1
|
Bonizzi A, Signati L, Grimaldi M, Truffi M, Piccotti F, Gagliardi S, Dotti G, Mazzucchelli S, Albasini S, Cazzola R, Bhowmik D, Narayana C, Corsi F, Morasso C. Exploring breast cancer-related biochemical changes in circulating extracellular vesicles using Raman spectroscopy. Biosens Bioelectron 2025; 278:117287. [PMID: 40023908 DOI: 10.1016/j.bios.2025.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/31/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Extracellular vesicles (EVs) are a subgroup of the circulating particles, released by cells in both normal and diseased states, carrying active biomolecules. They have gained significant attention as potential cancer biomarkers, particularly in breast cancer (BC). Previous research showed variations in EVs content and quantity between BC patients and healthy controls (HC). However, studying the biochemical profile of EVs remains challenging due to their low abundance and complex composition. Additionally, EVs may interact with other plasma components, like lipoproteins (LPs), forming a so called "biomolecular corona" that further complicates their analysis. Here, Raman spectroscopy (RS) is proposed as a fast tool to obtain the biochemical profile of circulating EVs in the context of BC. RS was employed to differentiate various extracellular particles (EPs) in blood, including LPs and EVs. The study also evaluated RS's capability to quantify major classes of biomolecules and compared these results with those obtained by traditional biochemical assays. Finally, compositional differences in large EVs (lEVs) and small EVs (sEVs) were assessed between HC and BC patients. RS revealed the existence of distinct biochemical signatures associated with BC, highlighting increased levels of nucleic acids and lipids in the BC group.
Collapse
Affiliation(s)
- Arianna Bonizzi
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Lorena Signati
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Maria Grimaldi
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Francesca Piccotti
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Giulia Dotti
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy
| | - Sara Albasini
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy
| | - Debanjan Bhowmik
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Poojappura, Thiruvananthapuram, 695014, India
| | - Chandrabhas Narayana
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Poojappura, Thiruvananthapuram, 695014, India; Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy.
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy.
| |
Collapse
|
2
|
Morton RE, Mihna D. Apolipoprotein F concentration, activity, and the properties of LDL controlling ApoF activation in hyperlipidemic plasma. J Lipid Res 2022; 63:100166. [PMID: 35016907 PMCID: PMC8953654 DOI: 10.1016/j.jlr.2021.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022] Open
Abstract
Apolipoprotein F (ApoF) modulates lipoprotein metabolism by selectively inhibiting cholesteryl ester transfer protein activity on LDL. This ApoF activity requires that it is bound to LDL. How hyperlipidemia alters total plasma ApoF and its binding to LDL are poorly understood. In this study, total plasma ApoF and LDL-bound ApoF were quantified by ELISA (n = 200). Plasma ApoF was increased 31% in hypercholesterolemic plasma but decreased 20% in hypertriglyceridemia. However, in donors with combined hypercholesterolemia and hypertriglyceridemia, the elevated triglyceride ameliorated the rise in ApoF caused by hypercholesterolemia alone. Compared with normolipidemic LDL, hypercholesterolemic LDL contained ∼2-fold more ApoF per LDL particle, whereas ApoF bound to LDL in hypertriglyceridemia plasma was <20% of control. To understand the basis for altered association of ApoF with hyperlipidemic LDL, the physiochemical properties of LDL were modified in vitro by cholesteryl ester transfer protein ± LCAT activities. The time-dependent change in LDL lipid composition, proteome, core and surface lipid packing, LDL surface charge, and LDL size caused by these factors were compared with the ApoF binding capacity of these LDLs. Only LDL particle size correlated with ApoF binding capacity. This positive association between LDL size and ApoF content was confirmed in hyperlipidemic plasmas. Similarly, when in vitro produced and enlarged LDLs with elevated ApoF binding capacity were incubated with LPL to reduce their size, ApoF binding was reduced by 90%. Thus, plasma ApoF levels and the activation status of this ApoF are differentially altered by hypercholesterolemia and hypertriglyceridemia. LDL size is a key determinate of ApoF binding and activation.
Collapse
Affiliation(s)
- Richard E Morton
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Daniel Mihna
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
3
|
Santa Cruz EC, Zandonadi FDS, Fontes W, Sussulini A. A pilot study indicating the dysregulation of the complement and coagulation cascades in treated schizophrenia and bipolar disorder patients. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140657. [PMID: 33839315 DOI: 10.1016/j.bbapap.2021.140657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
A better understanding of the proteome profile after bipolar disorder (BD) and schizophrenia (SCZ) treatment, besides monitoring disease progression, may assist on the development of novel therapeutic strategies with the ability to reduce or control possible side effects. In this pilot study, proteomics analysis employing nano liquid chromatography coupled to mass spectrometry (nLC-MS) and bioinformatic tools were applied to identify differentially abundant proteins in serum of treated BD and SCZ patients. In total, 10 BD patients, 10 SCZ patients, and 14 healthy controls (HC) were included in this study. 24 serum proteins were significantly altered (p < 0.05) in BD and SCZ treated patients and, considering log2FC > 0.58, 8 proteins presented lower abundance in the BD group, while 7 proteins presented higher abundance and 2 lower abundance in SCZ group when compared against HC. Bioinformatics analysis based on these 24 proteins indicated two main altered pathways previously described in the literature; furthermore, it revealed that opposite abundances of the complement and coagulation cascades were the most significant biological processes involved in these pathologies. Moreover, we describe disease-related proteins and pathways associations suggesting the necessity of clinical follow-up improvement besides treatment, as a precaution or safety measure, along with the disease progression. Further biological validation and investigations are required to define whether there is a correlation between complement and coagulation cascade expression for BD and SCZ and cardiovascular diseases.
