility (+/- 20 degrees) indicating dynamic processes around the junction region. The unstacked helical stem adjacent to the unpaired bases shows greater mobility compared to the other two stems. The results from this study indicate that the 3D hybrid-hybrid matrix MORASS refinement methodology, by combining the spectral dispersion of 3D NOESY-NOESY and the computational efficiency of 2D refinement programs, provides an accurate and robust means for structure determination of large biomolecules. Our results also indicate that the 3D MORASS method gives higher quality structures compared to the 2D complete relaxation matrix refinement method.
Collapse
Affiliation(s)
- V Thiviyanathan
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston 77555-1157, USA
| | | | | | | | | | | |
Collapse
|
8
|
Khattab AF, Pedersen EB. Improved Targeting of the Flanks of a DNA Stem Using α-Oligodeoxynucleotides.-The Enhanced Effect of an Intercalator. ACTA ACUST UNITED AC 1998. [DOI: 10.1080/07328319808004323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Fenley MO, Manning GS, Marky NL, Olson WK. Excess counterion binding and ionic stability of kinked and branched DNA. Biophys Chem 1998; 74:135-52. [PMID: 9760723 DOI: 10.1016/s0301-4622(98)00171-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We compute the excess number of counterions associated with kinked and branched DNA, and the ionic stabilities of these structures as a function of chain length and both sodium and magnesium salt concentration, using numerical counterion condensation theory. The DNA structures are modeled as two or more finite lines of phosphate charges radiating from the kink or junction center. The number of excess counterions around the (40-90 degrees) kinked duplex is very small (at most four). The geometries of large three- and four-way DNA junctions (with > 50 base pairs per arm) in solutions containing low to moderate NaCl concentrations, by contrast, accumulate a substantial number of excess sodium ions (> 20) but no more than 15 magnesium counterions. The excess number of counterions surrounding the kinked linear chain and the branched DNA structures either remains invariant or increases with chain length, tending to reach a plateau value. Open configurations, such as the planar Y-shaped three-way junction (with three 120 degrees inter-arm angles) and the 90 degrees cross-shaped four-way junction, are ionically more stable than compact geometries, such as pyramidal three-way junctions and X-shaped four-way junctions, over the entire range of salt concentration considered (10(-5)-10(-1) M NaCl or MgCl2). The ionic stabilities of the compact forms increase with increasing salt concentration and become comparable to those of the extended geometries at high salt (especially when magnesium is the supporting salt).
Collapse
Affiliation(s)
- M O Fenley
- Department of Chemistry, Rutgers, State University of New Jersey, Wright-Rieman Laboratories, Piscataway 08854-8087, USA
| | | | | | | |
Collapse
|
10
|
Winfree E, Liu F, Wenzler LA, Seeman NC. Design and self-assembly of two-dimensional DNA crystals. Nature 1998; 394:539-44. [PMID: 9707114 DOI: 10.1038/28998] [Citation(s) in RCA: 1614] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular self-assembly presents a 'bottom-up' approach to the fabrication of objects specified with nanometre precision. DNA molecular structures and intermolecular interactions are particularly amenable to the design and synthesis of complex molecular objects. We report the design and observation of two-dimensional crystalline forms of DNA that self-assemble from synthetic DNA double-crossover molecules. Intermolecular interactions between the structural units are programmed by the design of 'sticky ends' that associate according to Watson-Crick complementarity, enabling us to create specific periodic patterns on the nanometre scale. The patterned crystals have been visualized by atomic force microscopy.
Collapse
Affiliation(s)
- E Winfree
- Computation and Neural Systems, California Institute of Technology, Pasadena 91125, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
The DNA-binding properties of many ligands can be rationalized on the basis of their structural and electronic complementarity with the functional groups present in the minor and major grooves of particular DNA sequences. Specific hydrogen bonding patterns are particularly useful for the purpose of sequence recognition. Less obvious, however, is the influence of base composition on the conformational preferences of individual base steps and on the binding of intercalating moieties which become sandwiched between contiguous base pairs. Improved knowledge of stacking interactions may lead to a better understanding of the architecture and inherent flexibility of particular DNA sequences and may provide insight into the principles that dictate the structural changes and specificity patterns observed in the binding of some intercalating ligands to DNA.