Collapse
Affiliation(s)
- Elisa Castañeda Santa Cruz
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Flávia da Silva Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia (UnB), 70910-900 Brasilia, DF, Brazil
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
4
|
Atorvastatin and Fenofibrate Increase the Content of Unsaturated Acyl Chains in HDL and Modify In Vivo Kinetics of HDL-Cholesteryl Esters in New Zealand White Rabbits. Int J Mol Sci 2019; 20:ijms20102521. [PMID: 31121898 PMCID: PMC6566639 DOI: 10.3390/ijms20102521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Previous studies demonstrated modifications of high-density lipoproteins (HDL) structure and apolipoprotein (apo) A-I catabolism induced by the atorvastatin and fenofibrate combination. However, it remains unknown whether such structural and metabolic changes of HDL were related to an improvement of the HDL-cholesteryl esters (HDL-CE) metabolism. Therefore, we determined the structure of HDL and performed kinetic studies of HDL-CE radiolabeled with tritium in rabbits treated with atorvastatin, fenofibrate, and a combination of both drugs. The atorvastatin and fenofibrate combination increased the HDL size and the cholesterol and phospholipid plasma concentrations of the largest HDL subclasses. Moreover, the relative amount of unsaturated fatty acids contained in HDL increased, in detriment of saturated fatty acids as determined by gas chromatography-mass spectrometry. The transfers of cholesteryl esters (CE) from HDL to very low-density lipoproteins/low-density lipoproteins (VLDL/LDL) and vice versa were enhanced with atorvastatin, alone or in combination. Moreover, the direct elimination of CE from plasma via VLDL/LDL decreased with fenofibrate, whereas the direct elimination of CE via HDL augmented with the combination treatment. Taken together, the rise of unsaturated fatty acid content and the size increase of HDL, suggest that atorvastatin and fenofibrate induce more fluid HDL particles, which in turn favor an enhanced CE exchange between HDL and VLDL/LDL. Our results contribute to a better understanding of the relationship between the structure and function of HDL during the use of anti-dyslipidemic drugs.
Collapse
|
5
|
Amigó N, Mallol R, Heras M, Martínez-Hervás S, Blanco Vaca F, Escolà-Gil JC, Plana N, Yanes Ó, Masana L, Correig X. Lipoprotein hydrophobic core lipids are partially extruded to surface in smaller HDL: "Herniated" HDL, a common feature in diabetes. Sci Rep 2016; 6:19249. [PMID: 26778677 PMCID: PMC4726105 DOI: 10.1038/srep19249] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/30/2015] [Indexed: 11/09/2022] Open
Abstract
Recent studies have shown that pharmacological increases in HDL cholesterol concentrations do not necessarily translate into clinical benefits for patients, raising concerns about its predictive value for cardiovascular events. Here we hypothesize that the size-modulated lipid distribution within HDL particles is compromised in metabolic disorders that have abnormal HDL particle sizes, such as type 2 diabetes mellitus (DM2). By using NMR spectroscopy combined with a biochemical volumetric model we determined the size and spatial lipid distribution of HDL subclasses in a cohort of 26 controls and 29 DM2 patients before and after two drug treatments, one with niacin plus laropiprant and another with fenofibrate as an add-on to simvastatin. We further characterized the HDL surface properties using atomic force microscopy and fluorescent probes to show an abnormal lipid distribution within smaller HDL particles, a subclass particularly enriched in the DM2 patients. The reduction in the size, force cholesterol esters and triglycerides to emerge from the HDL core to the surface, making the outer surface of HDL more hydrophobic. Interestingly, pharmacological interventions had no effect on this undesired configuration, which may explain the lack of clinical benefits in DM2 subjects.
Collapse
Affiliation(s)
- Núria Amigó
- Metabolomics Platform, Department of Electronic Engineering, Rovira i Virgili University, IISPV, Av. PaÏsos Catalans 26, 43007, Tarragona, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Roger Mallol
- Metabolomics Platform, Department of Electronic Engineering, Rovira i Virgili University, IISPV, Av. PaÏsos Catalans 26, 43007, Tarragona, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Mercedes Heras
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, C. Sant Joan s/n, 43201, Reus, Spain
| | - Sergio Martínez-Hervás
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Endocrinology and Nutrition Department, Hospital Clinico Universitario, INCLIVA, Department of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010, Valencia, Spain
| | - Francisco Blanco Vaca
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Antoni M. Claret 167, 08025, Barcelona, spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona (UAB), Edifici M. Campus de la UAB, 08193, Bellaterra, Spain
| | - Joan Carles Escolà-Gil
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Antoni M. Claret 167, 08025, Barcelona, spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona (UAB), Edifici M. Campus de la UAB, 08193, Bellaterra, Spain
| | - Núria Plana
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, C. Sant Joan s/n, 43201, Reus, Spain
| | - Óscar Yanes
- Metabolomics Platform, Department of Electronic Engineering, Rovira i Virgili University, IISPV, Av. PaÏsos Catalans 26, 43007, Tarragona, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Lluís Masana
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, C. Sant Joan s/n, 43201, Reus, Spain
| | - Xavier Correig
- Metabolomics Platform, Department of Electronic Engineering, Rovira i Virgili University, IISPV, Av. PaÏsos Catalans 26, 43007, Tarragona, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C. Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
6
|
Gunkel G, Huck WTS. Cooperative Adsorption of Lipoprotein Phospholipids, Triglycerides, and Cholesteryl Esters Are a Key Factor in Nonspecific Adsorption from Blood Plasma to Antifouling Polymer Surfaces. J Am Chem Soc 2013; 135:7047-52. [DOI: 10.1021/ja402126t] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gesine Gunkel
- Melville Laboratory for Polymer
Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, United Kingdom
| | - Wilhelm T. S. Huck
- Melville Laboratory for Polymer
Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, United Kingdom
- Institute for Molecules and
Materials, Radboud University Nijmegen,
Heyendaalseweg 135, 6525 Nijmegen, The Netherlands
| |
Collapse
|
7
|
Nguyen D, Nickel M, Mizuguchi C, Saito H, Lund-Katz S, Phillips MC. Interactions of apolipoprotein A-I with high-density lipoprotein particles. Biochemistry 2013; 52:1963-72. [PMID: 23425306 PMCID: PMC3603221 DOI: 10.1021/bi400032y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although the partitioning of apolipoprotein A-I (apoA-I) molecules in plasma between high-density lipoprotein (HDL)-bound and -unbound states is an integral part of HDL metabolism, the factors that control binding of apoA-I to HDL particles are poorly understood. To address this gap in knowledge, we investigated how the properties of the apoA-I tertiary structure domains and surface characteristics of spherical HDL particles influence apoA-I binding. The abilities of (14)C-labeled human and mouse apoA-I variants to associate with human HDL and lipid emulsion particles were determined using ultracentrifugation to separate free and bound protein. The binding of human apoA-I (243 amino acids) to HDL is largely mediated by its relatively hydrophobic C-terminal domain; the isolated N-terminal helix bundle domain (residues 1-190) binds poorly. Mouse apoA-I, which has a relatively polar C-terminal domain, binds to human HDL to approximately half the level of human apoA-I. The HDL binding abilities of apoA-I variants correlate strongly with their abilities to associate with phospholipid (PL)-stabilized emulsion particles, consistent with apoA-I-PL interactions at the particle surface being important. When equal amounts of HDL2 and HDL3 are present, all of the apoA-I variants partition preferentially to HDL3. Fluorescence polarization measurements using Laurdan-labeled HDL2 and HDL3 indicate that PL molecular packing is looser on the more negatively charged HDL3 particle surface, which promotes apoA-I binding. Overall, it is clear that both apoA-I structural features, especially the hydrophobicity of the C-terminal domain, and HDL surface characteristics such as the availability of free space influence the ability of apoA-I to associate with HDL particles.
Collapse
Affiliation(s)
- David Nguyen
- Lipid Research Group, Gastroenterology, Hepatology and Nutrition Division, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-4318, United States
| | | | | | | | | | | |
Collapse
|
8
|
Chauvin B, Iorga BI, Chaminade P, Paul JL, Maillard P, Prognon P, Kasselouri A. Plasma distribution of tetraphenylporphyrin derivatives relevant for Photodynamic Therapy: Importance and limits of hydrophobicity. Eur J Pharm Biopharm 2013; 83:244-52. [DOI: 10.1016/j.ejpb.2012.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 09/06/2012] [Accepted: 09/21/2012] [Indexed: 11/16/2022]
|
9
|
Ozawa M, Handa T, Nakano M. Effect of Cholesterol on Binding of Amphipathic Helices to Lipid Emulsions. J Phys Chem B 2011; 116:476-82. [DOI: 10.1021/jp207062h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mai Ozawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tetsurou Handa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Nakano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Morton RE, Greene DJ. Conversion of lipid transfer inhibitor protein (apolipoprotein F) to its active form depends on LDL composition. J Lipid Res 2011; 52:2262-2271. [PMID: 21937674 DOI: 10.1194/jlr.m018283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid transfer inhibitor protein (LTIP) exists in both active and inactive forms. Incubation (37°C) of plasma causes LTIP to transfer from a 470 kDa inactive complex to LDL where it is active. Here, we investigate the mechanisms underlying this movement. Inhibiting LCAT or cholesteryl ester transfer protein (CETP) reduced incubation-induced LTIP translocation by 40-50%. Blocking both LCAT and CETP completely prevented LTIP movement. Under appropriate conditions, either factor alone could drive maximum LTIP transfer to LDL. These data suggest that chemical modification of LDL, the 470 kDa complex, or both facilitate LTIP movement. To test this, LDL and the 470 kDa fraction were separately premodified by CETP and/or LCAT activity. Modification of the 470 kDa fraction had no effect on subsequent LTIP movement to native LDL. Premodification of LDL, however, induced spontaneous LTIP movement from the native 470 kDa particle to LDL. This transfer depended on the extent of LDL modification and correlated negatively with changes in the LDL phospholipid + cholesterol-to-cholesteryl ester + triglyceride ratio. We conclude that LTIP translocation is dependent on LDL lipid composition, not on its release from the inactive complex. Compositional changes that reduce the surface-to-core lipid ratio of LDL promote LTIP binding and activation.
Collapse
Affiliation(s)
- Richard E Morton
- Department of Cell Biology, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, OH 44195.
| | - Diane J Greene
- Department of Cell Biology, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
11
|
Dergunov AD. Local/bulk determinants of conformational stability of exchangeable apolipoproteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1169-77. [PMID: 21600318 DOI: 10.1016/j.bbapap.2011.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/12/2011] [Accepted: 05/03/2011] [Indexed: 11/27/2022]
Abstract
GuHCl-induced denaturation of human plasma apoA-I, apoA-II, apoA-IV, apoE3 and three recombinant apoE isoforms in solution and discoidal complexes with phosphatidylcholine (only plasma proteins) was studied. The protein conformational stability (ΔG(H(2)O)) and a slope of linear dependence of free energy of unfolding on GuHCl concentration (m-value) were estimated with the three equilibrium schemes. The data for all proteins, except apoA-II, fit with the three-state model, thus evidencing two-domain structure. The predicted folding rate of the four apoE in solution correlated with conformational stability. The dependence disappeared at the inclusion of apoA-I and apoA-IV into analysis and the m-values, adjusted for residue number in helices (m(rh)), differed between those for apoE and apoA-I/apoA-IV. However, the m(rh)-values for six proteins correlated positively with the fractional change in accessible surface area at unfolding for Phe, Lys and Asn, while negatively for Arg, Ala and Gly residues. The difference between the adjusted ΔG(rh)(H(2)O) values for apolipoproteins in complexes and in solution decreased at the increase of reduced temperature (T(obs)-T(t))/T(t). The induction of intrinsic disorder by arginine residues may be of primary importance in metabolism and function of exchangeable apolipoproteins, while their stability in nascent discoidal HDL is controlled by the physical state of phosphatidylcholine.
Collapse
|
12
|
Vuorela T, Catte A, Niemelä PS, Hall A, Hyvönen MT, Marrink SJ, Karttunen M, Vattulainen I. Role of lipids in spheroidal high density lipoproteins. PLoS Comput Biol 2010; 6:e1000964. [PMID: 21060857 PMCID: PMC2965744 DOI: 10.1371/journal.pcbi.1000964] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 09/17/2010] [Indexed: 01/25/2023] Open
Abstract
We study the structure and dynamics of spherical high density lipoprotein (HDL) particles through coarse-grained multi-microsecond molecular dynamics simulations. We simulate both a lipid droplet without the apolipoprotein A-I (apoA-I) and the full HDL particle including two apoA-I molecules surrounding the lipid compartment. The present models are the first ones among computational studies where the size and lipid composition of HDL are realistic, corresponding to human serum HDL. We focus on the role of lipids in HDL structure and dynamics. Particular attention is paid to the assembly of lipids and the influence of lipid-protein interactions on HDL properties. We find that the properties of lipids depend significantly on their location in the particle (core, intermediate region, surface). Unlike the hydrophobic core, the intermediate and surface regions are characterized by prominent conformational lipid order. Yet, not only the conformations but also the dynamics of lipids are found to be distinctly different in the different regions of HDL, highlighting the importance of dynamics in considering the functionalization of HDL. The structure of the lipid droplet close to the HDL-water interface is altered by the presence of apoA-Is, with most prominent changes being observed for cholesterol and polar lipids. For cholesterol, slow trafficking between the surface layer and the regimes underneath is observed. The lipid-protein interactions are strongest for cholesterol, in particular its interaction with hydrophobic residues of apoA-I. Our results reveal that not only hydrophobicity but also conformational entropy of the molecules are the driving forces in the formation of HDL structure. The results provide the first detailed structural model for HDL and its dynamics with and without apoA-I, and indicate how the interplay and competition between entropy and detailed interactions may be used in nanoparticle and drug design through self-assembly.