Collapse
Affiliation(s)
- F Gago
- Departamento de Farmacología, Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
12
|
Stühmeier F, Welch JB, Murchie AI, Lilley DM, Clegg RM. Global structure of three-way DNA junctions with and without additional unpaired bases: a fluorescence resonance energy transfer analysis. Biochemistry 1997; 36:13530-8. [PMID: 9354621 DOI: 10.1021/bi9702445] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The structure of three-way DNA junctions with and without extrahelical adenine nucleotides in one strand at the branch point of the junction (i.e., An bulges with n = 0, 1, 2, and 3) has been investigated by fluorescence resonance energy transfer. The structure of the junction without bulged nucleotides was found to have a symmetric trigonal geometry. With bulges, the arrangement of the arms becomes asymmetrical. The energy transfer results suggest a model of bulged junctions where the angle between two of the arms is significantly smaller than between the other two pairs of arms. The acute angle becomes smaller as the number of nucleotides in the bulge increases. The FRET efficiencies of the junctions are the same in the presence of Mg++ and Na+ ions.
Collapse
Affiliation(s)
- F Stühmeier
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Biologie, Göttingen, Germany
| | | | | | | | | |
Collapse
|
13
|
Duckett DR, Murchie AI, Clegg RM, Bassi GS, Giraud-Panis MJ, Lilley DM. Nucleic acid structure and recognition. Biophys Chem 1997; 68:53-62. [PMID: 17029905 DOI: 10.1016/s0301-4622(97)00007-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/1995] [Accepted: 01/16/1997] [Indexed: 11/19/2022]
Abstract
We review the global structures adopted by branched nucleic acids, including three- and four-way helical junctions in DNA and RNA. We find that some general folding principles emerge. First, all the structures exhibit a tendency to undergo pairwise coaxial helical stacking when permitted by the local stereochemistry of strand exchange. Second, metal ions generally play an important role in facilitating folding of branched nucleic acids. These principles can be applied to functionally important branched nucleic acids, such as the Holliday DNA junction of genetic recombination, and the hammerhead ribozyme in RNA.
Collapse
Affiliation(s)
- D R Duckett
- CRC Nucleic Acid Structure Research Group, Department of Biochemistry, The University, Dundee, DD1 4HN UK
| | | | | | | | | | | |
Collapse
|
14
|
Yang M, Millar DP. Fluorescence resonance energy transfer as a probe of DNA structure and function. Methods Enzymol 1997; 278:417-44. [PMID: 9170325 DOI: 10.1016/s0076-6879(97)78022-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M Yang
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
15
|
Yang M, Millar DP. Conformational flexibility of three-way DNA junctions containing unpaired nucleotides. Biochemistry 1996; 35:7959-67. [PMID: 8672499 DOI: 10.1021/bi952892z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Time-resolved fluorescence resonance energy transfer has been used to examine the global structure and conformational flexibility of three-way DNA junctions containing unpaired bases at the branch point. Three-way junctions were prepared with donor (fluorescein) and acceptor (tetramethyl-rhodamine) dyes attached to the ends of different helical arms in various pairwise combinations. The time-resolved fluorescence decay of the donor in each labeled junction was measured by time-correlated single photon counting. The distributions of donor-acceptor (D-A) distances present between each pair of labeled helices were recovered from analysis of the donor decay profiles using a Gaussian distribution model. The recovered D-A distance distributions reveal the mean distance between each pair of helices, as well as the range of distances that exists between each pair. For the junction lacking unpaired bases, the three mean interarm distances are similar, indicating an extended structure. In addition, a relatively broad range of distances is present between each pair of helices, showing that the structure is flexible. The addition of unpaired bases causes the junction to fold into a different structure, with one interarm distance being shorter than the other two. The change in overall geometry of the junction appears to be primarily due to the repositioning of one of the helices flanking the bulge. In bulged junctions containing unpaired thymine, cytosine, or adenine bases, the helix containing the 3' portion of the bulged strand appears to undergo the greatest change in its mean position relative to the other helices. In contrast, in the bulged junction containing unpaired guanine bases, the helix containing the 5' portion of the bulged strand is displaced. In all bulged junctions, there is a wide range of distances between the perturbed helix and the other two helices, indicating high mobility for the perturbed arm. These results indicate that the overall structure and conformational flexibility of three-way DNA junctions are sensitive to the presence of unpaired bases at the branch point of the junction and that the precise effect of a bulge depends on the nature of the unpaired bases.