Collapse
Affiliation(s)
- Timo Vuorela
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Andrea Catte
- Department of Physics, Tampere University of Technology, Tampere, Finland
- Department of Medicine and Center for Computational and Structural Biology, University of Alabama, Birmingham, Alabama, United States of America
| | | | - Anette Hall
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | | | - Siewert-Jan Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Mikko Karttunen
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland
- Department of Applied Physics, Aalto University School of Science and Technology, Espoo, Finland
- MEMPHYS–Center of Biomembrane Physics, Physics Department, University of Southern Denmark, Odense M, Denmark
- * E-mail:
| |
Collapse
|
13
|
Greiner VJ, Egelé C, Oncul S, Ronzon F, Manin C, Klymchenko A, Mély Y. Characterization of the lipid and protein organization in HBsAg viral particles by steady-state and time-resolved fluorescence spectroscopy. Biochimie 2010; 92:994-1002. [DOI: 10.1016/j.biochi.2010.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 04/19/2010] [Indexed: 11/26/2022]
|
14
|
Tetali SD, Budamagunta MS, Simion C, den Hartigh LJ, Kálai T, Hideg K, Hatters DM, Weisgraber KH, Voss JC, Rutledge JC. VLDL lipolysis products increase VLDL fluidity and convert apolipoprotein E4 into a more expanded conformation. J Lipid Res 2009; 51:1273-83. [PMID: 19965582 DOI: 10.1194/jlr.m000406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Our previous work indicated that apolipoprotein (apo) E4 assumes a more expanded conformation in the postprandial period. The postprandial state is characterized by increased VLDL lipolysis. In this article, we tested the hypothesis that VLDL lipolysis products increase VLDL particle fluidity, which mediates expansion of apoE4 on the VLDL particle. Plasma from healthy subjects was collected before and after a moderately high-fat meal and incubated with nitroxyl-spin labeled apoE. ApoE conformation was examined by electron paramagnetic resonance spectroscopy using targeted spin probes on cysteines introduced in the N-terminal (S76C) and C-terminal (A241C) domains. Further, we synthesized a novel nitroxyl spin-labeled cholesterol analog, which gave insight into lipoprotein particle fluidity. Our data revealed that the order of lipoprotein fluidity was HDL approximately LDL<VLDL<VLDL+lipoprotein lipase. Moreover, the conformation of apoE4 depended on the lipoprotein fraction: VLDL-associated apoE4 had a more linear conformation than apoE4 associated with LDL or HDL. Further, by changing VLDL fluidity, VLDL lipolysis products significantly altered apoE4 into a more expanded conformation. Our studies indicate that after every meal, VLDL fluidity is increased causing apoE4 associated with VLDL to assume a more expanded conformation, potentially enhancing the pathogenicity of apoE4 in vascular tissue.
Collapse
Affiliation(s)
- Sarada D Tetali
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pownall HJ, Courtney HS, Gillard BK, Massey JB. Properties of the products formed by the activity of serum opacity factor against human plasma high-density lipoproteins. Chem Phys Lipids 2008; 156:45-51. [PMID: 18838065 DOI: 10.1016/j.chemphyslip.2008.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 11/25/2022]
Abstract
Serum opacity factor from Streptococcus pyogenes transfers the cholesteryl esters (CE) of approximately 100,000 plasma high-density lipoprotein particles (HDL) to a CE-rich microemulsion (CERM) while forming neo HDL, a cholesterol-poor HDL-like particle. HDL, neo HDL, and CERM are distinct. Neo HDL is lower in free cholesterol and has lower surface and total microviscosities than HDL; the surface polarity of neo HDL and HDL are similar. CERM is much larger than HDL and richer in cholesterol and CE. Although the surface microviscosity of HDL is higher than that of CERM, they have similar total microviscosities because cholesterol partitions into the neutral lipid core. Because of its unique surface properties apo E preferentially associates with the CERM. In contrast, the composition and properties of neo HDL make it a potential acceptor of cellular cholesterol and its esterification. Thus, neo HDL and CERM are possible vehicles for improving cholesterol transport to the liver.
Collapse
Affiliation(s)
- Henry J Pownall
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, MS A601, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
16
|
Pettersson C, Fogelstrand L, Rosengren B, Ståhlman S, Hurt-Camejo E, Fagerberg B, Wiklund O. Increased lipolysis by secretory phospholipase A(2) group V of lipoproteins in diabetic dyslipidaemia. J Intern Med 2008; 264:155-65. [PMID: 18298481 DOI: 10.1111/j.1365-2796.2008.01932.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Lipolysis of lipoproteins by secretory phospholipase A(2) group V (sPLA(2)-V) promotes inflammation, lipoprotein aggregation and foam cell formation--all considered as atherogenic mechanisms. OBJECTIVE In this study, we compared the susceptibility to sPLA(2)-V lipolysis of VLDL and LDL from individuals with type 2 diabetes and the metabolic syndrome (T2D-MetS) and from healthy controls. Design. VLDL and LDL were isolated from 38 T2D-MetS subjects and 38 controls, treated pair-wise. Extent of sPLA(2)-V lipolysis was measured as release of nonesterified free fatty acids (NEFA). In a subset of the subjects, lipoprotein composition was determined as a relationship between lipid and apolipoprotein components. RESULTS Mean paired increase in sPLA(2)-V lipolysis after 1 h for T2D-MetS versus control was 2.0 micromol NEFA l(-1) for VLDL (P = 0.004) and 0.75 micromol NEFA l(-1) for LDL (P = 0.001). There were also substantial differences in lipoprotein composition between the groups. T2D-MetS VLDL had higher triglyceride and cholesterol contents than control VLDL. T2D-MetS LDL was smaller and contained more triglycerides and less cholesterol than control LDL. Both VLDL and LDL from T2D-MetS subjects also contained more apolipoprotein CIII per particle. CONCLUSION VLDL and LDL from T2D-MetS individuals were more susceptible to sPLA(2)-V lipolysis than those from control individuals. This may result in elevated levels of NEFA and lysophosphatidylcholine, both in circulation and in LDL, possibly contributing to the elevated inflammatory state and increased risk of cardiovascular diseases seen in these individuals.
Collapse
Affiliation(s)
- C Pettersson
- Department of Molecular and Clinical Medicine, The Wallenberg Laboratory, Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kendrick A, Quenby S, Wray S. Contractility and calcium signaling of human myometrium are profoundly affected by cholesterol manipulation: implications for labor? Reprod Sci 2007; 14:456-66. [PMID: 17913965 DOI: 10.1177/1933719107306229] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors elucidate cholesterol's effect on human uterine contractility and calcium signaling to test the hypotheses that elevation of cholesterol decreases uterine activity and that oxytocin cannot augment contraction when cholesterol is elevated. The effects of cholesterol extraction with methyl beta-cyclodextrin and enrichment with low-density lipoproteins and cholesterol on contractile activity and intracellular calcium signaling in spontaneous or oxytocin-stimulated myometrium are determined. Force occurring spontaneously and with oxytocin is significantly increased by cholesterol extraction. Cholesterol enrichment profoundly inhibits force production in a dose-dependent manner and could reverse the effects of cholesterol extraction. Qualitatively similar results are found for nonpregnant and pregnant laboring and non-laboring myometrium. These contractile changes are related to changes in intracellular Ca2+ . Thus, elevated cholesterol is deleterious to contractility and Ca2+ signaling in human myometrium. Cholesterol may contribute to uterine quiescence but could cause difficulties in labor in obese/dyslipidemic women, consistent with their increased cesarean delivery rates.
Collapse
|
18
|
Morales NP, Charlermchoung C, Luechapudiporn R, Yamanont P, Fucharoen S, Chantharaksri U. Lipid fluidity at different regions in LDL and HDL of β-thalassemia/Hb E patients. Biochem Biophys Res Commun 2006; 350:698-703. [PMID: 17027920 DOI: 10.1016/j.bbrc.2006.09.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 09/20/2006] [Indexed: 11/23/2022]
Abstract
Atherosclerosis-related vascular complications in beta-thalassemia/hemoglobin E (beta-thal/Hb E) patients may result from iron induced oxidation of lipoproteins. To identify the specific site of oxidative damage, changes in lipid fluidity at different regions in LDL and HDL particle were investigated using two fluorescence probes and two ESR spin probes. The magnitude of increased lipid fluidity in thalassemic lipoproteins was dependent on the location of the probes. In hydrophobic region, the rotational correlation times for 16-doxyl stearic acid and DPH anisotropy were markedly changed in LDL and HDL of the patients. In the surface region, there was only a slight change in the order parameter (S) for 5-doxyl stearic acid and TMA-DPH anisotropy. Lipid fluidity at the core of LDL and HDL showed good correlation with oxidative stress markers, the ratio of CL/CO, and the level of alpha-tocopherol, suggesting that hydrophobic region of thalassemic lipoprotein was a target site for oxidative damage.
Collapse
|
19
|
Massey JB, Pownall HJ. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I. Biochemistry 2005; 44:10423-33. [PMID: 16042420 DOI: 10.1021/bi0506425] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
7-Ketocholesterol is an oxidized derivative of cholesterol with numerous physiological effects. In model membranes, 7-ketocholesterol and cholesterol were compared by physical measures of bilayer order and polarity, formation of detergent resistant domains (DRM), phase separation, and membrane microsolubilization by apolipoprotein A-I. In binary mixtures of a saturated phosphatidylcholine (PC), dipalmitoyl-PC (DPPC), and cholesterol or 7-ketocholesterol, the sterols modulate bilayer order and polarity and induce DRM formation to a similar extent. Cholesterol induces formation of ordered lipid domains (rafts) in tertiary mixtures with dioleoyl-PC (DOPC) and DPPC, or DOPC and sphingomyelin (SM). In tertiary mixtures, cholesterol increased lipid order and reduces bilayer polarity more than 7-ketocholesterol. This effect was more pronounced when the mixtures were in a miscible liquid-disordered (L(d)) phase. Substitution of 7-ketocholesterol for cholesterol dramatically reduced the extent of DRM formation in DOPC/DPPC and DOPC/SM bilayers and ordered lipid phase separation in mixtures of a spin-labeled PC with DPPC and with SM. Compared to cholesterol, 7-ketocholesterol decreased the rate for the microsolubilization of dimyristoyl-PC multilamellar vesicles by apolipoprotein A-I. The membrane effects of 7-ketocholesterol were dependent on the phospholipid matrix. In L(d) phase phospholipids, a model for 7-ketocholesterol indicates that the proximity of the 7-keto and 3beta-OH groups puts both polar moieties at the lipid-water interface to tilt the sterol nucleus to the plane of the bilayer. 7-Ketocholesterol was less effective in forming ordered lipid domains, in decreasing the level of bilayer hydration, and in forming phase boundary bilayer defects. Compared to cholesterol, 7-ketocholesterol can differentially modulate membrane properties involved in protein-membrane association and function.
Collapse
Affiliation(s)
- John B Massey
- Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | |
Collapse
|
20
|
Oörni K, Posio P, Ala-Korpela M, Jauhiainen M, Kovanen PT. Sphingomyelinase Induces Aggregation and Fusion of Small Very Low–Density Lipoprotein and Intermediate-Density Lipoprotein Particles and Increases Their Retention to Human Arterial Proteoglycans. Arterioscler Thromb Vasc Biol 2005; 25:1678-83. [PMID: 15879301 DOI: 10.1161/01.atv.0000168912.42941.60] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Infiltration of low-density lipoprotein (LDL) into subendothelial space is an early step in atherosclerosis. In addition to LDL particles, small very low-density lipoprotein (sVLDL) and intermediate-density lipoprotein (IDL) particles are also able to enter the arterial intima and be retained within the subendothelial extracellular matrix. Here we compared how proteolysis with alpha-chymotrypsin and phospholipid hydrolysis with phospholipase A2 or sphingomyelinase (SMase) of sVLDL, IDL, and LDL particles can influence their aggregation, fusion, and binding to human arterial proteoglycans in vitro. METHODS AND RESULTS In each of the 3 lipoprotein classes, the particles became only slightly aggregated with alpha-chymotrypsin or phospholipase A2. However, the particles strongly aggregated when treated with SMase. The aggregated/fused particles were found to bind to proteoglycans in proteoglycan affinity chromatography more tightly than the native-sized counterparts. In addition, in a microtiter well assay, the binding of SMase-treated lipoproteins was enhanced: the amounts of proteoglycan-bound SMase-treated LDL, IDL, and sVLDL were 4-, 5-, and 20-fold higher, respectively, than the amounts of proteoglycan-bound native lipoproteins. CONCLUSIONS These results imply a specific role for SMase as an sVLDL- and IDL-modifying enzyme and also suggest a novel mechanism of lipid accumulation in atherogenesis, namely enhanced retention of atherogenic triglyceride-rich lipoprotein particles in intimal areas expressing extracellular SMase activity.