Collapse
Affiliation(s)
- M Yang
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
16
|
Altona C, Pikkemaat JA, Overmars FJ. Three-way and four-way junctions in DNA: a conformational viewpoint. Curr Opin Struct Biol 1996; 6:305-16. [PMID: 8804833 DOI: 10.1016/s0959-440x(96)80048-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DNA junctions are potential intermediates in various important genetic processes, including mutagenesis and recombination. The quantity of research carried out in this area is rapidly increasing. Examples of three-way and four-way junctions are now relatively well characterized and a few common properties have been recognized, of which the most important is the tendency of junctions to fold into one or more coaxially stacked helical conformations or cross-over structures.
Collapse
Affiliation(s)
- C Altona
- Leiden Institute of Chemistry, Gorlaeus, Laboratories, Leiden University, The Netherlands.
| | | | | |
Collapse
|
17
|
Kadrmas JL, Ravin AJ, Leontis NB. Relative stabilities of DNA three-way, four-way and five-way junctions (multi-helix junction loops): unpaired nucleotides can be stabilizing or destabilizing. Nucleic Acids Res 1995; 23:2212-22. [PMID: 7610050 PMCID: PMC307010 DOI: 10.1093/nar/23.12.2212] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Competition binding and UV melting studies of a DNA model system consisting of three, four or five mutually complementary oligonucleotides demonstrate that unpaired bases at the branch point stabilize three- and five-way junction loops but destabilize four-way junctions. The inclusion of unpaired nucleotides permits the assembly of five-way DNA junction complexes (5WJ) having as few as seven basepairs per arm from five mutually complementary oligonucleotides. Previous work showed that 5WJ, having eight basepairs per arm but lacking unpaired bases, could not be assembled [Wang, Y.L., Mueller, J.E., Kemper, B. and Seeman, N.C. (1991) Biochemistry, 30, 5667-5674]. Competition binding experiments demonstrate that four-way junctions (4WJ) are more stable than three-way junctions (3WJ), when no unpaired bases are included at the branch point, but less stable when unpaired bases are present at the junction. 5WJ complexes are in all cases less stable than 4WJ or 3WJ complexes. UV melting curves confirm the relative stabilities of these junctions. These results provide qualitative guidelines for improving the way in which multi-helix junction loops are handled in secondary structure prediction programs, especially for single-stranded nucleic acids having primary sequences that can form alternative structures comprising different types of junctions.
Collapse
Affiliation(s)
- J L Kadrmas
- Department of Chemistry, Bowling Green State University, OH 43403, USA
| | | | | |
Collapse
|
18
|
Leontis NB, Piotto ME, Hills MT, Malhotra A, Ouporov IV, Nussbaum JM, Gorenstein DG. Structural studies of DNA three-way junctions. Methods Enzymol 1995; 261:183-207. [PMID: 8569495 DOI: 10.1016/s0076-6879(95)61010-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N B Leontis
- Department of Chemistry, Bowling Green State University, Ohio 43403, USA
| | | | | | | | | | | | | |
Collapse
|