Collapse
|
21
|
Saito H, Dhanasekaran P, Baldwin F, Weisgraber KH, Phillips MC, Lund-Katz S. Effects of polymorphism on the lipid interaction of human apolipoprotein E. J Biol Chem 2003; 278:40723-9. [PMID: 12917433 DOI: 10.1074/jbc.m304814200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ApoE exists as three common isoforms, apoE2, apoE3, and apoE4; apoE2 and apoE3 preferentially bind to high density lipoproteins, whereas apoE4 prefers very low density lipoproteins (VLDL). To understand the molecular basis for the different lipoprotein distributions of these isoforms in human plasma, we examined the lipid-binding properties of the apoE isoforms and some mutants using lipid emulsions. With both large (120 nm) and small (35 nm) emulsion particles, the binding affinity of apoE4 was much higher than that of apoE2 and apoE3, whereas the maximal binding capacities were similar among the three isoforms. The 22-kDa N-terminal fragment of apoE4 displayed a much higher binding capacity than did apoE2 and apoE3. The apoE4(E255A) mutant, which has no electrostatic interaction between Arg61 and Glu255, showed binding behavior similar to that of apoE3, indicating that N- and C-terminal domain interaction in apoE4 is responsible for its high affinity for lipid. In addition, the apoE3(P267A) mutant, which is postulated to contain a long alpha-helix in the C-terminal domain, had significantly decreased binding capacities for both sizes of emulsion particle, suggesting that the apoE4 preference for VLDL is not due to a stabilized long alpha-helical structure. Isothermal titration calorimetry measurements showed that there is no significant difference in thermodynamic parameters for emulsion binding among the apoE isoforms. However, fluorescence measurements of 8-anilino-1-naphthalenesulfonic acid binding to apoE indicated that apoE4 has more exposed hydrophobic surface compared with apoE3 mainly due to the different tertiary organization of the C-terminal domain. The less organized structure in the C-terminal domain of apoE4 leads to the higher affinity for lipid, contributing to its preferential association with VLDL. In fact, we found that apoE4 binds to VLDL with higher affinity compared with apoE3.
Collapse
Affiliation(s)
- Hiroyuki Saito
- National Institute of Health Sciences, Osaka Branch, Osaka 540-0006, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Abia R, Pacheco YM, Montero E, Ruiz-Gutierrez V, Muriana FJG. Distribution of fatty acids from dietary oils into phospholipid classes of triacylglycerol-rich lipoproteins in healthy subjects. Life Sci 2003; 72:1643-54. [PMID: 12551753 DOI: 10.1016/s0024-3205(02)02440-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several studies have suggested that lipoprotein metabolism can be affected by lipoprotein phospholipid composition. We investigated the effect of virgin olive oil (VOO) and high-oleic sunflower oil (HOSO) intake on the distribution of fatty acids in triacylglycerols (TG), cholesteryl esters (CE) and phospholipid (PL) classes of triacylglycerol-rich lipoproteins (TRL) from normolipidemic males throughout a 7 h postprandial metabolism. Particularly, changes in oleic acid (18:1n-9) concentration of PL were used as a marker of in vivo hydrolysis of TRL external monolayer. Both oils equally promoted the incorporation of oleic acid into the TG and CE of postprandial TRL. However, PL was enriched in oleic acid (18:1n-9) and n-3 polyunsaturated fatty acids (PUFA) after VOO meal, whereas in stearic (18:0) and linoleic (18:2n-6) acids after HOSO meal. We also found that VOO produced TRL which PL 18:1n-9 content was dramatically reduced along the postprandial period. We conclude that the fatty acid composition of PL can be a crucial determinant for the clearance of TRL during the postprandial metabolism of fats.
Collapse
Affiliation(s)
- Rocio Abia
- Instituto de la Grasa, Consejo Superior de Investigaciones Cientificas (CSIC), 41012, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
23
|
Nyholm T, Nylund M, Söderholm A, Slotte JP. Properties of palmitoyl phosphatidylcholine, sphingomyelin, and dihydrosphingomyelin bilayer membranes as reported by different fluorescent reporter molecules. Biophys J 2003; 84:987-97. [PMID: 12547780 PMCID: PMC1302676 DOI: 10.1016/s0006-3495(03)74915-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The properties of vesicle membranes prepared from 16:0-SM, 16:0-DHSM, or DPPC were characterized using steady-state and time-resolved fluorescence spectroscopy and different fluorescent reporter molecules. The acyl-chain region was probed using free and phospholipid-bound 1,6-diphenyl-1,3,5-hexatriene. 16:0-DHSM was found to be the more ordered than both DPPC and 16:0-SM 5 degrees C below and above melting temperature. Interfacial properties of the phospholipid bilayers were examined using 6-dodecanoyl-2-dimethyl-aminonaphthalene (Laurdan), 6-propionyl-2-dimethyl-amino-naphthalene (Prodan), and dansyl-PE. Laurdan and Prodan reported that the two sphingomyelin (SM) membrane interfaces were clearly different from the DPPC membrane interface, whereas the two SM membrane interfaces had more similar properties (both in gel and liquid-crystalline phase). Prodan partition studies showed that membrane resistance to Prodan partitioning increased in the order: 16:0-SM < DPPC < 16:0-DHSM. The degree to which dansyl-PE is exposed to water reflects the structural properties of the membrane-water interface. By comparing the lifetime of dansyl-PE in water and deuterium oxide solution, we could show that the degree to which the dansyl moiety was exposed to water in the membranes increased in the order: 16:0-SM < DPPC < 16:0-DHSM. In conclusion, this study has shown that DHSM forms more ordered bilayers than acyl-chain matched SM or phosphatidylcholine, even in the liquid-crystalline state.
Collapse
Affiliation(s)
- Thomas Nyholm
- Department of Biochemistry and Pharmacy, Abo Akademi University, FIN 20521 Turku, Finland
| | | | | | | |
Collapse
|
24
|
Silliman CC, Moore EE, Zallen G, Gonzalez R, Johnson JL, Elzi DJ, Meng X, Hanasaki K, Ishizaki J, Arita H, Ao L, England KM, Banerjee A. Presence of the M-type sPLA(2) receptor on neutrophils and its role in elastase release and adhesion. Am J Physiol Cell Physiol 2002; 283:C1102-13. [PMID: 12225974 DOI: 10.1152/ajpcell.00608.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secretory phospholipase A(2) (sPLA(2)) produces lipids that stimulate polymorphonuclear neutrophils (PMNs). With the discovery of sPLA(2) receptors (sPLA(2)-R), we hypothesize that sPLA(2) stimulates PMNs through a receptor. Scatchard analysis was used to determine the presence of a sPLA(2) ligand. Lysates were probed with an antibody to the M-type sPLA(2)-R, and the immunoreactivity was localized. PMNs were treated with active and inactive (+EGTA) sPLA(2) (1-100 units of enzyme activity/ml, types IA, IB, and IIA), and elastase release and PMN adhesion were measured. PMNs incubated with inactive, FITC-linked sPLA(2)-IB, but not sPLA(2)-IA, demonstrated the presence of a sPLA(2)-R with saturation at 2.77 fM and a K(d) of 167 pM. sPLA(2)-R immunoreactivity was present at 185 kDa and localized to the membrane. Inactive sPLA(2)-IB activated p38 MAPK, and p38 MAPK inhibition attenuated elastase release. Active sPLA(2)-IA caused elastase release, but inactive type IA did not. sPLA(2)-IB stimulated elastase release independent of activity; inactive sPLA(2)-IIA partially stimulated PMNs. sPLA(2)-IB and sPLA(2)-IIA caused PMN adhesion. We conclude that PMNs contain a membrane M-type sPLA(2)-R that activates p38 MAPK.
Collapse
Affiliation(s)
- Christopher C Silliman
- Bonfils Blood Center, Department of Pediatrics, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Saito H, Dhanasekaran P, Baldwin F, Weisgraber KH, Lund-Katz S, Phillips MC. Lipid binding-induced conformational change in human apolipoprotein E. Evidence for two lipid-bound states on spherical particles. J Biol Chem 2001; 276:40949-54. [PMID: 11533033 DOI: 10.1074/jbc.m106337200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) E contains two structural domains, a 22-kDa (amino acids 1-191) N-terminal domain and a 10-kDa (amino acids 223-299) C-terminal domain. To better understand apoE-lipid interactions on lipoprotein surfaces, we determined the thermodynamic parameters for binding of apoE4 and its 22- and 10-kDa fragments to triolein-egg phosphatidylcholine emulsions using a centrifugation assay and titration calorimetry. In both large (120 nm) and small (35 nm) emulsion particles, the binding affinities decreased in the order 10-kDa fragment approximately 34-kDa intact apoE4 > 22-kDa fragment, whereas the maximal binding capacity of intact apoE4 was much larger than those of the 22- and 10-kDa fragments. These results suggest that at maximal binding, the binding behavior of intact apoE4 is different from that of each fragment and that the N-terminal domain of intact apoE4 does not contact lipid. Isothermal titration calorimetry measurements showed that apoE binding to emulsions was an exothermic process. Binding to large particles is enthalpically driven, and binding to small particles is entropically driven. At a low surface concentration of protein, the binding enthalpy of intact apoE4 (-69 kcal/mol) was approximately equal to the sum of the enthalpies for the 22- and 10-kDa fragments, indicating that both the 22- and 10-kDa fragments interact with lipids. In a saturated condition, however, the binding enthalpy of intact apoE4 (-39 kcal/mol) was less exothermic and rather similar to that of each fragment, supporting the hypothesis that only the C-terminal domain of intact apoE4 binds to lipid. We conclude that the N-terminal four-helix bundle can adopt either open or closed conformations, depending upon the surface concentration of emulsion-bound apoE.
Collapse
Affiliation(s)
- H Saito
- Joseph Stokes, Jr. Research Institute, the Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | | | |
Collapse
|
26
|
Krasnowska EK, Bagatolli LA, Gratton E, Parasassi T. Surface properties of cholesterol-containing membranes detected by Prodan fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1511:330-40. [PMID: 11286976 DOI: 10.1016/s0005-2736(01)00286-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fluorescent membrane probe 6-propionyl-2-dimethylaminonaphthalene (Prodan) displays a high sensitivity to the polarity and packing properties of lipid membrane. Contrary to 6-lauroyl-2-dimethylaminonaphthalene (Laurdan), Prodan can also monitor the properties of the membrane surface, i.e., the polar-head pretransition. In bilayers composed of coexisting gel and liquid-crystalline phases, Prodan shows a preferential partitioning in the latter, so that the detected membrane properties mainly belong to fluid domains. In the presence of cholesterol, the packing properties of the gel phase phospholipids are modified in such a way that Prodan can penetrate and label the membrane. Although Prodan labeling of the gel phase is a function of cholesterol concentration, 3 mol percent cholesterol is sufficient for a 60% Prodan labeling with respect to the maximum labeling reached at 15 mol percent cholesterol. We present steady-state and dynamical fluorescence measurements of Prodan in bilayers in the presence of cholesterol. Our results fit the liquid-ordered/liquid-disordered phase model for cholesterol-containing membranes and show that the presence of cholesterol, in addition to modification to the phase state of the hydrophobic portion of the bilayer, strongly affects the packing and the polarity of the membrane hydrophobic-hydrophilic interface.
Collapse
Affiliation(s)
- E K Krasnowska
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Viale Marx 15-43, 00137 Rome, Italy
| | | | | | | |
Collapse
|
27
|
Massey JB. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:167-84. [PMID: 11342156 DOI: 10.1016/s0005-2736(00)00344-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ceramides (Cers) may exert their biological activity through changes in membrane structure and organization. To understand this mechanism, the effect of Cer on the biophysical properties of phosphatidylcholine, sphingomyelin (SM) and SM/cholesterol bilayers was determined using fluorescence probe techniques. The Cers were bovine brain Cer and synthetic Cers that contained a single acyl chain species. The phospholipids were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glyero-3-phosphocholine (DPPC) and bovine brain, egg yolk and bovine erythrocyte SM. The addition of Cer to POPC and DPPC bilayers that were in the liquid-crystalline phase resulted in a linear increase in acyl chain order and decrease in membrane polarity. The addition of Cer to DPPC and SM bilayers also resulted in a linear increase in the gel to liquid-crystalline phase transition temperature (T(M)). The magnitude of the change was dependent upon Cer lipid composition and was much higher in SM bilayers than DPPC bilayers. The addition of 33 mol% cholesterol essentially eliminated the thermal transition of SM and SM/Cer bilayers. However, there is still a linear increase in acyl chain order induced by the addition of Cer. The results are interpreted as the formation of DPPC/Cer and SM/Cer lipid complexes. SM/Cer lipid complexes have higher T(M)s than the corresponding SM because the addition of Cer reduces the repulsion between the bulky headgroup and allows closer packing of the acyl chains. The biophysical properties of a SM/Cer-rich bilayer are dependent upon the amount of cholesterol present. In a cholesterol-poor membrane, a sphingomyelinase could catalyze the isothermal conversion of a liquid-crystalline SM bilayer to a gel phase SM/Cer complex at physiological temperature.
Collapse
Affiliation(s)
- J B Massey
- Department of Medicine, Baylor College of Medicine, The Methodist Hospital, 6565 Fannin Street, M.S. A-601, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Massey JB. Interfacial properties of phosphatidylcholine bilayers containing vitamin E derivatives. Chem Phys Lipids 2001; 109:157-74. [PMID: 11269935 DOI: 10.1016/s0009-3084(00)00216-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
alpha-Tocopherol and alpha-tocopheryl succinate are biologically active lipids. The activity of these lipids may be related to how they affect membrane physical-chemical properties. Utilizing fluorescence methods, we have investigated the effect of alpha-tocopherol, alpha-tocopheryl succinate, and alpha-tocopheryl acetate on the properties of model membranes consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. In liquid-crystalline phase phospholipid bilayers, alpha-tocopherol decreased acyl chain mobility and decreased the interfacial polarity, but had no effect on the interfacial surface charge. In contrast, alpha-tocopheryl succinate had little effect on acyl chain motion or interfacial hydration, but increased the interfacial surface charge. alpha-Tocopheryl acetate had very little effect on any of the measurements of these bilayer properties. In a gel phase bilayer, alpha-tocopherol decreased acyl chain order, whereas alpha-tocopheryl succinate and alpha-tocopheryl acetate did not. Each alpha-tocopheryl derivative had a different effect on interfacial polarity, however, only alpha-tocopheryl succinate increased the interfacial surface charge. The acylation of alpha-tocopherol abolishes its antioxidant activity and generates molecules with different membrane physical properties. The non-polar acetate group of alpha-tocopheryl acetate locates this compound in a region of the bilayer where it has little effect on bilayer interfacial properties. The free carboxyl group of alpha-tocopheryl succinate is located in the interfacial region of the bilayer where it increases the membrane surface charge.
Collapse
Affiliation(s)
- J B Massey
- Department of Medicine, Baylor College of Medicine, 6565 Fannin Street, M.S.A.-601, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Deighan CJ, Caslake MJ, McConnell M, Boulton-Jones JM, Packard CJ. Patients with nephrotic-range proteinuria have apolipoprotein C and E deficient VLDL1. Kidney Int 2000; 58:1238-46. [PMID: 10972686 DOI: 10.1046/j.1523-1755.2000.00278.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Impaired very low-density lipoprotein (VLDL) clearance contributes to dyslipidemia in nephrotic-range proteinuria. VLDL can be subdivided into large light VLDL1 (Sf 60 to 400) and smaller, denser VLDL2 (Sf 20 to 60). In nephrotic-range proteinuria, the clearance of VLDL1 is delayed. VLDL1 lipolysis is influenced by apolipoprotein CII (apoCII) and apoCIII, whereas apoE regulates receptor-mediated clearance. METHODS To ascertain whether impaired VLDL1 clearance was related to a deficiency in apolipoproteins on VLDL1, we measured VLDL subfraction concentrations and VLDL1 apolipoprotein and lipid compositions in 27 patients with glomerular disease and urinary albumin> 2 g/24 h along with 27 age- and sex-matched controls. RESULTS Proteinuric patients had increased plasma VLDL1, VLDL2, apoCII, apoCIII (all P < 0.001), and apoE concentration (P < 0.002). Patients appeared to have smaller VLDL1 particles, as assessed by triglyceride per particle (median + interquartile range, moles per VLDL1 particle): patients, 4.9 (3.0 to 7.9) x103; controls, 7.0 (4.6 to 15.7) x103, P < 0.05, with reduced apoCII, 4.2 (3.1 to 8.2) versus 9.9 (7.4 to 23.2), P < 0.0004; apoCIII, 16.6 (9.1 to 27.2) versus 29.3 (18.5 to 69.4), P < 0.02; and apoE content, 0.17 (0.08 to 0.44) versus 0.48 (0.31 to 1. 31), P < 0.006. The VLDL1 surface free cholesterol to phospholipid results were increased in proteinuric patients (0.55 +/- 0.17 vs. 0. 40 +/- 0.18, P < 0.002, all mean +/- SD). For all patients, VLDL1 apoCII, apoCIII, and apoE contents per particle were related to particle size (apoCII, r2 = 61.5%, P < 0.001; apoCIII, r2 = 75.8%, P < 0.001; apoE, r2 = 58.2%, P < 0.001) and inversely to the free cholesterol to phospholipid ratio (apoCII, r2 = 41.6%, P < 0.001; apoCIII, r2 = 38.8%, P < 0.001; apoE, r2 = 11.7%, P < 0.05). Multivariate analysis suggested that the relative lack of apoCII and apoCIII on patients VLDL1 was related to smaller particle size and increased free cholesterol:phospholipid (FC:PL) ratio. Particle size but not free cholesterol determined the apoE content of VLDL1. CONCLUSIONS We postulate that impaired VLDL1 clearance in nephrotic-range proteinuria results from the appearance of particles deficient in apoCII, apoCIII, and apoE. VLDL1 apoC deficiency is associated with the formation of smaller particles with a high FC:PL ratio, and is likely to cause inefficient lipolysis. VLDL1 apoE deficiency is associated with smaller VLDL1 particles but not altered VLDL1 surface lipid content, and may reduce receptor-mediated clearance of this lipoprotein.
Collapse
Affiliation(s)
- C J Deighan
- Renal Unit, Glasgow Royal Infirmary and Department of Pathological Biochemistry, University of Glasgow, Glasgow Royal Infirmary, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
Massey JB. Effect of cholesteryl hemisuccinate on the interfacial properties of phosphatidylcholine bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1415:193-204. [PMID: 9858729 DOI: 10.1016/s0005-2736(98)00194-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cholesteryl hemisuccinate (CHEMS) is an amphipathic lipid that can regulate cell growth. A comparison of the effects of CHEMS and cholesterol on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers was investigated using fluorescence techniques. In liquid-crystalline phase POPC bilayers, CHEMS increased the interfacial surface charge, but was less effective than cholesterol in reducing acyl chain mobility and interfacial hydration. In liquid-crystalline phase DPPC bilayers, CHEMS and cholesterol were equally effective in reducing acyl chain mobility. Similar to the POPC matrix, CHEMS increased the interfacial surface charge and cholesterol decreased the surface hydration. The different effect of cholesterol and CHEMS on acyl chain mobility may be due to a preferential interaction of cholesterol with POPC. In gel phase DPPC bilayers, CHEMS and a succinylated pyrenyl cholesterol analog exhibited different effects on membrane physical-chemical properties than cholesterol. Succinylation also increased the rate of transfer of the pyrenyl cholesterol analog between single unilamellar vesicles approximately seven fold. This process demonstrated first-order kinetics which indicated that transbilayer migration was not a rate-limiting step. The succinylation of cholesterol places a carboxyl group at the lipid-water interface and the sterol ring deeper in the bilayer. For a structural model to explain its biological properties, CHEMS should be considered a bulky fatty acid.
Collapse
Affiliation(s)
- J B Massey
- Department of Medicine, Baylor College of Medicine and The Methodist Hospital, 6565 Fannin Street, M.S. A-601, Houston, TX 77030, USA.
| |
Collapse
|